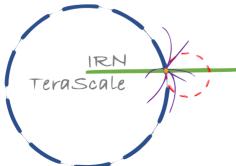
IRN Terascale - Nantes


LFV Higgs and Z-boson decays: leptonic CPV phases and CP asymmetries

Emanuelle Pinsard

LPC - Clermont

- Flavour: Interactions between fermion families
- In the Standard Model, Yukawas encode the **flavour** dynamics (masses, mixings and CP violation)
- Gauge interactions are flavour universal

- Lepton sector: Neutrinos are strictly massless in the SM
- Conservation of total lepton number and lepton flavours
- Lepton Flavour Universality (only broken by Yukawas)
- ✓ No source of CPV (only in the quark sector, but not enough for BAU ...)

Flavour and CPV Beyond the SM

Numerous tensions between SM and observation: $(g-2)_{\ell}$, B-meson "anomalies", ...

And **observational caveats** of the SM:

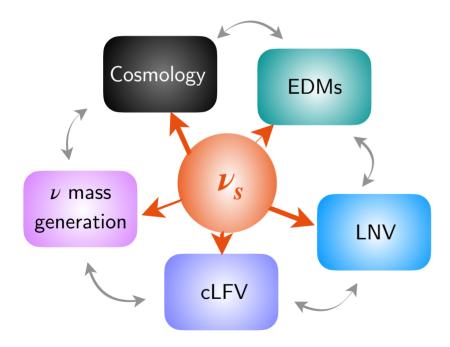
dark matter, neutrino oscillations, baryon asymmetry of the Universe

Neutrino oscillations: 1st laboratory evidence of NP

 \checkmark neutrinos are **massive** & leptons mix $\mathscr{U}_{\alpha i}^{\text{PMNS}}$

 \implies Need New Physics

✓ Need new fields: Majorana? LNV? New sources of CPV?


Which model? At which scale? **Searches for NP** in the lepton sector

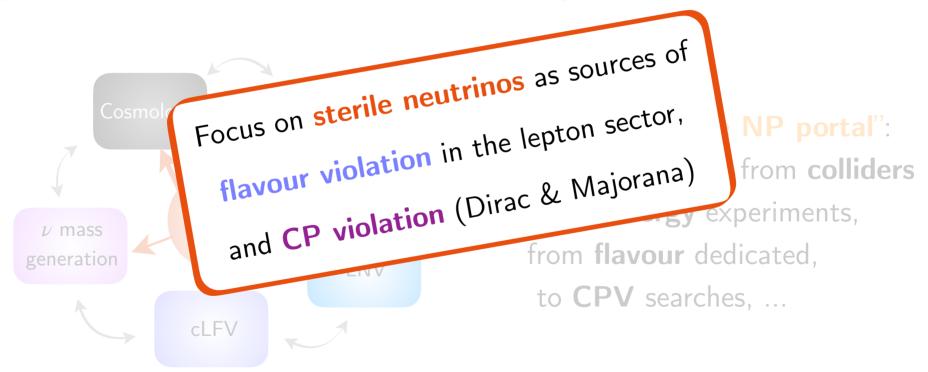
New Physics in the lepton sector

Strong arguments in favour of New Physics involving (neutral) leptons!

Majorana sterile fermions are a very appealing hypothesis, motivated by extensive theoretical and observational arguments

Potentially very "visible NP portal":
 ✓ Extensive imprints from colliders to low-energy experiments,

from **flavour** dedicated,


to CPV searches, ...

New Physics in the lepton sector

Strong arguments in favour of New Physics involving (neutral) leptons!

Majorana sterile fermions are a very appealing hypothesis, motivated by extensive theoretical and observational arguments

Sterile fermions ($\sim \nu_R$ RH neutrinos):

(minimal) SM extension to account for neutrino masses & mixings

- ✓ Interactions with SM fields only through mixings with active neutrinos
- ✓ No bound on the **number** and **mass scale** of the sterile states
- ← Common to numerous NP models, wide range of scales $\Lambda_{EW} \rightarrow \Lambda_{GUT}$

High-scale type I seesaw	"Low-scale" seesaw
$m_{\nu_s} = \mathcal{O}(10^{10-15}{ m GeV})$	$m_{\nu_s} = \mathcal{O}(\mathrm{MeV} - \mathrm{TeV})$
''natural'' $Y^{ u} \sim 1$	Finetune $Y^{ u}$
Decoupled new states	New states within experimental reach!

Sterile fermions:

- (minimal) SM extension to account for **neutrino masses & mixings**
- ✓ Interactions with SM fields only through mixings with active neutrinos
- ✓ No bound on the number and mass scale of the sterile states
- \checkmark Common to numerous NP models, wide range of scales $\Lambda_{EW} \rightarrow \Lambda_{GUT}$

→ Phenomenological implications strongly depend on their masses Low-scale seesaw ~~> non-decoupled states, modified lepton currents! **Rich phenomenology** at low-energies, high-intensity and colliders EW precision tests, cLFV transitions and decays, $0\nu 2\beta$ decays, rare meson decays, ... IRN Terascale Nantes - 17 Oct 2022 **Emanuelle Pinsard - LPC**

Sterile fermions:

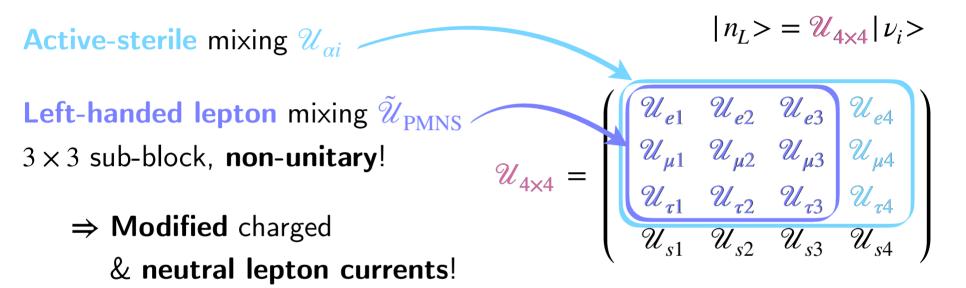
- (minimal) SM extension to account for neutrino masses & mixings
- ✓ Interactions with SM fields only through mixings with active neutrinos
- ✓ No bound on the **number** and **mass scale** of the sterile states
- ← Common to numerous NP models, wide range of scales $\Lambda_{EW} \rightarrow \Lambda_{GUT}$

 $\Rightarrow Phenomenological implication of their masses of the theorem of theorem of the theorem of the$

Minimal "toy model" for phenomenological analyses: SM + ν_s

- ✓ Ad-hoc construction: extend SM with n_s Majorana massive states leading to new mixings and CPV phases
- ✓ No assumption on the mass generation mechanism
- **Well-defined** interactions in physical basis

 \implies Explore the **low-energy phenomenology** common to complete models (type I seesaw, ISS, ...)


