Search for a new resonance X→ H(H/Y)→ yybb in proton-proton collisions at √s = 13 TeV IRN TeraScale@Nantes 17th October 2022

> Lata Panwar, LPNHE, Paris Maxime Gouzevitch, IP2I, Lyon Jyothsna Rani Komaragiri, IISc, India Devdatta Majumder, IRB, Croatia

Outline

NOTE:

- This work has been done for <u>my PhD thesis</u> at IISc, India (under CMS collaboration)
- Approved and public from CMS collaboration: <u>CMS-PAS-HIG-21-011</u> (presented during ICHEP 2022)

- Physics Motivation
- Analysis Strategy
- Results
- Summary

Physics Motivation

- Search for resonant Higgs pair production at LHC
 - Many BSM theories predict direct or indirect production of new resonances with enhanced cross-section ; direct coupling with SM-like or/and BSM Higgs boson
- Analysis features:
 - Model-independent approach with narrow-width approximation
 - Searches are motivated from:
 - 1) Warped extra dimension (WED) model (X \rightarrow HH)
 - 2) Next-to-minimal supersymmetric model (NMSSM) and Two-real-scalar-singlet model (TRSM) (X→ YH)
- The full Run-2 analysis improves CMS 2016 results: 6-25%
 - Use new object identification techniques
 - Efficient machine learning based background rejection
- First time looking at NMSSM and TRSM motivated searches

IRN Terascale@Nantes

Physics Motivation

Warped extra dimension model

- Provide initial solution to SM hierarchy problems; predicts spin-0 and spin-2 particles
- Explore RS_bulk scenario: enhanced coupling to bosons and top quark
- New resonances have significant BR (~10%) to decay into Higgs boson pair (X→ HH)

Physics Motivation

Warped extra dimension model

- Provide initial solution to SM hierarchy problems; predicts spin-0 and spin-2 particles
- Explore RS_bulk scenario: enhanced coupling to bosons and top quark
- New resonances have significant BR (~10%) to decay into Higgs boson pair (X→ HH)

Next-to-minimal supersymmetric model

- Enriches Higgs sector with 7 Higgs bosons (lets label three NMSSM Higgs boson scalars as X, Y and H)
- dominant singlet component of Y suppresses its direct production at LHC; production via a heavy Higgs boson X → YH becomes important

Two-real-scalar-singlet model

- Extension of SM with two scalar singlet fields [<u>Ref.</u>]
- Three scalars \Rightarrow one is identified as SM Higgs boson
- Gives same topology for Higgs-to-Higgs decay $(X \rightarrow YH)$

Physics Motivation

Warped extra dimension model

- Provide initial solution to SM hierarchy problems; predicts spin-0 and spin-2 particles
- Explore RS_bulk scenario: enhanced coupling to bosons and top quark
- New resonances have significant BR (~10%) to decay into Higgs boson pair (X→ HH)

yybb final state

- H→γγ handle with high purity and selection efficiency due to excellent ECAL response
- For H/Y→ bb handle b tagging rejects high multijet background contamination
- For X→ HH searches, it yields 0.26% BR

Next-to-minimal supersymmetric model

- Enriches Higgs sector with 7 Higgs bosons (lets label three NMSSM Higgs boson scalars as X, Y and H)
- dominant singlet component of Y suppresses its direct production at LHC; production via a heavy Higgs boson X → YH becomes important

Two-real-scalar-singlet model

- Extension of SM with two scalar singlet fields [<u>Ref.</u>]
- Three scalars \Rightarrow one is identified as SM Higgs boson
- Gives same topology for Higgs-to-Higgs decay (X→YH)

Analysis Strategy

Lata Panwar

Event Selections

Trigger Selection (Standard H→ yy triggers)

Photon selections

(Same as H→ yy analysis)

- photon MVA ID > -0.9 (99% eff.)
- Electron veto (suppress $Z \rightarrow ee$)
- $p_T(y1)/M(yy) > 1/3$
- $p_T(y2)/M(yy) > 1/4$
- 100 < M(yy) < 180 GeV

Jets selection

(similar to non-resonant HH→yybb JHEP 03 (2021))

