

10 years of Higgs boson in ATLAS:

from discovery

to precision

Giovanni Marchiori (APC)

IRN Terascale 18 October 2022

10 years ago..

• 4th July 2012 @CERN: (experimental) birth of the Higgs boson

F. Gianotti (ATLAS)

R. Heuer J. Incandela (CERN) (CMS)

https://indico.cern.ch/event/197461/

F. Englert

P. Higgs

The Higgs boson discovery

- Analysis of up to 5/fb @ 7 TeV + 5/fb @ 8 TeV
- Main sensitivity / evidences from cleanest decay channels: $H \rightarrow \gamma \gamma$ and $H \rightarrow ZZ^{(*)} \rightarrow 4I$ (full dataset)

The Higgs boson discovery

- Analysis of up to 5/fb @ 7 TeV + 5/fb @ 8 TeV
- Main sensitivity / evidences from cleanest decay channels: $H \rightarrow \gamma \gamma$ and $H \rightarrow ZZ^{(*)} \rightarrow 4I$ (full dataset)
- relative uncertainty after combination

• Some additional sensitivity from additional decay channels. All "signal strengths" in agreement with Standard Model (SM) of 1, O(25%)

A long journey...

Source: The Economist

2000 12

2013 NOBEL PRIZE IN PHYSICS François Englert Peter W. Higgs

The Nobel Foundation, Photo: Lovisa

F. Englert and P. Higgs Photo: Wikimedia Commons

2013 Nobel Prize in Physics

The Nobel Prize in Physics 2013 was awarded jointly to François Englert and Peter W. Higgs "for the theoretical discovery of a mechanism that contributes to our

What Happened after the Big Bang?

Announcements of the 2013 **Nobel Prizes**

Physiology or Medicine: Announced Monday 7 October Physics: Tuesday 8 October, 11:45 a.m. CET at the earliest Chemistry: Wednesday 9 October, 11:45 a.m. CET at the earliest Literature: Thursday 10 October 1.00 p.m. CET Peace:

Producing a Higgs boson at the LHC

Giovanni Marchiori

	σ √s=13 TeV m=125 GeV	N(Higgs) in 140/fb
ggF	49 pb	6.9M
VBF	3.8 pb	530k
VH	2.3 pb	320k
ttH	0.5 pb	70k
TOTAL	56 pb	7.8M

~600k Higgs bosons produced in Run1, 8M in Run2

⇒ LHC = 'Large Higgs Creator'!

https://twiki.cern.ch/twiki/bin/view/LHCPhysics/LHCHWG

Higgs boson decays

Ingredients for the discovery - or why the LHC beat the Tevatron

Large production cross section: LHC ~30x Tevatron

➡ 30x larger yield at time of discovery (~same luminosity, 10/fb)

- State-of-the-art detectors with efficient and precise reconstruction and identification of leptons, photons & jets
 - \Rightarrow 2x efficiency with S/B ~ an order of magnitude larger in H $\rightarrow\gamma\gamma$
- Use of multivariate techniques (BDTs) to "tag" rarer production modes with better S/B
 - ➡ 20-50% improvements in analysis sensitivity

		-
	1	-
	1	1
		4
	1	1
	1	_
-	1	_
	1	- 7
	 • 	1
	1	1
		=
22		7
	1	-
	1	_
	•	- 7
	1	1
	1	-
		=
		7
-	1	-
	•	_
	1	F
	-	1
-	1	1
	-	Ξ
	1	-
	1	-
	1	_
	 	3
	1]
		1
1		Ξ
	<u>.</u>	-
		-
-		-
_		1
-	-	
		3
		-
		-
		-
	1	1
	1	
	1	
	•	-
	1	-
	1	-
		-
	1	1
	1	
	•	
	1	=
	1	-
	•	-
		_

Fast forward to 2022...

- predictions of the Standard Model:
 - Mass
 - Width
 - Spin & parity
 - Main decay and production modes
 - Rare decays
 - Couplings to other particles
 - Differential cross sections
 - Self-coupling
 - beyond-SM interactions (anomalous couplings to SM particles, CP violation, coupling to dark matter sector..)

The July 2012 news about Higgs searches is described in the

reflected here.

supersymmetric parameters.