Focus on sterile fermions and cLFV observables

Constructing simplified models

Minimal 3 + 1

Minimal "toy model" for phenomenological analyses: SM +1 ν_s

Physical parameters:

- ✓ 4 masses: 3 light mostly active & 1 heavy mostly sterile
- ✓ 6 mixing angles
- → 6 CPV phases (3 Dirac δ_{ii} and 3 Majorana φ_i)

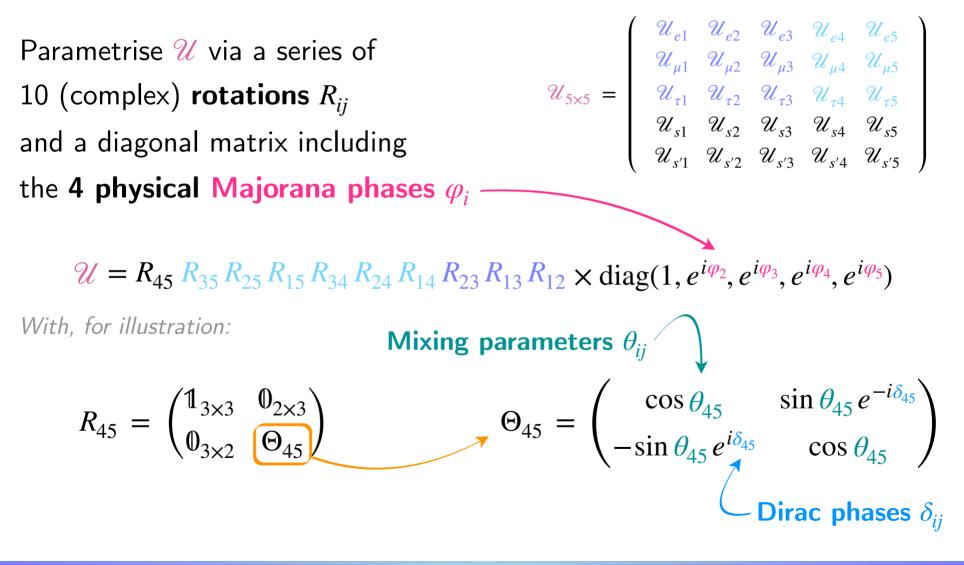
Minimal "toy model" for phenomenological analyses: SM + $2\nu_s$

Active-sterile mixing
$$\mathcal{U}_{\alpha i}$$

Left-handed lepton mixing $\tilde{\mathcal{U}}_{PMNS}$
 3×3 sub-block, non-unitary!
 $\mathcal{U}_{5\times5} =$
 $\begin{pmatrix} \mathcal{U}_{e1} & \mathcal{U}_{e2} & \mathcal{U}_{e3} & \mathcal{U}_{e4} & \mathcal{U}_{e5} \\ \mathcal{U}_{\mu 1} & \mathcal{U}_{\mu 2} & \mathcal{U}_{\mu 3} & \mathcal{U}_{\mu 4} & \mathcal{U}_{\mu 5} \\ \mathcal{U}_{\tau 1} & \mathcal{U}_{\tau 2} & \mathcal{U}_{\tau 3} & \mathcal{U}_{\tau 4} & \mathcal{U}_{\tau 5} \\ \mathcal{U}_{\tau 1} & \mathcal{U}_{\tau 2} & \mathcal{U}_{\tau 3} & \mathcal{U}_{s 4} & \mathcal{U}_{s 5} \\ \mathcal{U}_{s 1} & \mathcal{U}_{s 2} & \mathcal{U}_{s 3} & \mathcal{U}_{s 4} & \mathcal{U}_{s 5} \\ \mathcal{U}_{s ' 1} & \mathcal{U}_{s ' 2} & \mathcal{U}_{s ' 3} & \mathcal{U}_{s ' 4} & \mathcal{U}_{s ' 5} \\ \end{pmatrix}$

 \checkmark Sizeable contributions to cLFV observables (already present in 3 + 1)

✓ Interference effects between heavier states expected Constructive & destructive interference effects in cLFV leptonic and boson decays!


Emanuelle Pinsard - LPC

IRN Terascale Nantes - 17 Oct 2022

Parametrising \mathscr{U}

Minimal "toy model" for phenomenological analyses: SM + $2\nu_s$

Minimal "toy model" for phenomenological analyses: SM + $2\nu_s$ 2 heavy sterile states with masses m_4 and m_5 , leptonic mixing $\mathscr{U}_{5\times 5}$ CPV phases (Dirac δ and/or Majorana φ)

Illustrative (simplified) approach \implies No experimental constraint

→ Assume **degenerate masses**

 $m_4 = m_5$

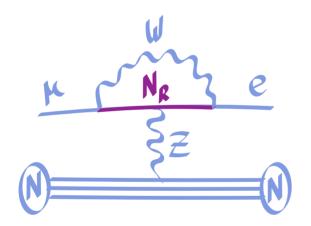
- $\rightsquigarrow \text{Assume degenerate mixing} \\ \text{angles } \theta_{\alpha 4} = \theta_{\alpha 5}$
- → Unconsidered phases set to 0

Illustrate the **impact** of **phases**

Emanuelle Pinsard - LPC

Take into account all available experimental constraints \implies Full phenomenological study

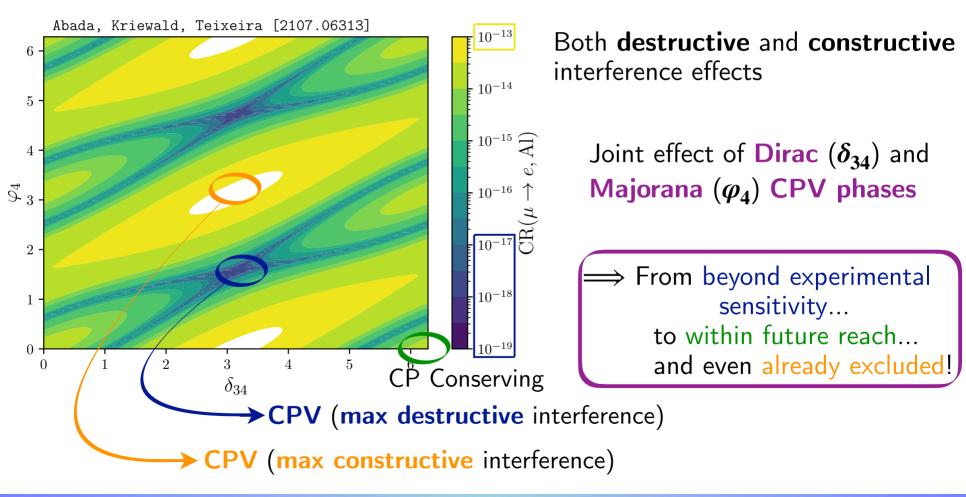
Full analysis


- ∽ Limits on active-sterile mixings
- ∽ Negative results of searches for sterile states
- ✓→ Electroweak precision tests
- \leadsto Bounds on searches for other cLFV transitions
 - No assumptions on active-sterile mixings & all CPV phases randomly varied

IRN Terascale Nantes - 17 Oct 2022

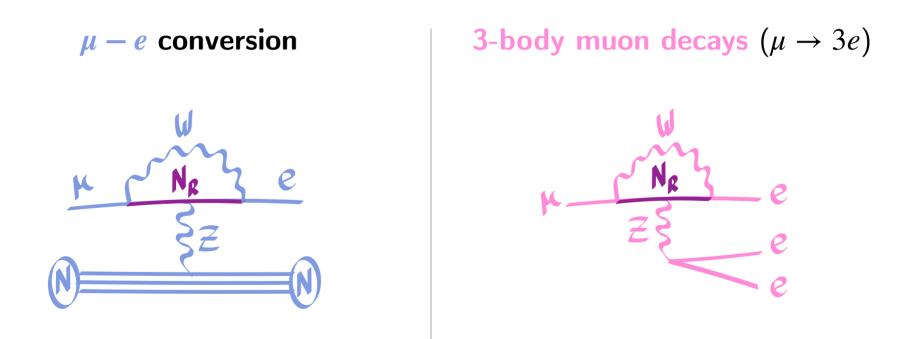
(Leptonic) cLFV with CPV phases

cLFV: $\mu - e$ conversion in nuclei with CPV Dirac and Majorana phases 3 + 2 heavy ν_s : simplified approach $\sin \theta_{\alpha 4} = \sin \theta_{\alpha 5}$, $m_4 = m_5 = 1$ TeV



