Timothée Pascal

Laboratoire de Physique Suabtomique et de Cosmologie - Grenoble

IRN Terascale at Subatech, Nantes - October 18, 2022









The purpose of SModelS

- Inferring results from LHC Searches
- Reinterpreting Results with SModelS





Application to the MSSM electroweak-ino sector

- The Wino-Bino Scenario
- The Wino-Higgsino Scenario

#### The purpose of SModelS

- Inferring results from LHC Searches
- Reinterpreting Results with SModelS

2) Analysis Combination in SModelS

3 Application to the MSSM electroweak-ino sector

Improved constraints on supersymmetric scenarios using SModelS analysis combination The purpose of SModelS Inferring results from LHC Searches

# Data interpretation in LHC searches

arXiv:1105.2838

The ATLAS and CMS data are interpreted using a simplified model (minimal set of parameters).



How would such results constraint a more complex model?

Improved constraints on supersymmetric scenarios using SModelS analysis combination The purpose of SModelS Inferring results from LHC Searches

# SModelS working principle

arXiv:2112.00769 arXiv:2009.01809 arXiv:1811.10624 arXiv:1312.4175

• Public tool to confront Beyond the Standard Model (BSM) signals with a  $\mathbb{Z}_2$ -like symmetry against simplified model results from the LHC.



- 35 ATLAS and 39 CMS 13 TeV analyses in the database.
- Code and documentation available online: https://smodels.github.io/

Improved constraints on supersymmetric scenarios using SModelS analysis combination The purpose of SModelS Reinterpreting Results with SModelS

## Two methods to reinterpret results

Test phase-space points and exclude it if  $r = \frac{\sigma^{\text{BSM}}}{\sigma^{\text{BSM}}_{\text{LM}}} \ge 1$  using:

▷ Cross-section upper limits:  $\sigma^{\text{BSM}}$  $= \sum \sigma \prod BR \leftarrow input file.$  $\sigma_{III}^{BSM}$  $\leftarrow$  experimental publications.  $500^{\overline{\chi}_1^+\overline{\chi}_2^0 \rightarrow Wh \, \overline{\chi}_1^0 \overline{\chi}_1^0, \, W \rightarrow Iv, \, h \rightarrow b\overline{b}}$ n(ữ<sub>1</sub><sup>0</sup>) [GeV] ATLAS 450E s=13 TeV, 139 fb<sup>-1</sup>, All limits at 95% 400 Expected Limit (±1 σ... 350 Observed Limit (±1 300 250 200 150 100 50 n

500 600

700 800

00 900 1000 m $(\tilde{\chi}_{1}^{\pm}/\tilde{\chi}_{2}^{0})$  [GeV] Improved constraints on supersymmetric scenarios using SModelS analysis combination The purpose of SModelS Reinterpreting Results with SModelS

## Two methods to reinterpret results

Test phase-space points and exclude it if  $r = \frac{\sigma^{\text{BSM}}}{\sigma^{\text{BSM}}_{\text{IIII}}} \ge 1$  using:

#### ▷ Efficiency maps:

 $\begin{aligned} \sigma^{\mathsf{BSM}} &= \epsilon \times \mathcal{A} \sum \sigma \prod \mathsf{BR} \;\; \mathsf{per \; signal \; region} \leftarrow \mathsf{input \; file \; and \; exp. \; pub.} \\ \sigma^{\mathsf{BSM}}_{\mathsf{UL}} &\leftarrow \mathsf{exp. \; pub. \; or \; \mathsf{computed \; through \; an \; hypothesis \; test:} \end{aligned}$ 

$$\sigma_{\rm UL}^{\rm BSM} = \mu_{\rm UL} \frac{n_{\rm total \ signal}}{luminosity}$$

The signal strength upper limit  $(\mu_{\text{UL}})$  is reached when  $\frac{p(\text{BSM})}{p(\text{SM only})} = 0.05$ , where p is the p-value of the given hypothesis and is evaluated using the log likelihood ratio  $q_{\mu} = -2\ln\left(\frac{L(\mu,\hat{\theta})}{L(\hat{\mu},\hat{\theta})}\right)$  if  $\hat{\mu} \leq \mu$ , 0 otherwise. The likelihood is Poissonian:  $L(\mu, \theta|D) = \frac{(\mu+b+\theta)^{n_{obs}}e^{-(\mu+b+\theta)}}{n_{obs}!}e^{-\frac{\theta^2}{2\delta^2}}$ . Efficiency maps allow SModelS to compute likelihoods for the hypothesised signal  $(L_{BSM}, L_{SM}, L_{max})$ .