 H^0 Mass m > 115.5 and none 127–600 GeV, CL = 95%

H_1^0 in Supersymmetric Models $(m_{H_1^0} < m_{H_2^0})$

Mass m > 92.8 GeV, CL = 95%

• 10 years after the Higgs boson discovery, we have been able to understand many more of its properties and compare them to the

PDG 2012

Higgs Bosons — H^0 and H^{\pm} , Searches for

addendum to the Higgs review in the data listings, but is not

The limits for H_1^0 and A^0 refer to the m_h^{max} benchmark scenario for the

PDG 2022

J = 0

Mass $m = 125.25 \pm 0.17$ GeV (S = 1.5) Full width $\Gamma = 3.2^{+2.8}_{-2.2}$ MeV (assumes equal on-shell and off-shell effective couplings)

H^0 Signal Strengths in Different Channels

Combined Final States = 1.13 ± 0.06 $WW^{*} = 1.19 \pm 0.12$ $ZZ^* = 1.01 \pm 0.07$ $\gamma \gamma = 1.10 \pm 0.07$ $c\overline{c}$ Final State = 37 \pm 20 $b\overline{b} = 0.98 \pm 0.12$ $\mu^+\mu^- = 1.19 \pm 0.34$ $\tau^+ \tau^- = 1.15^{+0.16}_{-0.15}$ $Z\gamma < 3.6$, CL = 95% $\gamma^*\gamma$ Final State = 1.5 \pm 0.5 $t \bar{t} H^0$ Production = 1.10 \pm 0.18 $t H^0$ production = 6 ± 4 H^0 Production Cross Section in pp Collisions at $\sqrt{s} = 13$ TeV = $56 \pm 4 \text{ pb}$

LHC luminosity evolution

$N_H = L\sigma_H$

L = 25/fb at 7-8 TeV in Run1 L = 140/fb at 13 TeV in Run2

Higgs boson cross sections: from 8 to 13 TeV

11

Improved detectors & analysis techniques

Insertable b-layer (IBL) and flavour tagging

Giovanni Marchiori

(Recursive) neural networks for identification of hadronic tau decays

Improved theory predictions

higher-order calculations (ggF: NNLO -> N3LO)

improved PDF sets (including data from LHC Run1)

=> smaller modelling uncertainties in measurements, and reduced uncertainties in TH predictions compared to data

Higgs boson mass

- Measured in high-resolution channels ($\gamma\gamma$, ZZ \rightarrow 4I) from the position of the invariant mass peak
- Precision limited by statistical (ZZ) or experimental ($\gamma\gamma$) systematic uncertainties
- Requires precise lepton and photon energy calibration (use control samples such as $Z \rightarrow ee$, $\mu\mu$)

$m_H = 124.94 \pm 0.17$ (stat.) ± 0.03 (syst.) GeV Run1 + full Run2: 0.14% precision

One of the most precisely measured electroweak parameters!

Run1 + partial Run2: 0.19% precision

10 years of Higgs boson in ATLAS - IRN Terascale (18/10/2022)

14

Higgs boson width

- Can be inferred from ratio of off-shell/on-shell pp→H*→ZZ (or WW) xsections

$$\mu_{\text{on-shell}} = \frac{\sigma_{\text{on-shell}}^{gg \to H \to ZZ^*}}{\sigma_{\text{on-shell},\text{SM}}^{gg \to H \to ZZ^*}} = \frac{\kappa_{g,\text{on-shell}}^2 \cdot \kappa_{Z,\text{on-shell}}^2}{\Gamma_H / \Gamma_H^{\text{SM}}},$$

with some **assumptions**:

- running of the couplings as in the SM: $\kappa_{\text{off-shell}} = \kappa_{\text{on-shell}}$

25% precision at HL-LHC... but model-dependent!

