SENSITIVITY TO NEW PHYSICS IN FINAL STATES WITH MULTIPLE GAUGE AND HIGGS BOSONS

<u>Alessandra Cappati¹</u>, Roberto Covarelli², Paolo Torrielli², Marco Zaro³

¹ LLR, Ecole Polytechnique, CNRS/IN2P3
 ² Universita' di Torino, INFN
 ³ Universita' di Milano, INFN

IRN Terascale @Nantes 18 October 2022

FINAL STATES WITH MULTIPLE GAUGE AND HIGGS BOSONS

- Final states suitable to investigate VVHH interactions
- Quartic couplings usually investigated in VBS or triboson processes
- But also final states with H bosons are useful \rightarrow HH production!

In this work:

- Reinterpret HH experimental results in terms of dim-8 EFT operators, sensitive to VVHH interactions
- Unitarity constraints considered
 - dedicated technique adopted
 - mass-dependent constraints set

Results published in JHEP09(2022)038

HH PRODUCTION

IRN Terascale - 18 Oct 2022

EFT FRAMEWORK

• Complete operator basis considered:

($\mathcal{O}_{S,0} = [(D_{\mu}\Phi)^{\dagger}D_{\nu}\Phi] \times [(D^{\mu}\Phi)^{\dagger}D^{\nu}\Phi]$	$\left(\mathcal{O}_{M,0} = \mathrm{Tr}[\hat{W}_{\mu u}\hat{W}^{\mu u}] imes [(D_{eta}\Phi)^{\dagger}D^{eta}\Phi] ight)$	$\mathcal{O}_{M,4} = [(D_{\mu}\Phi)^{\dagger}\hat{W}_{\beta u}D^{\mu}\Phi] imes B^{eta u}$
	$\mathcal{O}_{S,1} = [(D_\mu \Phi)^\dagger D^\mu \Phi] \times [(D_\nu \Phi)^\dagger D^\nu \Phi]$	$\mathcal{O}_{M,1} = \mathrm{Tr}[\hat{W}_{\mu\nu}\hat{W}^{\nu\beta}] \times [(D_{\beta}\Phi)^{\dagger}D^{\mu}\Phi]$	$\mathcal{O}_{M,5} = [(D_{\mu}\Phi)^{\dagger}\hat{W}_{\beta u}D^{ u}\Phi] imes B^{eta\mu} + ext{H.c.}$
	$\mathcal{O}_{S,2} = [(D_\mu \Phi)^\dagger D_\nu \Phi] \times [(D^\nu \Phi)^\dagger D^\mu \Phi]$	$\mathcal{O}_{M,2} = [B_{\mu u}B^{\mu u}] imes [(D_eta \Phi)^\dagger D^eta \Phi]$	$\mathcal{O}_{M,7} = [(D_\mu \Phi)^\dagger \hat{W}_{eta u} \hat{W}^{eta \mu} D^ u \Phi]$
	Scalar	$\mathcal{O}_{M,3} = [B_{\mu u}B^{ ueta}] \times [(D_{eta}\Phi)^{\dagger}D^{\mu}\Phi]$	MIXED

SIMULATION SETUP

• Generator: MadGraph5_aMC@NLO v2.7.3

- Processes:
 - $\circ \quad \text{VBF-HH, ZHH, gg}{\rightarrow}\text{ZZH,}$
 - VBS (W[±]W[±] VBS, W[±]Z VBS, W⁺W⁻ VBS) (for validation)
 - Zbbbb (main background for ZHH)
- Wilson coefficients variations $f_x/\Lambda^4 = \{0, \pm 2, \pm 5, \pm 10, \pm 20\}$ TeV⁻⁴
- for VBF-HH, also k_{2V} variations (k_{2V} = {0, 1, ±2, ±5, ±10})
- Typical experimental selection applied on VBS and VBF processes
- Since EFT sensitive region at high energy
 - no parton shower applied
 - no selection applied to decay product of H and gauge bosons (exception for ZHH and Zbbbb processes, simple analysis performed)

OBSERVABLE AND PROCESSES

- Observable used to estimate the EFT sensitivity:
 - $\sigma[\mathbf{m}_{\min}, \mathbf{m}_{\max}]$ (cross section in mass interval)
 - m = invariant mass of the di- or tri- boson states produced

•
$$m_{min} = 1.1 \text{TeV}, m_{max} = \sqrt{s}$$

Cuts:

- For VBS and VBF processes
 - p_T(j) > 40 GeV
 - m[']_{ii} > 500 GeV
 - |η['](j)| < 4.7</p>
 - \circ $|\Delta \eta_{ii}| > 2.5$
- For Zbbbb:
 - 115 < m_{bb} < 135 GeV

Process	MADGRAPH5_AMC@NLO	QCD	Max.	CMS	$\overline{\sigma}[1.1, 13 \text{ TeV}]$				
number	syntax	order	jet flav.	result	SM (fb)				
Signal (including EFT effects)									
1	p p > w+ w+ j j QCD=0	LO	4	[27, 28]	4.514(9)				
	p p > w- w- j j QCD=0								
2	p p > w+ z j j QCD=0	LO	4	[27, 28]	8.55(2)				
	p p > w- z j j QCD=0								
3	p p > w+ w- j j QCD=0	LO	4	[28]	9.97(2)				
4	p p > h h j j QCD=0	LO	5	[35]	0.0329(7)				
5	p p > z h h QED=3	LO	5	-	0.01295(5)				
6	g g > z z h [noborn=QCD]	LI (LO)	5	-	$3.493(7) \times 10^{-3}$				
Background (SM only)									
7	p p > z b b~ b b~	LO	4	-	0.729(3)				

EFT MODIFICATIONS TO MASS DISTRIBUTIONS

VALIDATION ON VBS

- Try to reproduce CMS results
- At first without unitarity regularization, since most CMS result don't have it
- σ values computed for each process, then multiplied by BR of gauge or H boson involved to obtain value in dedicated final state
- σ computed as function of f_x/Λ^4 , and quadratic fits performed
- 1. Take experimental limit on one operator from CMS publication
- Extrapolate 95% CL exclusion limit on *σ*, superimposing on the parabola the limit on the operator
- 3. From this, derive limits on all other operators
- 4. Compare obtained limits with the published ones
- 5. Steps 1-4 repeated for different choices of initial input

VALIDATION ON VBS - RESULTS

- CMS results incomplete, several operators not examined
- Validation successful: manage to reproduce results (apart from WV semileptonic for S0-2 operators, where we keep CMS results)

	VBS W [±] W	$V^{\pm} \to 2\ell 2\nu$	VBS $W^{\pm}Z \rightarrow 3\ell\nu$		$\rightarrow 2\ell 2\nu$ VBS W [±] Z $\rightarrow 3\ell\nu$ VBS W [±] V semileptor		semileptonic
Coeff.	CMS exp.	estimated	CMS exp.	estimated	CMS exp.	estimated	
$f_{ m M0}/\Lambda^4$	[-3.7, 3.8]	[-3.9,3.7]	[-7.6, 7.6]	input	[-1.0, 1.0]	[-1.0, 1.0]	
$f_{ m M1}/\Lambda^4$	[-5.4, 5.8]	input	[-11,11]	[-11,11]	[-3.0, 3.0]	[-3.1, 3.1]	
$f_{ m M2}/\Lambda^4$	/	/	_	[-13, 13]	-	[-1.5, 1.5]	
$f_{ m M3}/\Lambda^4$	/	/	_	[-19, 19]	-	[-5.5, 5.5]	
$f_{ m M4}/\Lambda^4$	/	/	-	[-5.9, 5.9]	1	[-3.1, 3.1]	
$f_{ m M5}/\Lambda^4$	/	/	—	[-8.3, 8, 3]	—	[-4.5, 4.5]	
$f_{ m M7}/\Lambda^4$	[-8.3, 8.1]	[-8.5, 8.0]	[-14, 14]	[-14, 14]	[-5.1, 5.1]	input	
$f_{ m S0}/\Lambda^4$	[-6.0, 6.2]	[-6.1,6.2]	[-24, 24]	[-25, 26]	[-4.2, 4.2]	[-6.7, 6.8]	
$f_{ m S1}/\Lambda^4$	[-18,19]	[-18, 19]	[-38, 39]	[-38,39]	[-5.2, 5.2]	[-8.3, 8.4]	
$f_{\mathrm{S2}}/\Lambda^4$		[-18, 19]	-	[-25, 26]	—	[-8.4, 8.5]	

IMPLEMENTATION OF UNITARITY IN VBS

- 1. Evaluate σ [m_{min}, m_{max}] for several m_{max}
- 2. For each *σ*, obtain m_{max}-dependent limits on operator coefficients with same procedure used for validation
- 3. Since only part of experimental data fall into $[m_{min}, m_{max}]$, limits on σ obtained at step 2 are rescaled in each test, assuming poissonian errors

