

Higgs boson visible and invisible constraints on hidden sectors

in collaboration with Mathias Pierre [2208.05505]

IRN Terascale in Nantes

18th of October 2022

Thomas Biekötter

Hidden sectors as dark matter

Field(s) χ without charge under SM gauge groups (singlets)

Higgs-portal dark matter

 $\mathbf{SM}: |H|^2$ has mass dimension two \rightarrow (most) relevant operator

Light hidden sectors

Theory

- Light WIMPs
- Extended Higgs sectors
- Pseudo Nambu-Goldstone bosons
- Axions
- Dark photons

[1410.4960]

Can be probed at the LHC: Invisible decay of h_{125}

[ATLAS-PHOTO-2022-005-1]

Direct searches: Most sensitive in VBF production mode \rightarrow "Direct limits" on ${\rm BR}_{\rm inv}$

Direct searches: Experimental status

Collaboration	$\sqrt{s} [\text{TeV}]$	Data $[fb^{-1}]$	h_{125} production	Exp. [%]	Obs. [%]
CMS [28]	8 + 13	19.7 + 140	VBF	10	18*
CMS [29]	7 + 8 + 13	4.9 + 19.7 + 38.2	VBF + VH + ggHj	15	19
CMS [30]	13	35.9	VH + ggHj	40	53
CMS [31]	13	35.9	ZH	44	45
ATLAS $[32]$	7 + 8 + 13	4.7 + 20.3 + 139	VBF + ttH	11	11*
ATLAS $[33]$	7 + 8 + 13	4.7 + 20.3 + 36.1	VBF + VH	17	26
ATLAS $[34]$	13	139	VBF	10.3	14.5
ATLAS $[35]$	13	36.1	ZH	39	67
ATLAS $[36]$	13	36.1	VH	58	83

[See our paper for the ATLAS/CMS references]

But we know so much more: Cross-section measurements of h_{125}

\rightarrow "Inirect limits" on ${\rm BR}_{\rm inv}$

Indirect constraints on ${\rm BR}_{\rm inv}$ from cross-section measurements

Previous talk by Gautier Hamel de Monchenault!

Thomas Biekötter

IRN Terascale in Nantes

[CMS-HIG-22-001]

Previous talk by Giovanni Marchiori!

Obtaining the $indirect\ constraints$ on ${\rm BR}_{\rm inv}$ in a model:

Public code: HiggsSignals*

 χ^2 fit to the cross sectio measurements of h_{125}

 \Rightarrow Set limits on the parameter space of the model (e.g. ${\rm BR}_{\rm inv})$

*Now incorporated in HiggsTools package: https://gitlab.com/higgsbounds/higgstools

[Paper should be on the arXiv tomorrow]

1. Constrains in terms of effective Lagrangian

$$\mathcal{L} = \sum_{f=u,d,\ell} c_f\left(\frac{m_f}{v}\right) h_{125} \,\bar{f}f + c_V\left(\frac{2m_W^2}{v}\right) h_{125} \,W^{+\mu} W^-_{\mu} + c_V\left(\frac{m_Z^2}{v}\right) h_{125} \,Z^{\mu} Z_{\mu} + \mathcal{L}_{\text{inv}}$$
$$\Rightarrow \Delta \chi^2 \left(c_u, c_d, c_\ell, c_V, \text{BR}_{\text{inv}}\right) , \qquad \Delta \chi^2 \text{ defined with respect to SM}$$

Earlier analyses of this kind: [J.R. Espinosa, M. Mühlleitner, C. Grojean, M. Trott], [G. Belanger, B. Dumont, U. Ellwanger, J.F. Gunion, S. Kraml], [J. Bernon, B. Dumont, S. Kraml], [P. Bechtle, S. Heinemyer, T. Klingl, T. Stefaniak, G. Weiglein, J. Wittbrodt], ...

2. Application to UV-complete models

 c_i are determined by underlying model parameters and \mathcal{L}_{inv} is specifiedHiggs-portal dark matter modelsScalar singlet-portal dark matter(Pseudo-)Nambu-Goldstone bosonsTwo-Higgs-doublet extensions

h_{125} with SM-like couplings

Common LHC benchmark scenario:

 $\{c_f, c_V\}$, where $c_f \equiv c_u = c_d = c_\ell$

Allowed regions in $\{c_f, c_V\}$ plane for all $\mathrm{BR}_{\mathrm{inv}}$ values

 $\begin{array}{c} \textbf{Complementarity} \\ \text{of direct and indirect} \\ \text{constrains on BR}_{\text{inv}} \\ \text{if } h_{125} \neq h_{\text{SM}} \end{array}$

Higgs-portal dark matter

Remaining parameter space where $h_{125} \rightarrow inv$ becomes kinematically allowed

Higgs-portal dark matter

Indirect limits on ${\rm BR}_{\rm inv}$ are the strongest constraint in large parts of remaining parameter space

 10^{0}

 10^{-1}

 $\chi^{10^{-2}}$

 10°

 10^{-4}

 10^{-5}

Higgs-portal dark matter

Indirect limits on BR_{inv} are the strongest constraint in large parts of remaining parameter space

(p)NG bosons

Complex scalar field charged under global U(1) symmetry:

$$\Phi = (v_{\phi} + \phi)e^{ia/v_{\phi}}/\sqrt{2}$$

(p)NG boson arises if U(1) is spontaneously broken: $\langle \phi
angle = v_{\phi}$

Inv. decay of $h_1 = h_{125}$ to pNG bosons pairs

$$\Gamma_{h_1 \to aa} = rac{s_{ heta}^2}{32\pi} rac{m_{h_1}^3}{v_{\phi}^2}, \ \ m_a \ll 125 \ {
m GeV}$$

 $\begin{array}{l} \mbox{Independent limits on } \theta \mbox{ and } BR_{\rm inv} \\ \mbox{insufficient} \rightarrow \mbox{combined analysis (black} \\ \mbox{line) needed} \end{array}$

 θ : Mixing angle between $h_1, h_2 \Rightarrow c_{f,V} = \cos \theta$

 v_{ϕ}/m_{h_1}

	Motivations	
Supersymmetry 1st-order EW phase transition	CP violation (axion) Gravitational waves	Dark matter EW baryogenesis
	1	

Dark matter origin

– DM candidate from within the second doublet \rightarrow inert 2HDM

– Higgs doublets as portal to hidden sector \rightarrow e.g. S2HDM, 2HDM+a

2HDM with softly broken \mathbb{Z}_2 symmetry avoids FCNF

 \rightarrow Four different Yukawa types: I, II (Susy-like), III (lepton-specific) and IV (flipped) Couplings of h_{125} in decoupling limit given by mixing angle α and $\tan\beta=v_2/v_1$

Thomas Biekötter

Thomas Biekötter

IRN Terascale in Nantes

19 / 20

Conclusions

Direct searches for $h_{125} \rightarrow$ invisible: **Direct limits** on BR_{inv}

- Straight forward to apply
- Limits more model-independent

Cross-section measurements of h_{125} : Indirect limits on BR_{inv}

- Extraction of limits requires some effort (huge amount of data)
- Limits model-dependent

Complementarity: Depending on the properties of h_{125} direct or indirect limits on BR_{inv} can be stronger

Both should be taken into account

Thomas Biekötter

Thomas Biekötter

Thomas Biekötter

IRN Terascale in Nantes

20 / 20