• SM Higgs boson width (4.1 MeV) << experimental resolution (1–2 GeV) => too small to be measured directly (direct limits ~ 1 GeV)

Higgs boson spin and parity

- Spin 1 forbidden by observation of $H \rightarrow \gamma \gamma$ decay (Landau-Yang's theorem)
- against the SM 0⁺ hypothesis exploiting angular distributions that are sensitive to J^P
 - Polar angle θ^* of photon in $\gamma\gamma$ CM frame (flat for spin-0, quadratic in cos θ^* for spin 2)

 - Decay angles and dilepton invariant masses in $H \rightarrow ZZ \rightarrow 4I$

• J^P = 0⁻, 0⁺ non-SM (different tensor structure of the HVV couplings), and various graviton-like 2⁺ scenarios are tested one-by-one

• Azimuthal opening angle between two leptons in $H \rightarrow WW$ (small for spin-0, large for spin-2 due to W coupling to left-handed fermions)

Higgs boson spin and parity

Eur. Phys. J. C75 (2015) 476

All alternative hypotheses disfavoured at > 3σ

Observation of Higgs boson decays to τ -leptons and to b-quarks

- First observation with partial Run2 datasets. More detailed/granular studies performed with full dataset
- Best sensitivity provided by production modes with lower x-section but much better bkg rejection than gluon fusion
 - VBF (~8% of σ_H) for $H \rightarrow \tau \tau$, V(\rightarrow leptons)H (~0.9% of σ_H) for $H \rightarrow bb$
- Large sensitivity boost from use of multivariate techniques for object reconstruction and S/B discrimination in Run2 analyses

Η

Evidence of Yukawa couplings to τ and b!

	· f
	Ē

18

Observation of Higgs boson production with ttbar pairs

- ttbar pair identified by presence of b-jets, large jet multiplicity, possibly leptons and missing momentum
- Best sensitivity provided by decay modes with leptons (WW, $\tau\tau$) or photons

Analysis Observed Integrated Expected luminosity $[fb^{-1}]$ significance significance $H \to \gamma \gamma$ 3.7σ 4.1σ 79.8 $H \rightarrow \text{multilepton}$ 4.1σ 36.1 2.8σ $H \to b\bar{b}$ 1.4σ 36.1 1.6σ $H \to ZZ^* \to 4\ell$ 79.8 1.2σ 0σ Combined (13 TeV)36.1 - 79.8 5.8σ 4.9σ Combined (7, 8, 13 TeV)4.5, 20.3, 36.1 - 79.8 6.3σ 5.1σ

Direct evidence of Yukawa couplings to the top quark!

', q

v, **q**'

D

 W^+

g 0000000

g 0000000

19

The challenging Yukawa couplings to 2nd-generation fermions

- $H \rightarrow \mu\mu$: very small BR (0.02%), important background from $Z^{(*)} \rightarrow \mu\mu$, but good resolution
- $H \rightarrow cc$: small BR (2%), poor resolution. Large bkg from QCD \Rightarrow search in V(\rightarrow leptons)H. Poor c-tagging \Rightarrow bkg from $H \rightarrow bb$

3σ evidence in CMS! Expect observation in Run3

(Decays to 1st generation fermions (ee) also searched for but no evidence found and UL set at 7*10⁴ the SM prediction of 5*10⁻⁹)

Still a long way before the observation... maybe at HL-LHC?

10 years of Higgs boson in ATLAS - IRN Terascale (18/10/2022)

Η

Rare (resonant and non resonant) decays to $I+I-\gamma$

- $H \rightarrow Z\gamma \rightarrow II\gamma$ (I=e,µ): ~4.4% of BR($\gamma\gamma$)
 - $|H^2|W^a_{\mu\nu}W^{\mu\nu a}$ • Tensor coupling, not measured yet:
 - Large Zγ background, low-momentum leptons and photons

- $H \rightarrow II\gamma$ (I=e,µ), m_{II}<30 GeV: ~5% of BR($\gamma\gamma$)
 - Dedicated reconstruction of very close-by electrons (EM showers partially overlapping in the calorimeter)

Potential BSM physics that could explain flavour anomalies could also modify these rates

First evidence! Keep watching with more data to look for SM deviations (compositeness, CP violation)

h

21

More precision in the bosonic channel, and putting all together

- ZZ \rightarrow 4I and WW \rightarrow e $\mu\mu\nu$ with the full Run2 data
- categories enriched in one particular production mode or bin
- Simultaneous fit to event yields in various categories allows mode or bin

• Measurements of σ^*BR in the full phase space, per production process and in simplified fiducial volumes ("bins") of the phase space close have been performed in the 5 main Higgs boson decay channels with the full Run2 data: bb, $\tau\tau$, and the "discovery channels" $\gamma\gamma$,