Both **destructive** and **constructive** interference effects

Joint effect of Dirac (δ_{34}) and Majorana (φ_4) CPV phases

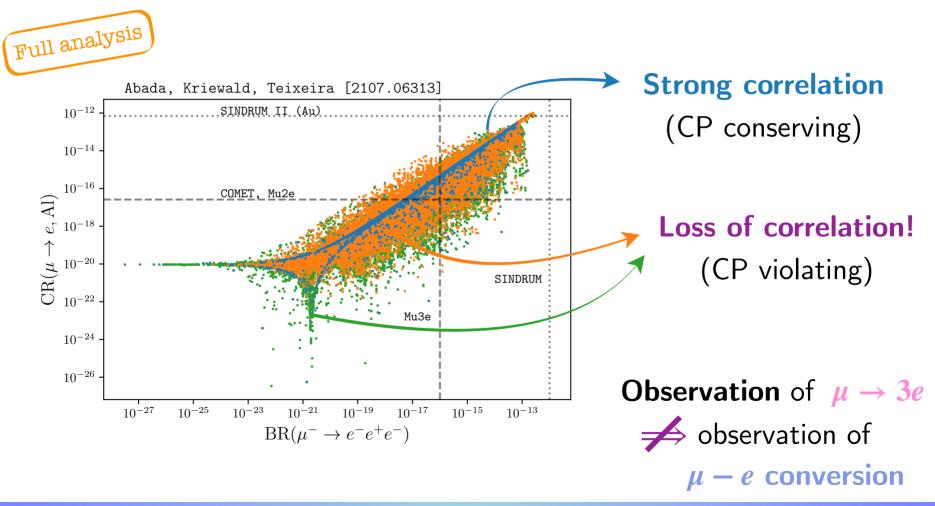

cLFV: $\mu - e$ conversion in nuclei with CPV Dirac and Majorana phases 3 + 2 heavy ν_s : simplified approach $\sin \theta_{\alpha 4} = \sin \theta_{\alpha 5}$, $m_4 = m_5 = 1$ TeV simplified

Ratios of cLFV observables to identify mediators & constrain their masses

An example: observables dominated by a **common topology** (Z -penguin)

CPV phases & cLFV

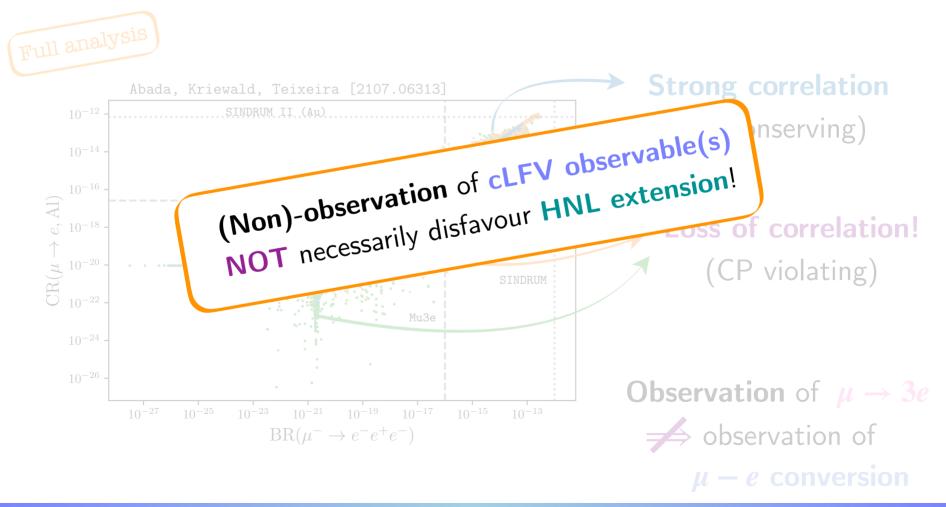
Ratios of cLFV observables to identify mediators & constrain their masses Heavy sterile neutrino masses fixed to $m_4 = m_5 = 1 \text{ TeV}$



CPV phases & cLFV

Ratios of cLFV observables to identify mediators & constrain their masses

But **CP violating phases do matter**! And impact naïve expectations....



CPV phases & cLFV

Ratios of cLFV observables to identify mediators & constrain their masses

But **CP violating phases do matter**! And impact naïve expectations....

Impact of CPV phases regarding experimental prospects

Some *illustrative* benchmark points - CP conserving vs CP violating

		Abada, Kriewald, Teixeira [2107.06313]				
	$\text{BR}(\mu \to e\gamma)$	${ m BR}(\mu ightarrow 3e)$	$\operatorname{CR}(\mu - e, \operatorname{Al})$	${ m BR}(au o 3\mu)$	$BR(Z \to \mu \tau)$	
P ₁	$3 imes 10^{-16}$ o	1×10^{-15} V	$9 imes 10^{-15}$ \checkmark	$2 imes 10^{-13}$ o	$3 imes 10^{-12}$ o	
P ' ₁	1×10^{-13} \checkmark	$2 imes 10^{-14}$ V	$1 imes 10^{-16}$ \checkmark	$1 imes 10^{-10}$ 🗸	$2 imes 10^{-9}$ 🗸	
P ₂	$2 imes 10^{-23}$ o	$2 imes 10^{-20}$ o	$2 imes 10^{-19}$ o	$1 imes 10^{-10}$ V	$3 imes 10^{-9}$ 🗸	
P ' ₂	$6 imes 10^{-14}$ \checkmark	$4 imes 10^{-14}$ \checkmark	$9 imes 10^{-14}$ \checkmark	$8 imes 10^{-11}$ \checkmark	$1 imes 10^{-9}$ 🗸	
P ₃	2×10^{-11} X	$3 imes 10^{-10}$ X	$3 imes 10^{-9}$ X	$2 imes 10^{-8}$ scalar scala	$8 imes 10^{-7}$ \checkmark	
P' ₃	$8 imes 10^{-15}$ o	$1 imes 10^{-14}$ \checkmark	$6 imes 10^{-14}$ \checkmark	$2 imes 10^{-9}$ 🗸	1×10^{-8} 🗸	

• beyond future reach

- \checkmark within future sensitivity
- \boldsymbol{x} conflicts current bounds

 P_2 : only cLFV τ decays within future reach, cLFV μ decays beyond sensitivity...

 P_2^{\prime} : all considered cLFV transitions within reach!

Observation of **cLFV observable(s)**

NOT necessarily disfavour **HNL** extension!