Coeff.	VBS $W^{\pm}W^{\pm}$	VBS $W^{\pm}Z$	VBS $W^{\pm}V$ semilep.
$f_{ m M0}/\Lambda^4$	/	/	[-3.3, 3.5]
$f_{ m M1}/\Lambda^4$	[-13, 17]	[-67,71]	[-7.4, 7.6]
$f_{ m M2}/\Lambda^4$	/	/	[-9.1, 9.0]
$f_{ m M3}/\Lambda^4$	/	/	[-32, 30]
$f_{ m M4}/\Lambda^4$	/	[-36, 36]	[-8.6, 8.7]
$f_{ m M5}/\Lambda^4$	/	[-29, 29]	[-10, 10]
$f_{ m M7}/\Lambda^4$	[-21, 18]	[-59, 57]	[-11,11]
$f_{ m S0}/\Lambda^4$	[-17,20]	/	[-8.5,9.5]
$f_{ m S1}/\Lambda^4$	/	/	/
$f_{ m S2}/\Lambda^4$	/	[-25, 26]	[-21, 25]

- Limits obtained w/ unitarity less stringent than those w/o
- If curves do not cross, available data are not enough to set more stringent limits than those imposed by unitarity

VBF-HH PROCESS

Similar to VBS, but experimental results in terms of k_{2V}

- 1. Consider public HH \rightarrow 4b 95% CL limit on k_{2V}
- 2. Use the VBF-HH simulation as function of k_{2V} to set limit on the parabola and obtain limit on σ
- 3. From limit on σ , extract limits on corresponding coefficient
- 4. Validation: use limits on f_x as input and re-produce CMS limits on k_{2V}

VBF-HH RESULTS

- **VBF-HH** estimated limits **supersede** those obtained with VBS for f_{M0} , f_{M2} , f_{M3}
- Unitarity boundaries added as described for VBS

	VBS $W^{\pm}V$ semileptonic		$VBF HH \rightarrow b\overline{b}b\overline{b}$	
Coeff.	no unitarity	w/ unitarity	no unitarity	w/ unitarity
$f_{ m M0}/\Lambda^4$	[-1.0,1.0]	[-3.3,3.5]	[-0.95, 0.95]	[-3.3, 3.3]
$f_{ m M1}/\Lambda^4$	[-3.1, 3.1]	[-7.4, 7.6]	[-3.8, 3.8]	[-13, 14]
$f_{ m M2}/\Lambda^4$	[-1.5, 1.5]	[-9.1,9.0]	[-1.3, 1.3]	[-7.6, 7.3]
$f_{ m M3}/\Lambda^4$	[-5.5, 5.5]	[-32, 30]	[-5.2, 5.3]	[-29,30]
$f_{ m M4}/\Lambda^4$	[-3.1, 3.1]	[-8.6, 8.7]	[-4.0, 4.0]	[-14, 14]
$f_{ m M5}/\Lambda^4$	[-4.5, 4.5]	[-10, 10]	[-7.1, 7.1]	[-26, 26]
$f_{ m M7}/\Lambda^4$	[-5.1, 5.1]	[-11,11]	[-7.6, 7.6]	[-27, 27]
$f_{ m S0}/\Lambda^4$	[-4.2,4.2]	[-8.5,9.5]	[-30,29]	/
$f_{ m S1}/\Lambda^4$	[-5.2, 5.2]	/	[-11, 10]	/
$f_{\mathrm{S2}}/\Lambda^4$	-	[-21, 25]	[-17, 16]	/

- Perform simple analysis
- Estimate the number of detectable events: $N = \sigma \cdot L \cdot \varepsilon \cdot A$
 - H→bb and Z→II (I=e, μ) considered
 - Acceptance (A) requirements, typical LHC requirements:
 - $p_T(b) > 30 \text{ GeV}, p_T(e, \mu) > 20 \text{ GeV}$
 - $|\eta(b)| < 2.5, |\eta(e, \mu)| < 2.4$
 - Efficiency (ε) for identification and selection taken from experimental papers
- Zbbbb bkg process simulated with 115 < m_{bb} < 135 GeV
- Estimate upper limits on σ with Feldman-Cousins
- Similar procedure as before to estimate limits on Wilson coefficients
- With Run2 luminosity ($L = 140 \text{ fb}^{-1}$) no limits w/ unitarity