Improved constraints on supersymmetric scenarios using SModelS analysis combination The purpose of SModelS Reinterpreting Results with SModelS

# Two methods to reinterpret results



Signal region combination is possible using full statistical models (ATLAS). The latter is encoded in a json file and is interfaced to SModelS with pyhf. The likelihood becomes:

$$L(\mu, \theta | D) = \prod_{i=1}^{N} \frac{(\mu s_i^r + b_i + \theta_i)^{n_{obs}^i} e^{-(\mu s_i^r + b_i + \theta_i)}}{n_{obs}^i!} \prod_{\theta \in \{\theta\}} c_{\theta}(a_{\theta} | \theta).$$

The correlations can otherwise be encoded in a covariance matrix (CMS), where

$$L(\mu, \theta | D) = \prod_{i=1}^{N} \frac{(\mu s_i^r + b_i + \theta_i)^{n_{obs}^i} e^{-(\mu s_i^r + b_i + \theta_i)}}{n_{obs}^i!} e^{-\frac{1}{2}\theta^T V^{-1}\theta}.$$

**IRN** Terascale

7/18

#### The purpose of SModelS

#### 2 Analysis Combination in SModelS

Application to the MSSM electroweak-ino sector

# Combining uncorrelated analyses

From SModelS v.2.2 on, it is possible to combine uncorrelated analyses.

$$L_{\text{combined}}(\mu) = \prod_{i} L_{i}(\mu, \theta_{i} | D_{i})$$

#### SModelS parameters.ini file



# Combining uncorrelated analyses

From SModelS v.2.2 on, it is possible to combine uncorrelated analyses.

$$L_{\text{combined}}(\mu) = \prod_{i} L_{i}(\mu, \theta_{i} | D_{i})$$



October 18, 2022





Under-fluctuation in the background leads to negative values for  $\hat{\mu}$ .

$$L_{\text{combined}}(\mu) = \prod_{i} L_{i}(\mu, \theta_{i}|D_{i})$$



Excess in the data leads to positive values for  $\hat{\mu}$ .

Improved constraints on supersymmetric scenarios using SModelS analysis combination Application to the MSSM electroweak-ino sector

The purpose of SModelS

- Analysis Combination in SModelS
- Application to the MSSM electroweak-ino sector
  - The Wino-Bino Scenario
  - The Wino-Higgsino Scenario

Improved constraints on supersymmetric scenarios using SModelS analysis combination Application to the MSSM electroweak-ino sector The Wino-Bino Scenario

## The wino-bino scenario

Scan over: 
$$M_1 < M_2 \ll \mu = 2 \text{ TeV}$$

All other SUSY particles are assumed heavy (beyond LHC reach). Mass spectra and branching ratios computed with SOFTSUSY 4.1.12. Next-to-leading-order cross-sections computed with Prospino 2.1.



October 18, 2022

**IRN** Terascale

14/18

 $\tilde{W}$ 

 $\tilde{B}$ 

 $\tilde{\chi}_{2}^{0}$ 

 $-\tilde{Y}_{1}^{0}$ 

The Wino-Higgsino Scenario

## The wino-higgsino scenario

Scan over: 
$$\mu < M_2 \ll M_1 = 2 \text{ TeV}$$





 $3.9~{\rm GeV} < m_{\tilde{\chi}^0_2} - m_{\tilde{\chi}^\pm_1} < 55.5~{\rm GeV}~~{\rm and}~~2.5~{\rm GeV} < m_{\tilde{\chi}^\pm_1} - m_{\tilde{\chi}^0_1} < 6.1~{\rm GeV}$ 

Improved constraints on supersymmetric scenarios using SModelS analysis combination Application to the MSSM electroweak-ino sector

The Wino-Higgsino Scenario

## The wino-higgsino scenario

Scan over: 
$$\mu < M_2 \ll M_1 = 2 \text{ TeV}$$





There are more branching ratios and no dominant decay. When  $M_2$  increases: less  $W^{\pm}$ , more higgs, same Z. When  $\mu$  increases: a bit more  $W^{\pm}$ , a bit less higgs, same Z.

October 18, 2022

IRN Terascale

16/18

Application to the MSSM electroweak-ino sector

The Wino-Higgsino Scenario

## The wino-higgsino scenario

Scan over: 
$$\mu < M_2 \ll M_1 = 2 \text{ TeV}$$





The ATLAS and CMS contour line are obtained by making the assumption of a pure wino-bino scenario. Here, with more decays the sensitivity becomes much less.