Emanuelle Pinsard - LPC

IRN Terascale Nantes - 17 Oct 2022

Impact of CPV phases regarding experimental prospects

Some *illustrative* benchmark points - CP conserving vs CP violating

		Abada, Kriewald, Teixeira [2107.06313]				
	${\rm BR}(\mu \to e \gamma)$	${\rm BR}(\mu\to 3e)$	$\operatorname{CR}(\mu - e, \operatorname{Al})$	${ m BR}(au o 3\mu)$	$BR(Z \to \mu \tau)$	
P ₁	$3 imes 10^{-16}$ o	$1 imes 10^{-15}$ \checkmark	$9 imes 10^{-15}$ \checkmark	$2 imes 10^{-13}$ o	$3 imes 10^{-12}$ o	
P ' ₁	$1 imes 10^{-13}$ V	$2 imes 10^{-14}$ V	$1 imes 10^{-16}$ \checkmark	$1 imes 10^{-10}$ \checkmark	$2 imes 10^{-9}$ 🗸	
P ₂	$2 imes 10^{-23}$ o	$2 imes 10^{-20}$ o	$2 imes 10^{-19}$ o	$1 imes 10^{-10}$ V	$3 imes 10^{-9}$ V	
P ' ₂	$6 imes 10^{-14}$ \checkmark	$4 imes 10^{-14}$ \checkmark	$9 imes 10^{-14}$ \checkmark	$8 imes 10^{-11}$ \checkmark	$1 imes 10^{-9}$ 🗸	
			$3 imes 10^{-9}$ X			
P' ₃	$8 imes 10^{-15}$ o	$1 imes 10^{-14}$ V	$6 imes 10^{-14}$ \checkmark	$2 imes 10^{-9}$ 🗸	$1 imes 10^{-8}$ 🗸	

- beyond future reach
- \checkmark within future sensitivity
- \boldsymbol{x} conflicts current bounds

 P_3 : large active-sterile mixings, excluded due to bounds on cLFV μ decays

 P_3^\prime : suppression of rates from CPV phases: reconcile large mixings with observation!

CPV phases matter and must be included!

cLFV boson decays and CPV

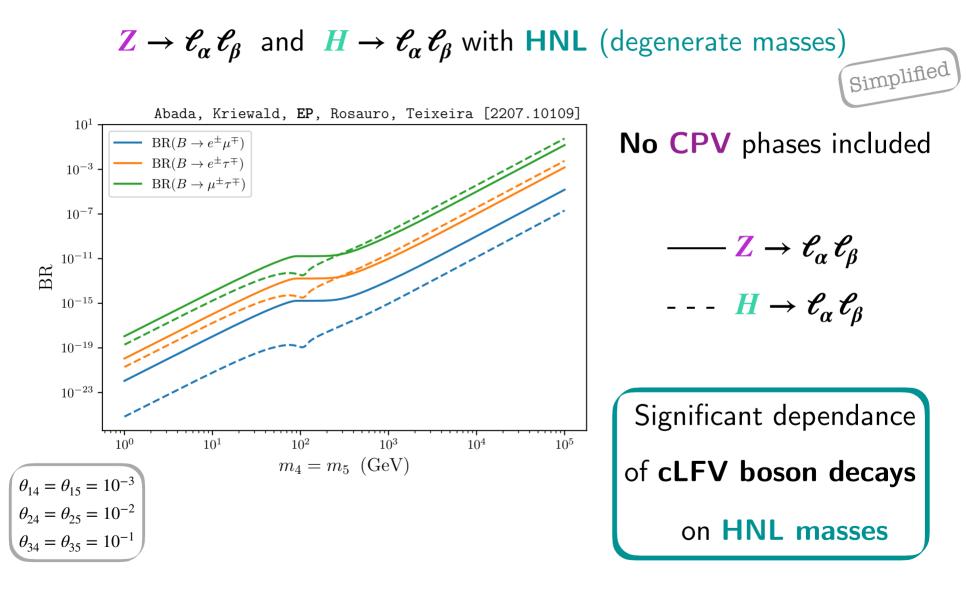
Gauge bosons (*Z*, *W***) and Higgs decays** are sensitive to **New Physics** including **heavy sterile states!**

Significant contributions leading to **strong constraints**:

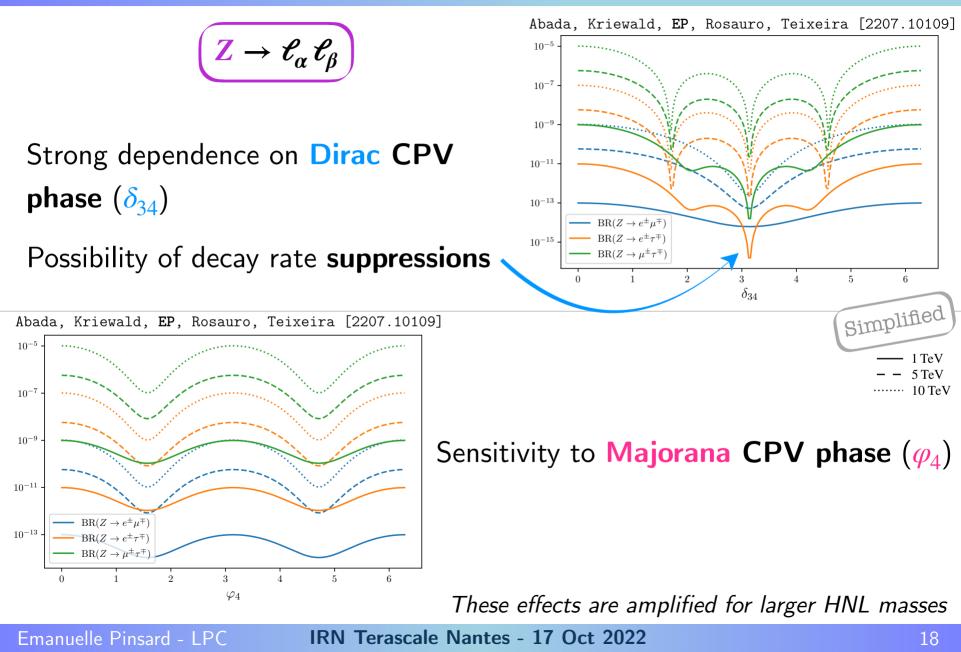
$$\Gamma_Z^{\mathrm{inv}}$$
 and $Z o \ell_lpha \, \ell_eta$, $H o \ell_lpha \, \ell_eta$

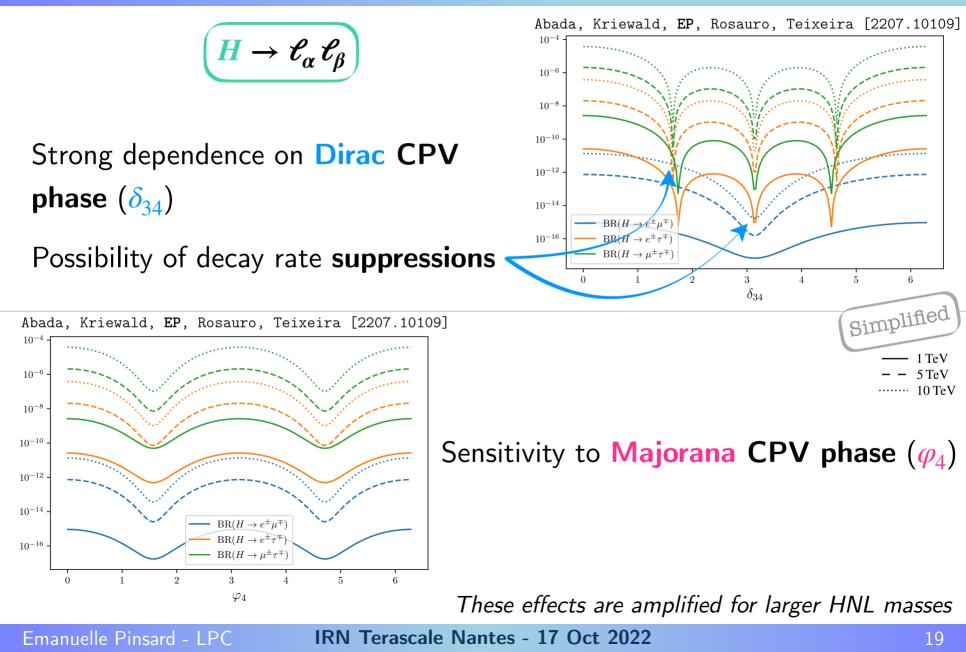
 \implies What is the **impact** of **CPV Dirac & Majorana phases** on cLFV Z and Higgs decays?