- $p_T(jets) > 25 \text{ GeV}, |\eta(jets)| < 2.4(2.5) (2016(2017/18))$
- Jet corrected with b jet energy regression (<u>Ref.</u>)
- Jet Id selection with efficiency > 99%
- $\Delta R(jet, \gamma's) > 0.4$
- 70 < M(jj) < 190 (1200) GeV (WED (NMSSM))
- Jet pair with highest sum of DeepJet score

Resonant Background Rejection

Selection on ttHKiller discriminant

- Resonant background are single Higgs process which have similar diphoton distribution peaking around m_H
- Contamination is higher only for m_x < 600 GeV; ttH contribution dominates
 - Simply neglect for higher masses
- Apply a selection on NN-based ttHkiller variable
- Order of magnitude for sensitivity improvement with $m_{\chi} < 600$ GeV is up to 10%.

Non-resonant Background Rejection

BDT Classifier

- Using XGBoost + Scikit-learn to train multiclass BDT classifier to discriminate signal from non-resonant backgrounds (in 6 different X-Y mass ranges in m_X:m_Y 2D plane)
 Signal: Resonant X → YH → bbyy (Spin0)
 Non-resonant Background: SM multijet process with prompt photons⇒
 yy+Jets and y+Jets
- Use three set of input variables
- 1) Kinematic distributions which discriminate signal from background
- 2) Object identification variables to reject fake contribution
- 3) Energy resolution variables

BDT performance

- Table shows the AUC from ROC
- As we tend to higher masses, training performance improves within same m_y range⇒ performance gets improved as

kinematics gets more discriminative

Mass Range	۷۷+jets (AUC)	γ+jets(AUC)	
lowX_lowY	0.9602	0.9744	
midX_lowY	0.9896	0.9934	
highX_lowY	0.9971	0.9981	
midX_midY	0.9849	0.9930	
highX_midY	0.9958	0.9978	
highX_highY	0.9871	0.9956	

Event Classification

MVA Categorization

- Categorization using MC simulations samples
- For boundary optimization ROOT Minuit package is used with MIGRAD minimizer
 - a. uses <u>Punzi FOM</u> (S_{eff}/(1+ \sqrt{B})) as input function
- Constrain background statistics have robust background modeling

MVA Categorization

- Categorization using MC simulations samples
- For boundary optimization ROOT Minuit package is used with MIGRAD minimizer
 - a. uses <u>Punzi FOM</u> (S_{eff}/(1+ \sqrt{B})) as input function
- Constrain background statistics have robust background modeling

Optimized MVA categories

mass range & category	lowX_lowY	midX_lowY	highX_lowY	midX_midY	highX_midY	highX₋highY
CAT2	[0.174, 0.329]	[0.213, 0.401]	[0.215, 0.304]	[0.180, 0.352]	[0.177, 0.239]	[0.129, 0.286]
CAT1	[0.329, 0.627]	[0.401, 0.550]	[0.304, 0.500]	[0.352, 0.600]	[0.239, 0.350]	[0.286, 0.400]
CAT0	[0.627, 1.000]	[0.550, 1.000]	[0.500, 1.000]	[0.600, 1.000]	[0.350, 1.000]	[0.400, 1.000]

$\tilde{M}_{\rm x}$ Window Selection

- Selection on four-body mass $\tilde{M}_{x} = (m_{jjyy} m_{jj} m_{yy} + m_{H} + m_{Y,H})$
 - \tilde{M}_{x} results better resolution (30-90%) w.r.t m_{jiyy}
- A Tight \tilde{M}_x helps to enhance signal to background ratio
- It also helps to suppress single Higgs contribution (<1%)

Signal and Background Model

- Signal
 - $\mathbf{m}_{\mathbf{vv}}$: sum of gaussian functions is used (upto 5)
 - **m**_{ii}: DoubleCrystalBall (DCB) function or Sum of CB and Gaussian
- Non-resonant background:
 - Determine from data-driven method
 - 3 class functions : Exp., Bern. polynomial, Power Law
 - 2D <u>envelope method</u> (1Dx1D)
- Resonant background:
 - m_{vv}: Same as signal modeling
 - **m**_{ii}: Bernstein for bbH, ggH, VBFH; CB for VH; Gaussian for ttH
- Validation with bias test
- Signal is extracted by 2D fit in m_{vv}:m_{ii} plane