# Conclusion

- Reinterpreted LHC results may differ from the simplified model picture.
- For precise statistical statement, one needs to evaluate likelihoods.
- Combining analyses can lead to more robust constraints.
- Designing the upcoming BSM searches to be easily combinable would benefit reinterpretation effort.

# Acknowledgments

Many thanks to the IRN Terascale organizers and to the coordinators of the methods and tools session.

This project was funded thanks to the ANR-15-IDEX-02 (APM@LHC), ANR-21-CE31-0023 (PRCI SLDNP) and IN2P3 master project "Théorie – BSMGA".

# **Backup Slides**

### Run 2 - 13 TeV

In total, we have results from 35 ATLAS and 39 CMS 13 TeV searches.

- ATLAS upper limits: 32 analyses, 80 (of which 4 LLP) results
- ATLAS efficiency maps: 21 analyses, 65 (of which 11 LLP) results, 599 individual maps
- · CMS upper limits: 36 analyses, 143 (of which 3 LLP) results
- CMS efficiency maps: 8 analyses, 53 results, 3186 individual maps

### Run 1 - 8 TeV

In total, we have results from 15 ATLAS and 18 CMS 8 TeV searches.

- ATLAS upper limits: 13 analyses, 34 results
- ATLAS efficiency maps: 10 analyses, 31 results, 269 individual maps
- CMS upper limits: 16 analyses, 56 (of which 3 LLP) results
- CMS efficiency maps: 9 analyses, 47 (of which 9 LLP) results, 980 individual maps

Appendix

Backup Slides

| Modifiers and Constraints |                                                                                                         |                                                                                                                    |                                      |
|---------------------------|---------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|--------------------------------------|
| Description               | Modification                                                                                            | Constraint Term $c_{\chi}$                                                                                         | Input                                |
| Uncorrelated Shape        | $\kappa_{scb}(\gamma_b) = \gamma_b$                                                                     | $\prod_{b} \operatorname{Pois}\left(r_{b} = \sigma_{b}^{-2} \middle  \rho_{b} = \sigma_{b}^{-2} \gamma_{b}\right)$ | $\sigma_b$                           |
| Correlated Shape          | $\Delta_{scb}(\alpha) = f_p\left(\alpha \mid \Delta_{scb,\alpha=-1}, \Delta_{scb,\alpha=-1}\right)$     | Gaus $(a = 0   \alpha, \sigma = 1)$                                                                                | $\Delta_{scb,\alpha=\pm 1}$          |
| Normalisation Unc.        | $\kappa_{scb}(\alpha) = g_{\rho}\left(\alpha \mid \kappa_{scb,\alpha=-1}, \kappa_{scb,\alpha=1}\right)$ | Gaus $(a = 0   \alpha, \sigma = 1)$                                                                                | $\kappa_{scb,\alpha=\pm 1}$          |
| MC Stat. Uncertainty      | $\kappa_{scb}(\gamma_b) = \gamma_b$                                                                     | $\prod_{b} \operatorname{Gaus} \left( a_{\gamma_{b}} = 1   \gamma_{b}, \delta_{b} \right)$                         | $\delta_b^2 = \sum_s  \delta_{sb}^2$ |
| Luminosity                | $\kappa_{scb}(\lambda) = \lambda$                                                                       | Gaus $(l = \lambda_0   \lambda, \sigma_{\lambda})$                                                                 | $\lambda_0, \sigma_\lambda$          |
| Normalisation             | $\kappa_{scb}(\mu_b) = \mu_b$                                                                           |                                                                                                                    |                                      |
| Data-driven Shape         | $\kappa_{scb}(\gamma_b) = \gamma_b$                                                                     |                                                                                                                    |                                      |

#### Appendix

Backup Slides



#### Appendix

Backup Slides



Appendix

Backup Slides



Wino-Bino scenario ( $\mu = 2$  TeV, tan  $\beta = 10$ )

Appendix

Backup Slides



Backup Slides



Appendix

Backup Slides

Wino-Bino scenario ( $\mu = 2$  TeV, tan  $\beta = 10$ ) 450 ATLAS 18-41 (Z 25%) ATLAS 19-08 ATLAS 19-09 400 CMS 20-001 -350  $m_{\widetilde{\chi}_1^0}$  [GeV] 300 1 . . 250 . . . . . . 200 150 100 200 600 1000 400 800  $m_{\tilde{\chi}_{2}^{0}} \approx m_{\tilde{\chi}_{1}^{\pm}}$  [GeV]



