

PDF UNCERTAINTIES & BSM SEARCHES

STEFANO FORTE UNIVERSITÀ DI MILANO & INFN

UNIVERSITÀ DEGLI STUDI DI MILANO

DIPARTIMENTO DI FISICA

NANTES, OCTOBER 18, 2022

IRN TERASCALE MEETING

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 740006

PDF UNCERTAINTIES AND NEW PHYSICS: TEVATRON

- DISCREPANCY BETWEEN QCD CALCULATION AND CDF JET DATA (1995)
- EVIDENCE FOR QUARK COMPOSITENESS?
- RESULT STRONGLY DEPENDS ON GLUON AT $x \gtrsim 0.1$
- PDF MUST VANISH AT x = 0, BUT (THEN) NO DATA FOR $x \ge 0.05!$

DISCREPANCY REMOVED IF JET DATA USED FOR GLUON DETERMINATION

NOW: NO DATA FOR $x \gtrsim 0.5 \Rightarrow$ **DISCOVERY** (THRESHOLD) REGION!

NEW PHYSICS SEARCHES AT THE LHC THE DRELL-YAN FORWARD-BACKWARD ASYMMETRY

$$A_{\rm fb}(\cos\theta) \equiv \frac{\frac{d\sigma}{d\cos\theta}(\cos\theta) - \frac{d\sigma}{d\cos\theta}(-\cos\theta)}{\frac{d\sigma}{d\cos\theta}(\cos\theta) + \frac{d\sigma}{d\cos\theta}(-\cos\theta)}$$

- TH: ASYMMMETRY SENSITIVE TO CHIRAL BSM COUPLINGS
- EXP: SEVERAL SYSTEMATICS CANCEL IN RATIO

THE DRELL-YAN FORWARD-BACKWARD ASYMMETRY CMS BSM SEARCH

CMS, 2201.12327

$$A_{\rm fb} \equiv \int_0^1 d\cos\theta \; \frac{\frac{d\sigma}{d\cos\theta}(\cos\theta) - \frac{d\sigma}{d\cos\theta}(-\cos\theta)}{\frac{d\sigma}{d\cos\theta}(\cos\theta) + \frac{d\sigma}{d\cos\theta}(-\cos\theta)}$$

ANATOMY OF THE ASYMMETRY

- SCATTERING ANGLE IN THE PARTONIC CM FRAME \Leftrightarrow LEPTON KINEMATICS (Collins-Soper frame): $\cos \theta \equiv \frac{p_{\ell}^+ p_{\bar{\ell}}^- - p_{\ell}^- p_{\bar{\ell}}^+}{m_{\ell \bar{\ell}} \sqrt{m_{\ell \bar{\ell}}^2 + p_{T,\ell \bar{\ell}}^2}}, p^{\pm} = p^0 \pm p^3$
- Measure $\cos \theta^* = \operatorname{sign}(y_{\ell \bar{\ell}}) \cos \theta$: w.r. direction of Z
- AT LO \Rightarrow DIRECTION OF PARTON WITH LARGEST x

LO CROSS-SECTION

$$\frac{d^3\sigma}{dm_{\ell\bar{\ell}}\,dy_{\ell\bar{\ell}}\,d\cos\theta^*} = \frac{\pi\alpha^2}{3m_{\ell\bar{\ell}}s}\left((1+\cos^2(\theta^*))\sum_q S_q\mathcal{L}_{S,q}(m_{\ell\bar{\ell}},y_{\ell\bar{\ell}}) + \cos\theta^*\sum_q A_q\mathcal{L}_{A,q}(m_{\ell\bar{\ell}},y_{\ell\bar{\ell}})\right)$$

PARTON LUMINOSITIES

$$x_1 = \frac{m_{\ell\bar{\ell}}}{\sqrt{s}} \exp(y_{\ell\bar{\ell}}), \quad x_2 = \frac{m_{\ell\bar{\ell}}}{\sqrt{s}} \exp(-y_{\ell\bar{\ell}}); \quad x_1x_2 = \frac{m_{\ell\bar{\ell}}}{\sqrt{s}}$$

$$\mathcal{L}_{S,q}(m_{\ell\bar{\ell}}, y_{\ell\bar{\ell}}) \equiv f_q(x_1, m_{\ell\bar{\ell}}^2) f_{\bar{q}}(x_2, m_{\ell\bar{\ell}}^2) + f_q(x_2, m_{\ell\bar{\ell}}^2) f_{\bar{q}}(x_1, m_{\ell\bar{\ell}}^2)$$

$$\begin{array}{c} \text{ANTISYMMETRIC} \\ \mathcal{L}_{A,q}(m_{\ell\bar{\ell}}, y_{\ell\bar{\ell}}) \equiv \operatorname{sign}(y_{\ell\bar{\ell}}) \left[f_q(x_1, m_{\ell\bar{\ell}}^2) f_{\bar{q}}(x_2, m_{\ell\bar{\ell}}^2) - f_q(x_2, m_{\ell\bar{\ell}}^2) f_{\bar{q}}(x_1, m_{\ell\bar{\ell}}^2) \right] \end{array}$$