Results

- 95% CL upper limits on cross-section
- yybb channel is more sensitive for low resonance (m_x < 600 GeV) masses wrt other channels (<u>CMS</u> <u>TWiki</u>)
- Comparison between <u>CMS and ATLAS public results</u> for full Run 2 (X→HH only with m_X <= 1000 GeV)
 - ATLAS observed (expected) limits
 - \Rightarrow 1.6-0.12 fb (0.93-0.11 fb)
 - CMS observed (expected) limits
 - ⇒ 0.82-0.07 fb (0.74-0.075 fb)
 - Expected results are upto 30% and observed results are upto 40% better wrt to ATLAS Run-2 results

Results: $X \rightarrow HH$

- Left plot (spin-0): For $\Lambda_R = 3$ TeV, excludes mass up to 1 TeV; For $\Lambda_R = 6$ TeV, excludes mass up to 600 GeV
- **Right plot** (**spin-2**): $\kappa/M_{pl} = 0.5$, excludes resonance mass upto 850 GeV

Results: $X \rightarrow HY$

S + B fit and significance

<u>TWiki</u>

More about "Excess"

The reported excess coincides with:

- Resonant <u>WW searches</u> (in fully leptonic final state) by CMS
 - Local (global) significance resonance mass 650 GeV
 = 3.8 (2.6)
- Additional <u>BSM Higgs searches</u> in ττ final states by CMS
 - Local (global) significance BSM Higgs mass 95 GeV
 = 2.6 (2.3)
- <u>Low mass SM-like Higgs searches</u> with yy final state around 95 GeV by CMS
 - Local (global) significance 2.8 (1.3)
 - Full Run-2 results are ongoing

For X→YH, CMS compares ττbb, bbbb and yybb:

- The excess reported in this analysis at $m_{\chi} = 650$ GeV, was only checked for $\gamma\gamma$ bb
- Other channels still need to study this region

Results: $X \rightarrow YH$

- We make NMSSM and TRSM interpretations
 - exclude region $m_x = [400-600]$ GeV and $m_y = [90-300]$ GeV for NMSSM (<u>TWiki</u>)
 - exclude region $m_x = [300-500]$ GeV and $m_y = [90-150]$ GeV for TRSM

Summary

- Search for resonance X, decaying to two spin-0 bosons, in
 γγbb final state is presented using CMS Run-2 data with
 m_x <= 1 TeV
- Explore symmetric X→ HH and asymmetric X→ HY (first time) decay modes with m_y <= 800 GeV
- Model independent results are shown; 1-2% systematic impact
 - Observe $m_X = 650 \text{ GeV}$ and $m_Y = 90 \text{ GeV}$ excess
 - An important cross check would be doing the same analysis for Y→ _{YY} and H→bb final state (A team from IP2I, Lyon is working on it)
- WED, NMSSM and TRSM interpretations are made which partially exclude allowed mass regions

Backup

_ __ __

S + B fit for $X \rightarrow HH$

Systematic Uncertainty

Mostly standard $H \rightarrow \gamma\gamma$ systematics with jet systematics and theoretical systematics

Other systematics contribution < 1%

- Preselection SF
- Triggers
- BR
- Luminosity
- **PS / UE**
- PDF and QCDscale
- Photons
- photon σ_E/E
- electron veto SF
- JEC and JER
- b-tagging SF
- HEM
- L1-prefiring

We check impact in all six mass ranges which modify limits 1-2%

Highest impact from QCD scale and b tagging systematics for all masses

Lata Panwar

IRN Terascale@Nantes

BDT training strategy

- In order to make analysis strategy optimal for each (m_X,m_Y) point, we consider boost factor to divide (m_X,m_Y) into 6 mass bins
- Boost Factor ~ $m_X / (m_Y + m_H) \underline{\text{Ref.}}$ (backup)

- LowX = [300,400] GeV LowY = [90, 250] GeV
- MidX = [500, 700] GeV MidY = [300, 500] GeV
- HighX = [800,1000] GeV HighY = [600, 800] GeV
- **NOTE**: training m_{jj} intervals are [70, 400] GeV, [150, 560] GeV and [300, 1000] GeV for LowY, MidY and HighY

- According to mass range definition signal events are mixed with same cross section
- Signal and Background events are normalised to unity separately
- 5-fold cross-validation and early-stopping feature is used to control overtraining.

