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3LHC results able to confirm the validity of the SM, with no signatures of new physics.
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Problems in the SM                                       

● SM fails to explain neutrino mass and 
mixings.

● SM doesn’t have DM candidate.

● SM fails to explain observed baryon
asymmetry.
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Who can be a DM ?
➢ Should be massive

➢ Should be electrically neutral

➢ Should be present in early universe

➢ Should be stable or at least with half life greater than the 
age of the universe Need a symmetry
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Zoo of Dark Matter Candidates
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Overview WIMP and FIMP Mechanism
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WIMP FIMP
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Overview SUPER-Wimp Mechanism

     Standard     
Model  

     (SM)

Dark Sector
X

Assumptions:-

●        is thermalized with the thermal bath due to gauge interactions.
●     being singlet and having feeble interaction never thermalizes.
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Overview SUPER-Wimp Mechanism
is a DM candidate is a DM candidate
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SFTM to explain DM and neutrino mass
New Particles
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The complete Lagrangian for the model:-
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●       accquires vev and EWSB takes place.

●       Acquires an induced vev and takes the following form,

After symmetry breaking, CP even neutral Higgs mixes with each other.
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The charged scalar also mixes with each other after EWSB takes the following form,

Dark Matter(DM) Mass:-

Two neutral fermion states      and      also mixes.

Mass matrix takes the following form,
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The mass eigenstates and weak eigenstates takes the following form,

where the mixing angle is,

In the limit     , 
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DM Constraints:-

Collider constraints on ρ :- 

 Recent bound on DM 
mass from 136 fb-1 
data of 13 TeV run is 
M

ρ 
> 580 GeV.

 In future at 14 TeV run 
and for 3 ab-1 
luminosity, it can 
explore M

ρ  
upto 750 

GeV.
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DM direct and Indirect Detection

● In the LP DD suppression happens due to the 2-loop gluonic contributions.

● RP gives bound on DM mass from its annihilation to W+ W- which is M
ρ 

 > 300 GeV.



18

BBN Constraint

● Primordial elements 
nucleosynthesis occurs 
approximately between 
 1 and 1000 secs.

● The long lived particles 
decaying after 1 sec 
can inject energy to 
thermal bath and 
perturb the primordial 
elements.
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The energy released through late decay of long lived particle takes the following form,

where,

Yield of NLOP 
before its decay
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   DM Productions
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Scenario I    is DM candidate.
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          Feynmann diag. for the dominant production of N as well its late decay to DM.

Boltzmann Equation for DM and NLOP:

where,

B.eqn to determine the 
distribution function of 
‘N’
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Collision functions
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Evolution of distribution function for ‘N’

This gives number density of ‘N’ at 
values of r.
where,
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B.eqn for the evolution of DM:

where,
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Results:-

      Relic density satisfies around 2.5 TeV.
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Results:-
Parameter 
choosen 
unless varied
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Results:-

 All the points in LP and RP satisfy relic density and BBN bound.

 In LP, M
H2

 < 7 TeV, there is effect of phase space suppression arises from the decay of H
2         

ρ N 
decay. To counter the suppression, the portal coupling is increased.  This is in turn decreases the 
life time of N which is shown in RP. 
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BBN Constraint

➢ All the points in LP and RP satisfy observed DM relix density.

➢ Lower value of YρΔ and sin α gets rules out from BBN due to excess hadronic injection to 
plasma at late times.
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Scenario II ‘N’ is dark matter candidate.

Boltzmann Equation for the evolution of DM and NLOP:- 
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Results:- 
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Results:-
Parameter fixed 
unless varied
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Results:- Parameters Varied

50 % thermal and 
50% non thermal 
contribution
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BBN Constraint:-

➢ All the points in LP and RP satisfy observed DM relix density.

➢ Lower value of YρΔ and sin α gets rules out from BBN due to excess hadronic injection to 
plasma at late times.
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➢ LP: the yellow region is ruled out by the BBN bound, and the red region is overproduced because 
Mρ > 2400 GeV, the green region NTFI dominating and the grey region is FI dominating.

➢ RP: small ratio region contributes small mass splitting between N and ρ. This result in large non 
thermal contribution and less sensitive to YρΔ.
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Results: allowing for a light scalar sector.

● In previous scenarious, ‘N’ is dominantly produced through decay at high temperature.

● Now, we assume ‘N’ is produced through annhilation of bath particles and production through 
decay is kinematically forbidden.
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 Large portion of the region is already ruled out by the ATLAS 136 fb-1 data.
 MATHUSLA can detect MeV to GeV range DM mass with the large coupling strength.
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Conclusion:-

➢ The present work can solve two well-accepted SM problems namely a dark matter 
candidate and the origin of the neutrino mass.

➢ We investigated different production mechanism for the production of DM.

➢ We also constrained our model paramters through BBN and found the model to 
viable in large areas of parameter space.

➢ We investigated the possible detection prospects of FIMP DM at the MATHUSLA 
detector

➢ Detailed collider anaylsis and cosmological implication of our model is left for our 
future work.
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