	$ZHH \rightarrow \ell^+ \ell^- b\overline{b}b\overline{b}$
Coeff.	no unitarity
$f_{ m M0}/\Lambda^4$	[-8.4,8.7]
$f_{ m M1}/\Lambda^4$	[-15, 15]
$f_{ m M2}/\Lambda^4$	[-12, 12]
$f_{ m M3}/\Lambda^4$	[-20,20]
$f_{ m M4}/\Lambda^4$	[-20,21]
$f_{ m M5}/\Lambda^4$	[-18,18]
$f_{ m M7}/\Lambda^4$	[-29,30]
$f_{ m S0}/\Lambda^4$	[-210,200]
$f_{ m S1}/\Lambda^4$	[-350, 380]
$f_{ m S2}/\Lambda^4$	[-350, 380]

- Loop Induced process
- Very low σ
- H \rightarrow bb and Z \rightarrow II (I=e, μ) considered
- Even with large variations of Wilson coefficients σ remains small
 → process not sensitive enough to be investigated at LHC
- However, it demonstrates that is possible to simulate the process with new NLO UFO model constructed including dim-8 operators

- Limits w/o unitarity obtained rescaling the excluded σ by $L^{-\frac{1}{2}}$ ($L = 3 \text{ ab}^{-1}$, 13 TeV)
- Limits w/ unitarity present significant gain more since m_{max} moves to larger values, allowing inclusion of more data in the sensitivity estimate
 - \rightarrow limits improve by factor 4-5
 - \rightarrow first physical limit on f_{S1}

	VBS $W^{\pm}V$ semileptonic		$VBF HH \rightarrow b\overline{b}b\overline{b}$	
Coeff.	no unitarity	w/ unitarity	no unitarity	w/ unitarity
$f_{ m M0}/\Lambda^4$	[-0.47,0.47]	[-0.96, 1.02]	[-0.43, 0.43]	[-0.90,0.87]
$f_{ m M1}/\Lambda^4$	[-1.5, 1.5]	[-2.3, 2.4]	[-1.7, 1.7]	[-3.5, 3.5]
$f_{ m M2}/\Lambda^4$	[-0.69,0.68]	[-2.1, 2.1]	[-0.62, 0.61]	[-1.7, 1.7]
$f_{ m M3}/\Lambda^4$	[-2.5, 2.4]	[-6.8, 6.3]	[-2.4, 2.4]	[-6.5, 6.6]
$f_{ m M4}/\Lambda^4$	[-1.4, 1.4]	[-2.4, 2.5]	[-1.8,1.8]	[-3.9, 4.0]
$f_{ m M5}/\Lambda^4$	[-2.0, 2.0]	[-3.0, 3.1]	[-3.2, 3.2]	[-6.9, 7.0]
$f_{ m M7}/\Lambda^4$	[-2.4,2.4]	[-3.5, 3.5]	[-3.5, 3.5]	[-7.1,7.1]
$f_{ m S0}/\Lambda^4$	[-1.8,2.0]	[-2.6, 3.3]	[-14,13]	/
$f_{ m S1}/\Lambda^4$	[-2.4, 2.4]	[-5.8, 6.1]	[-5.1, 4.5]	/
$f_{ m S2}/\Lambda^4$	[-2.3, 2.4]	[-4.8, 5.2]	[-8.1,7.1]	/

PERSPECTIVES FOR HL-LHC: ZHH

- Exclusion limit on σ recomputed for $L = 3 \text{ ab}^{-1}$, 13 TeV
- Possible to set limits w/ unitarity requirements on some M-type operators
- For future analyses: important to develop strategies to enhance signal w.r.t. bkg

CONCLUSIONS

- Studied sensitivity to BSM effects in **VVHH interactions** \rightarrow dim-8 operators
- Processes considered in this study: VBF-HH, ZHH, $gg \rightarrow ZZH$
- VBF-HH can set limits comparable or even more stringent than those from VBS on coefficients of dim-8 EFT operators
- ZHH and $gg \rightarrow ZZH$ have more limited constraining power
- Unitarity constraints considered
 - dedicated technique adopted to apply constraints consistently
 - limits weakened by unitarity request, but VBF-HH limits equally competitive with VBS ones even w/ unitarity
- **HL-LHC** projections considered
 - \rightarrow VBF-HH/VBS limits w/ unitarity can improve of 4-5 times w.r.t. Run2 (more than expected by simple luminosity scaling)

 \rightarrow ZHH final state can contribute in a combined exclusion of some coefficients