Abada, Kriewald, EP, Rosauro, Teixeira [2207.10109]

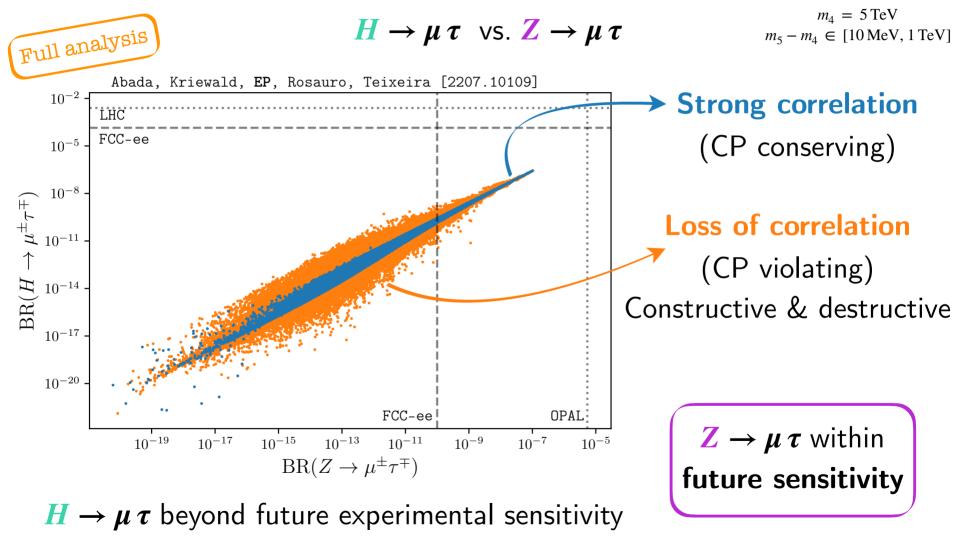

cLFV boson decays: $Z \to \ell_{\alpha} \ell_{\beta}$, $H \to \ell_{\alpha} \ell_{\beta}$ with **HNL** and **CPV** phases

Full computation of cLFV widths; both unitary & Feynman gauges for complete HNL models