- AXIAL COUPLING \Rightarrow LINEAR $\cos \theta$ DEPENDENCE
- $A_{\rm fb} \Leftrightarrow \text{ASYMMETRIC PARTON LUMINOSITY}$

- At LO, $A_{\rm fb} \propto \cos \theta$, effective coupling determined by PDF luminosity
- NLO *K*-factor almost θ -independent

- TOY: SIGN OF ASYM \Leftrightarrow SIGN OF VALENCE
- GENERAL: SIGN OF ASYM \Leftrightarrow DROP OF VALENCE VS. SEA $\operatorname{sign} \left[\mathcal{L}_{A,q} \right] = \operatorname{sign} \left[\frac{f_q^+(x_2)}{f_q^+(x_1)} - \frac{f_q^-(x_2)}{f_q^-(x_1)} \right] = \operatorname{sign} \left[\frac{f_q(x_2)}{f_q(x_1)} - \frac{f_{\bar{q}}(x_2)}{f_{\bar{q}}(x_1)} \right], x_1 > x_2$
- VALENCE DROPS FASTER \Rightarrow NEGATIVE ASYM

CANNOT HAVE NEGATIVE VALENCE, BUT FAST-DROPPING VALENCE ALLOWED

QUALITATIVE BEHAVIOR: EXISTING PDF SETS

- DOMINANT CONTRIBUTION \Rightarrow up and down guarks, antiguarks
- AS Z' MASS CHANGES, x RANGE CHANGES: $x_1x_2 = \frac{m_{\ell\bar{\ell}}}{\sqrt{s}}$ BUT PDFS (LARGE x) CHANGE VERY LITTLE

- $M \lesssim 3 \text{ Tev} \Rightarrow$ data region, all PDF sets agree
- $M \gtrsim 5 \text{ Tev} \Rightarrow \text{extrapolation}$, NNPDF disagrees
 - DIFFERENT CENTRAL VALUE
 - LARGER UNCERTAINTY

PDF BEHAVIOR: WHAT'S GOING ON?

- CT, MSHT, ABMP PARAMETRIZATION: $f(x) = x^{\alpha}(1-x)^{\beta}g(x)$; NNPDF NEURAL NETWORK
- DEFINE EFFECTIVE EXPONENT $\beta(x) \equiv \frac{\partial \ln |xf(x)|}{\partial \ln(1-x)}$

- CT, MSHT, ABMP: LARGE $x \beta$ APPROX. CONSTANT
- NNPDF: β NOT FIXED BY PARAMETRIZATION

- AS SCALE INCREASES, LARGER x PROBED
- CT, MSHT, ABMP: COUPLING APPROX. SCALE INDEP.
- NNPDF: COUPLING DEPENDS ON SCALE, LARGER UNCERTAINTY

• $M_{Z'} \ge 3$ TeV: data region, all PDF sets agree

• .

- $M_{Z'} \ge 3$ TeV: data region, all PDF sets agree
- $M_{Z'} \ge 5 \text{ TeV}$
 - CT, MSHT, ABMP \Rightarrow ASYMMETRY UNCHANGED WITH INCREASING SCALE
 - NNPDF \Rightarrow Asymmetry disappears as scale increases

SUMMARY

- PDFs largely unconstrained in the high-mass discovery region
- FIXED-PARAMETRIZATION PDFs overly restrictive:
 - OVER-CONSTRAINED EXTRAPOLATION
 - UNDER-ESTIMATED UNCERTAINTIES
- FLEXIBLE PARAMETRIZATION REQUIRED FOR RELIABLE RESULTS
- FUTURE DRELL-YAN MEASUREMENTS IMPORTANT IN ORDER TO CONSTRAIN PDFs

NNPDF4.0 DATASET

- ABOUT 50 NEW DATASETS & 400 EXTRA DATAPOINTS
- FULL DIS AND FT DY DATASET
 - AS IN NNPDF3.1: FINAL HERA, NMC, BCDMS, CHORUS, NUTEV
 - NOW ALSO NOMAD NEUTRINO
 - SEAQUEST DY
- FULL 7 TEV AND 8 TEV DATASET & EXTENSIVE USE OF 13 TEV DATA:
 - W, Z production: rapidity distributions, asymmetries, $Z p_T$ distributions
 - TOP PAIR PRODUCTION: ALL AVAILABLE DISTRIBUTIONS
 - SINGLE-INCLUSIVE JETS
- SEVERAL NEW PROCESSES:
 - PROMPT PHOTON
 - SINGLE TOP
 - DIJETS
 - HERA JETS

- TYPICAL UNCERTAINTIES IN DATA REGION: SINGLET $\sim 1\%$, NONSINGLET $\sim 2-3\%$
- DATA REGION: $10 \lesssim M_X \lesssim 3 \cdot 10^3$ TeV, $-4 \lesssim y \lesssim 4$

VALENCE

INDIVIDUAL FLAVORS ($M_{Z'} = 5$ TeV) Symmetric

ANTISYMMETRIC