Signal Model

- sum of gaussian functions is used (upto 5)
- number of gaussian function is decided from F-test
- m_{jj}:
 - DoubleCrystalBall (DCB)
 function or Sum of CB and
 Gaussian
 - Choose the best fit with best chi2

Signal Extraction Method

- Before using \mathbf{m}_{yy} : \mathbf{m}_{jj} signal 2D fit extraction method from HIG-19-018, we explore the possibility to use $\tilde{\mathbf{M}}_{\mathbf{x}}$: \mathbf{m}_{yy} fit to use within analysis
- We compare correlation between pair of observables \Rightarrow higher for $\tilde{M}_{x}:m_{yy}$ fit
- This leads us to go with \mathbf{m}_{yy} : \mathbf{m}_{yj} **2D fit**

• Apart from this, for low resonance masses the turn-on in data \tilde{M}_x distribution is issue to use $\tilde{M}_x:m_{yy}$ fit (plot is in backup)

Comparison of the resonant analyses ATLAS vs CMS

- Similar performance of γ reco+ID and b jet ID
- Similar analyses preselections

	ATLAS	CMS		
Interpretations	• Spin-0 X \rightarrow HH \rightarrow bbyy	 Spin0/2 X→ HH→ bbyy NMSSM X→ YH → bbyy 		
ttH rejections	 ele and muon veto and < 6 jets 	 ttH vs HH→ bbyy DNN 		
MVA approach	 BDT to reject ttγγ & γ(γ)+jets BDT to reject single H 	 BDT to reject γ(γ)+jets 		
BDT training	 Inclusive to all m_x points Signal m_x reweighted to match continuum bkg shape 	 Separate in six mass region defined by boost factor m_x/(m_x + m_y) 		
Categories	 1 BDT-based category 	3 BDT-based category		
Signal extraction	• 1D m _{yy} fit	• 2D m _{yy} :m _{jj} fit		

0.25

0.2

0.15

0.05

lowX

midX

hiahX

Events

Vormalized

Discriminative signal and background kinematic distributions:

- a) Helicity angles, $|\cos \theta_{HY}^{CS}|$, $|\cos \theta_{bb}^{CS}|$, $|\cos \theta_{YY}^{CS}|$ where CS refer to Collins-Soper frame
- b) First two minimal angular distance between selected photons and jets $(\Delta R(y, jet))$
- c) $p_T(jj)/m_{jj\chi\chi}$ and $p_T(\chi\chi)/m_{jj\chi\chi}$

1)

d) Leading and subleading photons $p_T(y)/m_{yy}$ and jets $p_T(j)/m_{jj}$

CMS Internal

CS

cos**θ**...

NOTE: Red histograms represent the signal for three different m_x

2) Object identification variables to reject fake contribution

- a) Leading and subleading photonID MVA
- b) Leading and subleading DeepJet b tagger score of jets

3) energy resolution variables

- a) Leading and subleading photon energy resolution
- b) Mass resolution of selected photon pair
- c) Leading and subleading jet energy resolution
- d) Dijet mass resolution

Lata Panwar, Indian Institute of Science, India

Input variables

- $f0 = \cos\theta_{HH}^*$
- $f1 = \cos\theta_{bb}^{*}$
- $f2 = \cos\theta^*$
- $f3=Min(\overset{\circ}{\Delta}R(y,j))$
- $f4 = other Min (\Delta R (y, j))$
- f5= leadingPhotonId_MVA
- f6= subleadingPhotonId_MVA
- f7= leadingJet_DeepJet
- f8= subleadingJet_DeaepJet
- f9= leadingPhoton $\sigma(E) / E$
- f10= subleading Photon $\sigma(E) / E$
- $f11 = \sigma(M\gamma\gamma) / M\gamma\gamma$

- $f12=p_T(\gamma\gamma) / Mjj\gamma\gamma$
- f13= $p_T(jj) / Mjj\gamma\gamma$
- f14= leadingJet b-reg resolution estimator
- f15= subleadingJet b-reg resolution estimator
- $f16 = \sigma(Mjj) / Mjj$
- f17= leadingPhoton(pT/Mγγ)
- f18= subleadingPhoton(pT/Myy)
- f19= leadingJet(pT/Mjj)
- f20= subleadingJet(pT/Mjj)
- f21= rho

DATA-MC comparison

Lata Panwar, Indian Institute of Science, India

Lata Panwar, Indian Institute of Science, India