Including CPV phases

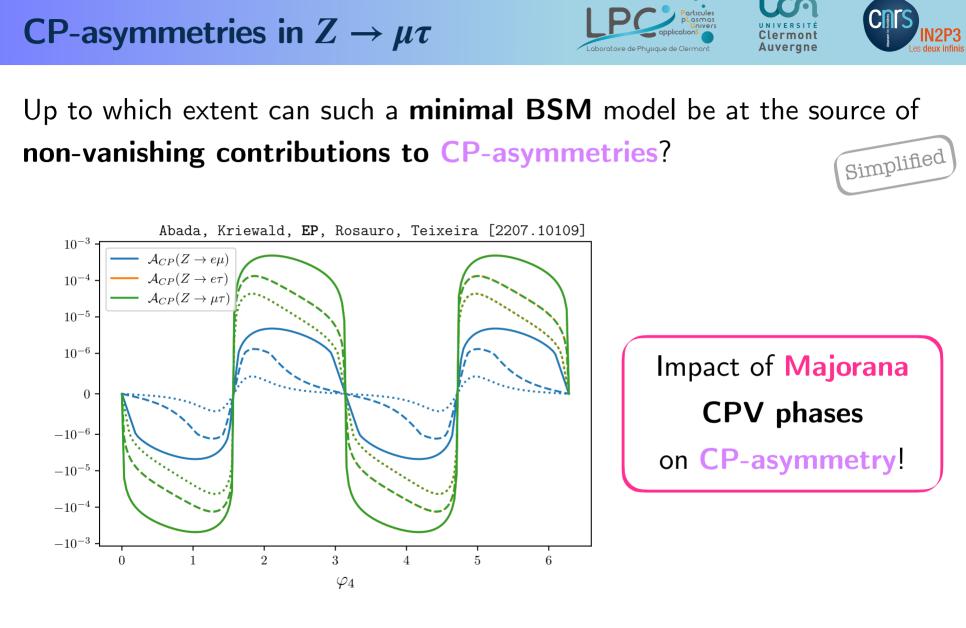
Including CPV phases

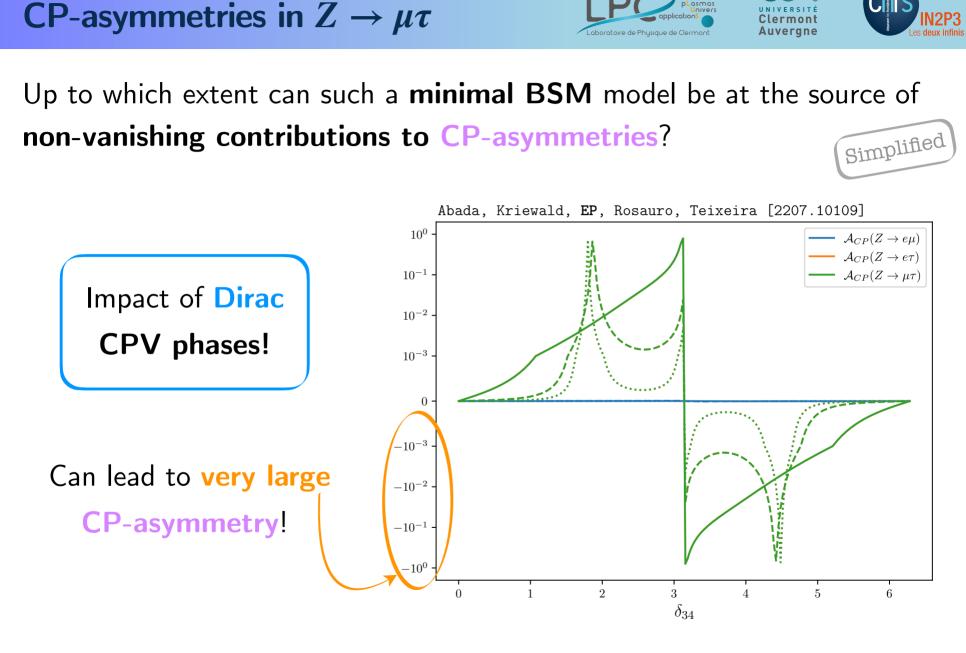


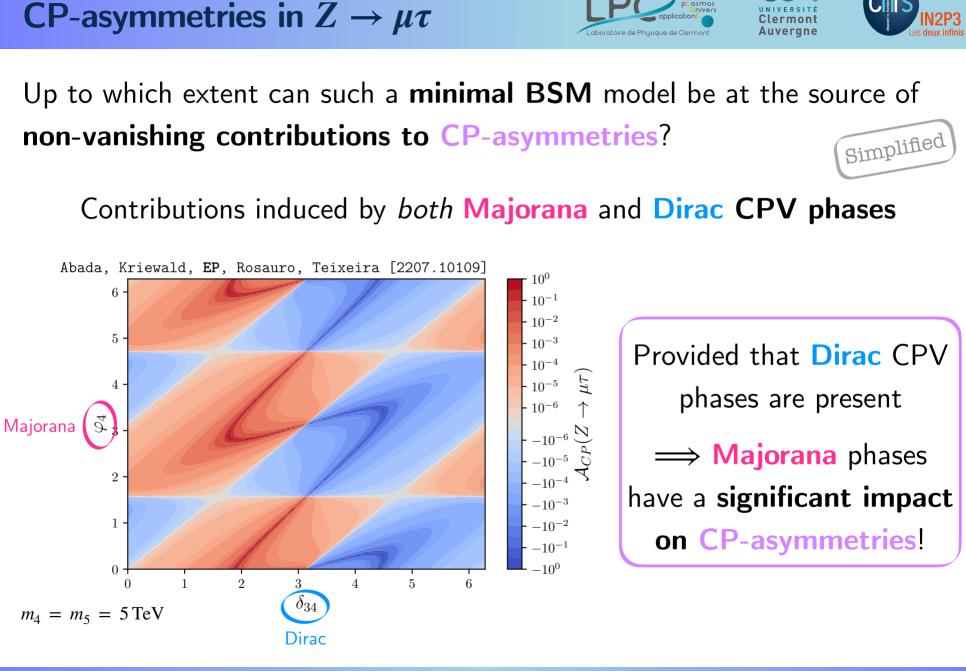
Varying all **CPV phases** associated with the **sterile states**

An interesting observable: CP asymmetries in Z-decays

CP-asymmetries in Z decays

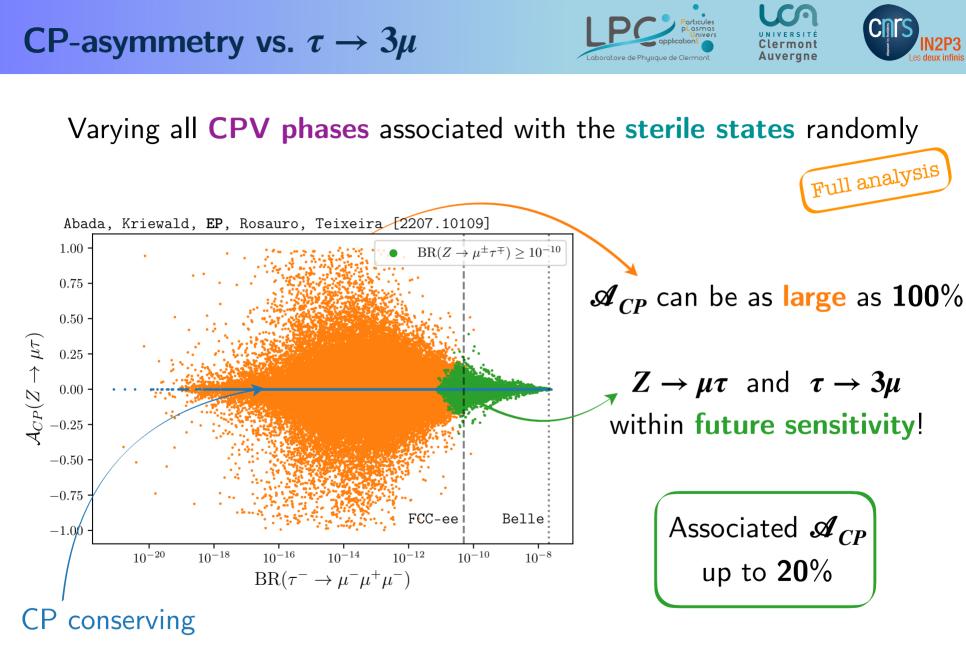

 $Z \rightarrow \mu \tau$ decays potentially observable **AND** impacted by **CPV phases**


 \implies Consider CP-asymmetries


$$\mathscr{A}_{CP}(Z \to \mathscr{\ell}_{\alpha} \mathscr{\ell}_{\beta}) = \frac{\Gamma(Z \to \mathscr{\ell}_{\alpha}^{-} \mathscr{\ell}_{\beta}^{+}) - \Gamma(Z \to \mathscr{\ell}_{\alpha}^{+} \mathscr{\ell}_{\beta}^{-})}{\Gamma(Z \to \mathscr{\ell}_{\alpha}^{-} \mathscr{\ell}_{\beta}^{+}) + \Gamma(Z \to \mathscr{\ell}_{\alpha}^{+} \mathscr{\ell}_{\beta}^{-})}$$

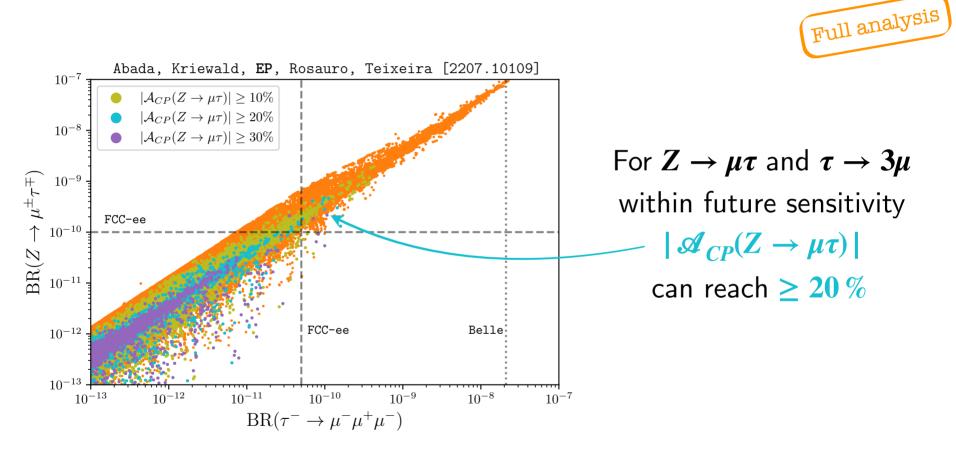
Additional observables to ultimately probe the presence of CPV

- ✓ > Up to which extent can such a minimal BSM model be at the source of non-vanishing contributions to CP-asymmetries?
- Contributions induced by *both* Majorana and Dirac CPV phases