More precision in the bosonic channel, and putting all together

p-value = 72%

Nature 607, 52 (2022)

Measurements of production mode cross-sections

Assume SM branching ratios and measure production mode cross-sections

Nature 607, 52 (2022)

Observation of all main production modes and 3-5x reduction in uncertainties compared to Run1 (precision 7-22%)

Measurement of decay branching ratios

Assume SM production mode cross-sections and measure branching ratios

Uncertainties in main decay channels now at 10-12% level

Run 1 Nature 607, 52 (2022)

Inclusive signal strength

• Assuming a global scale factor affecting equally all production modes and decay channels:

$$\mu_{if} = \left(\sigma_i / \sigma_i^{\rm SM}\right) \times \left(\frac{B_f / B_f^{\rm SM}}{f}\right) = \mu$$

• Run2 result:

• Compare to Run1:

$$\mu = 1.18 \,{}^{+0.15}_{-0.14} = 1.18 \pm 0.10$$
 (

Improvement in relative precision: 14% (Run 1) \rightarrow 6% (Run 2)

Theory uncertainty: 7% (Run 1) \rightarrow 4% (Run 2)

Nature 607, 52 (2022)

 $\mu = 1.05 \pm 0.06 = 1.05 \pm 0.03$ (stat.) ± 0.03 (exp.) ± 0.04 (sig. th.) ± 0.02 (bkg. th.).

$(stat.) \pm 0.07 (syst.) ^{+0.08}_{-0.07} (theo.),$

Measurement of Higgs boson couplings to other particles

parametrised in terms of coupling scaling factors κ

$$(\boldsymbol{\sigma} \cdot \mathrm{BR})(i \to \mathrm{H} \to f) = \frac{\boldsymbol{\sigma}_i^{SM} \kappa_i^2 \cdot \Gamma_f^{SM} \kappa_f^2}{\Gamma_H^{SM} \kappa_H^2}$$

• A couple of examples: W/Z^* $\sigma \propto \kappa_W^2, \kappa_Z^2$ $\Gamma \gamma \gamma \propto 1.59 \kappa_W^2 + 0.07 \kappa_t^2 - 0.67 \kappa_W \kappa_t$

All measured couplings to fermions and bosons agree with the SM

Current uncertainties (5-11%, 30% for μ) to be reduced by x3 at HL-LHC 0.8

In all scenarios, statistical ~ systematic uncertainty except for κ_{μ} , $\kappa_{Z\gamma}$, κ_{c}

• Assuming that the signals in the different channels are due to a single, narrow, CP-even resonance, the signal strengths can be

Measurement of Higgs boson couplings to other particles

Measurement of "simplified template cross-sections" (STXS)

- Measurements of σ^*BR in simplified fiducial volumes defined based on particle-level quantities such as p_T^H , N(jets), m_{jj}, ...
 - Reduce extrapolation uncertainties to full phase space
 - Provide less model-dependent measurements that can be used even in the future for setting constraints on SM (with more precise calculations) or other theories
 - Allow searching more in detail / systematic way for deviations from SM due to anomalous couplings through e.g. EFT-based interpretation

SM prediction

Good agreement with SM (p-value 94%)

Most measurement statistically limited

Further granularity possible w/ more data

Effective field theory interpretation

• Effective Lagrangian built with SM fields at lowest order in expansion in $1/\Lambda$ (Λ = new physics energy scale):

$$\mathcal{L}_{\text{EFT}} = \mathcal{L}_{\text{SM}} + \sum_{i} \frac{C_i^{(d)}}{\Lambda^{(d-4)}} O_i^{(d)}$$
 for

• Several operators induce anomalous couplings between the Higgs and the SM fields that modify the STXS predictions