Emanuelle Pinsard - LPC

IRN Terascale Nantes - 17 Oct 2022



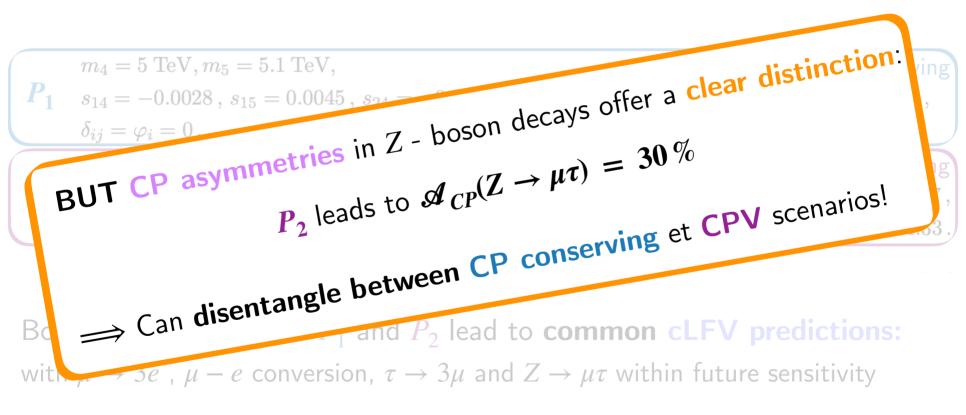
Looking at the joint behaviour of $Z \to \mu \tau$, $\mathscr{A}_{CP}(Z \to \mu \tau)$ and $\tau \to 3\mu$

If joint observation \implies highly suggestive of such HNL extension! With *at least* 2 heavy Majorana fermions

Impact of (potential) **measurement** of the CP asymmetries

$$\begin{array}{ll} m_4 = 5 \ {\rm TeV}, m_5 = 5.1 \ {\rm TeV}, & {\sf CP} \ {\sf Conserving} \\ {\pmb P_1} & s_{14} = -0.0028 \ , \, s_{15} = 0.0045 \ , \, s_{24} = -0.0052 \ , \, s_{25} = -0.0037 \ , \, s_{34} = -0.052 \ , \, s_{35} = -0.028 \ , \\ \delta_{ij} = \varphi_i = 0 \ , & \\ \hline m_4 = 5 \ {\rm TeV}, m_5 = 5.1 \ {\rm TeV}, & {\sf CP} \ {\sf Violating} \\ {\pmb P_2} & s_{14} = 0.00020 \ , \, s_{15} = -7.1 \times 10^{-5} \ , \, s_{24} = -0.0024 \ , \, s_{25} = 0.029 \ , \, s_{34} = -0.073 \ , \, s_{35} = -0.037 \ , \\ \delta_{14} = 0.71 \ , \, \delta_{15} = 5.21 \ , \, \delta_{24} = 2.06 \ , \, \delta_{25} = 4.78 \ , \, \delta_{34} = 3.80 \ , \, \delta_{35} = 4.74 \ , \, \varphi_4 = 1.77 \ , \, \varphi_5 = 4.33 \ . \end{array}$$

Both benchmark points P_1 and P_2 lead to **common cLFV predictions**: with $\mu \rightarrow 3e$, $\mu - e$ conversion, $\tau \rightarrow 3\mu$ and $Z \rightarrow \mu\tau$ within future sensitivity


Indistinguishable if **cLFV** signals are observed

Emanuelle Pinsard - LPC

Laboratoire de Physique de Clermont

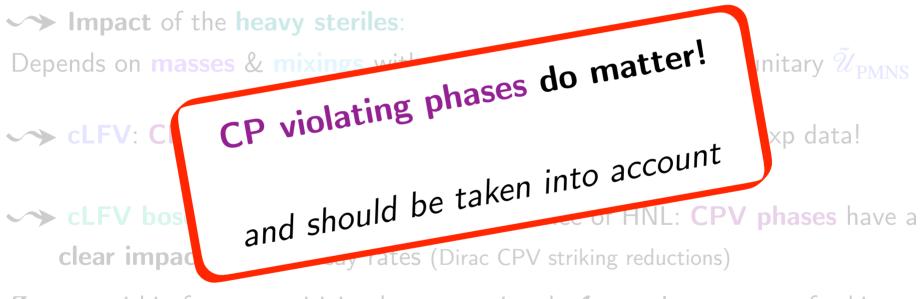
Impact of (potential) measurement of the CP asymmetries

Indistinguishable if **cLFV** signals are observed

Conclusions

- ✓ Minimal and simple BSM construction:
- SM + 2 heavy Majorana sterile states (no assumption on mass mechanism) Low-energy phenomenology of complete (high-energy) models
- ✓ > Impact of the heavy steriles:

Depends on masses & mixings with active states (CPV) \Rightarrow non unitary $\tilde{\mathcal{U}}_{\text{PMNS}}$


- **CLFV**: **CPV phases** affect **correlations** & **interpretation** of exp data!
- CLFV boson decays sensitive to the presence of HNL: CPV phases have a clear impact on the decay rates (Dirac CPV striking reductions)
- $Z \rightarrow \mu \tau$ within future sensitivity, large associated $\mathscr{A}_{CP} \Rightarrow$ Importance of taking **multiple observables** into account to probe CPV or CP conserving scenarios

CP asymmetry key to establish the presence of CP violation!

Conclusions

- ✓ Minimal and simple BSM construction:
- SM + 2 heavy Majorana sterile states (no assumption on mass mechanism) Low-energy phenomenology of complete (high-energy) models

 $Z \rightarrow \mu \tau$ within future sensitivity, large associated $\mathscr{A}_{CP} \Rightarrow$ Importance of taking **multiple observables** into account to **probe** CPV or CP conserving scenarios

CP asymmetry key to establish the presence of CP violation!

Thank you for your attention

Modified lepton currents

Co

UNIVERSITÉ Clermont

Auvergne

,

$$\begin{split} \mathcal{L}_{W^{\pm}} &= -\frac{g_{w}}{\sqrt{2}} W_{\mu}^{-} \sum_{\alpha=1}^{3} \sum_{j=1}^{3+n_{S}} \mathcal{U}_{\alpha j} \bar{\ell}_{\alpha} \gamma^{\mu} P_{L} \nu_{j} + \text{H.c.} \,, \\ \mathcal{L}_{Z^{0}}^{\nu} &= -\frac{g_{w}}{4 \cos \theta_{w}} Z_{\mu} \sum_{i,j=1}^{3+n_{S}} \bar{\nu}_{i} \gamma^{\mu} \left(P_{L} C_{ij} - P_{R} C_{ij}^{*} \right) \nu_{j} \,, \\ \mathcal{L}_{Z^{0}}^{\ell} &= -\frac{g_{w}}{2 \cos \theta_{w}} Z_{\mu} \sum_{\alpha=1}^{3} \bar{\ell}_{\alpha} \gamma^{\mu} \left(\mathbf{C}_{V} - \mathbf{C}_{A} \gamma_{5} \right) \ell_{\alpha} \,, \\ \mathcal{L}_{H^{0}} &= -\frac{g_{w}}{4 M_{W}} H \sum_{i \neq j=1}^{3+n_{S}} \bar{\nu}_{i} \left[C_{ij} \left(P_{L} m_{i} + P_{R} m_{j} \right) + C_{ij}^{*} \left(P_{R} m_{i} + P_{L} m_{j} \right) \right] \nu_{j} \end{split}$$

 $C_{ij} = \sum_{
ho=1}^{3} \mathcal{U}_{i
ho}^{\dagger} \, \mathcal{U}_{
ho j}$

Emanuelle Pinsard - LPC

Constraints

Active mixings $(\theta_{\alpha\beta})$ and Dirac CPV δ_{13} : Central values of NuFIT 5.1 results

Active-sterile mixing angles $\theta_{\alpha4.5}$ constrain from low- and high-energy observables:

 $\begin{array}{l} \text{(Semi-)leptonic } \tau \text{ decays} \\ \text{Light mesons leptonic decays} \end{array} \end{array} \begin{array}{l} \text{Construct ratios;} \\ \text{sensitivity to modified } W \ell \nu \text{ vertex} \\ R_W^{\ell_1 \ell_2} = \frac{\Gamma(W \to \ell_1 \nu)}{\Gamma(W \to \ell_2 \nu)} \\ \end{array}$

Upper bounds on the entries of η indirectly taking into account constrains from modifications of G_F , $\sin^2 \theta_w$ and M_W

Bound on HNL decay width to comply with perturbative unitarity \implies bound on sterile masses and couplings to active states

 $0\nu 2\beta$: upper limit on the effective mass m_{ee} from KamLAND-ZEN

For TeV-scale HNL, collider searches and cosmological bounds are not competitive

Emanuelle Pinsard - LPC

Overview of the parameter space

Heavier masses: assumed to be sufficiently close to allow for interferences \checkmark Fix m_4 and take random values of m_5 from half-normal distributions (scale representative of the sterile states width)

Active-sterile mixing angles: independently varied & randomly varying signs

For $m_4 = 5 \text{ TeV}$, the range of parameters to be explored is:

 $\begin{aligned} m_5 - m_4 &\in [10 \text{ MeV}, 1 \text{ TeV}], \\ |\sin \theta_{14,15}| &\in [6.0 \times 10^{-5}, 6.0 \times 10^{-3}], \\ |\sin \theta_{24,25}| &\in [1.9 \times 10^{-4}, 0.036], \\ |\sin \theta_{34,35}| &\in [8.3 \times 10^{-4}, 0.13]. \end{aligned}$

 \implies Correspond to regimes complying with experimental data for the CP conserving case

Analysis: Select randomly 10⁴ points (consistent with experimental data), vary all **CPV phases** associated with sterile states $\delta_{\alpha 4,5}$, $\varphi_{4,5}$ for each tuple of mixing angles.

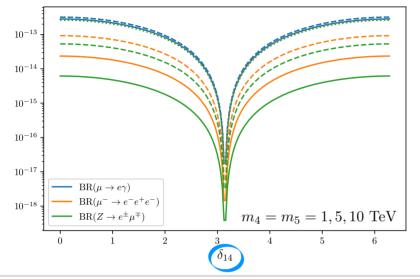
Consider only regimes that do not lead to cLFV predictions far away from the corresponding **future experimental sensitivity**

Emanuelle Pinsard - LPC

Synergy of cLFV observables very important: **Probe** different operators/topologies $BR(\mu \rightarrow e\gamma)$, $BR(\mu \rightarrow eee)$ and $CR(\mu - e, N)$ correlated by **common topologies**: γ dipoles & anapoles, Z penguins, tree-level contributions,... \Rightarrow 4-fermion operators *Model-dependent: certain topologies dominate, tree-level contributions might be present*

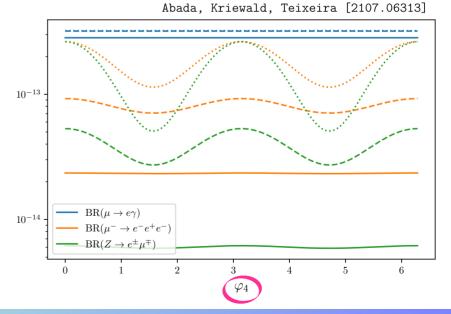
W						
NRZ	Model	$\mu ightarrow eee$	$\mu N ightarrow eN$	$rac{\mathrm{BR}(\mu ightarrow eee)}{\mathrm{BR}(\mu ightarrow e \gamma)}$	$rac{\mathrm{CR}(\mu N ightarrow e N)}{\mathrm{BR}(\mu ightarrow e \gamma)}$	
ZSO	MSSM	Loop	Loop	$pprox 6 imes 10^{-3}$	$10^{-3} - 10^{-2}$	W
Se e	Type-I seesaw	$Loop^*$	Loop*	$3 \times 10^{-3} - 0.3$	0.1-10	K ~ NR Z e
C	Type-II seesaw	Tree	Loop	$(0.1 - 3) \times 10^3$	$\mathcal{O}(10^{-2})$	Sz.
	Type-III seesaw	Tree	Tree	$pprox 10^3$	$\mathcal{O}(10^3)$	
a show of	LFV Higgs	$Loop^\dagger$	Loop ^{*†}	$pprox 10^{-2}$	$\mathcal{O}(0.1)$	00
M _ MR Z e	Composite Higgs	$Loop^*$	Loop*	0.05-0.5	2 - 20	

⇒ study correlations/ratios of cLFV observables, might find peculiar cLFV patterns
⇒ provide complementary information to direct searches


Emanuelle Pinsard - LPC

More on cLFV & CPV phases

Abada, Kriewald, Teixeira [2107.06313]



Full cancellation of the rates for

$$\delta_{14} = \pi$$

Similar results for other **Dirac phases**

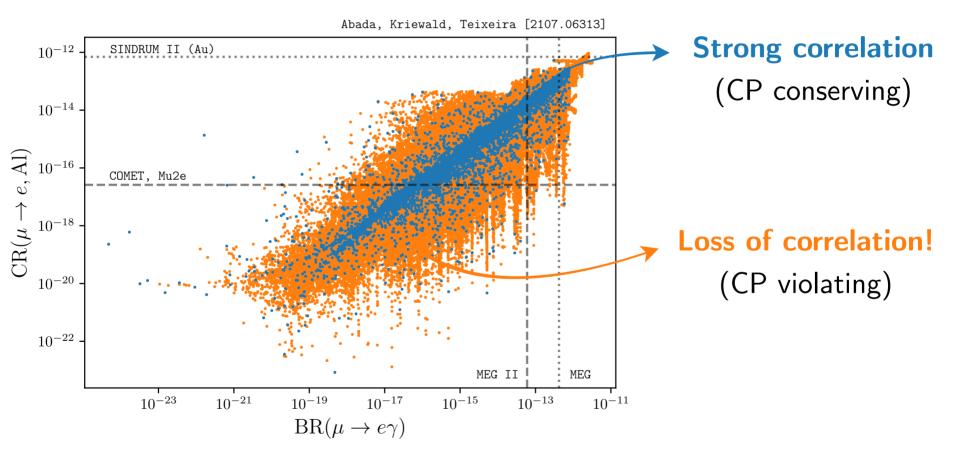
Milder dependence, γ -penguin independent of **Majorana phases**

Emanuelle Pinsard - LPC

$\mu \rightarrow e\gamma$ and CPV phases

Assume (for *simplicity & illustrative purposes*): $m_4 \approx m_5$, $\sin \theta_{\alpha 4} \approx \sin \theta_{\alpha 5} \ll 1$

$$G_{\gamma}^{\mu e}|^{2} \approx 4 \sin^{2} \theta_{e4} \sin^{2} \theta_{\mu 4} \cos^{2} \left(\frac{\delta_{14} + \delta_{25} - \delta_{15} - \delta_{24}}{2} \right) G_{\gamma} \left(\frac{m_{N_{i}}^{2}}{m_{W}^{2}} \right)$$


 $\implies \text{Radiative decays: rate depends only on Dirac phases;} \\ full cancellation for <math>\Sigma \delta = \pi$

Emanuelle Pinsard - LPC

More on cLFV & CPV phases