Wilson coefficient	Operator	Wilson coefficient	Operator
$c_{H\square}$	$(H^{\dagger}H)\Box(H^{\dagger}H)$	c_{uG}	$(\bar{q}_p \sigma^{\mu\nu} T^A u_r) \widetilde{H} G^A_{\mu\nu}$
c_{HDD}	$\left(H^{\dagger}D^{\mu}H\right)^{*}\left(H^{\dagger}D_{\mu}H\right)$	c_{uW}	$(\bar{q}_{p}\sigma^{\mu\nu}u_{r})\tau^{I}\widetilde{H}W^{I}_{\mu\nu}$
c_{HG}	$H^{\dagger}HG^{A}_{\mu\nu}G^{A\mu\nu}$	C_{a} B	$(\bar{a}_{r}\sigma^{\mu\nu}u_{r})\widetilde{H}B_{\mu\nu}$
c_{HB}	$H^{\dagger}H B_{\mu\nu}B^{\mu\nu}$	c'_{II}	$(\bar{l}_p \gamma_\mu l_t)(\bar{l}_r \gamma^\mu l_s)$
c_{HW}	$H^{\dagger}H W^{I}_{\mu\nu}W^{I\mu\nu}$	$c^{(1)}_{aa}$	$(\bar{q}_p\gamma_\mu q_t)(\bar{q}_r\gamma^\mu q_s)$
c_{HWB}	$H^{\dagger}\tau^{I}HW^{I}_{\mu\nu}B^{\mu\nu}$	$c^{(3)}_{aa}$	$(\bar{q}_p \gamma_\mu \tau^I q_r) (\bar{q}_s \gamma^\mu \tau^I q_t)$
c_{eH}	$(H^{\dagger}H)(l_{p}e_{r}H)$	c_{aa}	$(\bar{q}_p \gamma_\mu q_t) (\bar{q}_r \gamma^\mu q_s)$
c_{uH}	$(H^{\dagger}H)(\bar{q}_{p}u_{r}H)$	$c^{(31)}_{oldsymbol{q}oldsymbol{q}}$	$(\bar{q}_p \gamma_\mu \tau^I q_t) (\bar{q}_r \gamma^\mu \tau^I q_s)$
c_{dH}	$(H'H)(q_p d_r H)$	c_{uu}	$(\bar{u}_p \gamma_\mu u_r)(\bar{u}_s \gamma^\mu u_t)$
$c_{Hl}^{(2)}$	$(H^{\dagger}i D_{\mu}H)(l_{p}\gamma^{\mu}l_{r})$	$c_{uu}^{\scriptscriptstyle (1)}$	$(\bar{u}_p \gamma_\mu u_t) (\bar{u}_r \gamma^\mu u_s)$
$c_{Hl}^{\scriptscriptstyle (3)}$	$(H^{\dagger}i D^{I}_{\mu}H)(l_{p}\tau^{I}\gamma^{\mu}l_{r})$	$c^{\scriptscriptstyle(1)}_{oldsymbol{qu}}$	$(\bar{q}_p \gamma_\mu q_t) (\bar{u}_r \gamma^\mu u_s)$
c_{He}	$(H^{\dagger}i \overset{D}{D}_{\mu}H)(\bar{e}_{p}\gamma^{\mu}e_{r})$	$c_{ud}^{\scriptscriptstyle (8)}$	$(\bar{u}_p \gamma_\mu T^A u_r) (\bar{d}_s \gamma^\mu T^A d$
$c_{Hq}^{\scriptscriptstyle (1)}$	$(H^{\dagger}i D_{\mu}H)(\bar{q}_p\gamma^{\mu}q_r) \longleftrightarrow$	$c^{\scriptscriptstyle (8)}_{oldsymbol{qu}}$	$(\bar{q}_p \gamma_\mu T^A q_r) (\bar{u}_s \gamma^\mu T^A u_s)$
$c_{Hq}^{\scriptscriptstyle (3)}$	$(H^{\dagger}i D_{\mu}^{I}H)(\bar{q}_{p}\tau^{I}\gamma^{\mu}q_{r})$	$c_{oldsymbol{q}oldsymbol{d}}^{\scriptscriptstyle (8)}$	$(\bar{q}_p \gamma_\mu T^A q_r) (\bar{d}_s \gamma^\mu T^A d_t)$
c_{Hu}	$(H^{\dagger}i\overleftarrow{D}_{\mu}H)(\bar{u}_{p}\gamma^{\mu}u_{r})$	c_W	$\epsilon^{IJK} W^{I\nu}_{\mu} W^{J\rho}_{\nu} W^{K\mu}_{\rho}$
c_{Hd}	$(H^{\dagger}i\overleftarrow{D}_{\mu}H)(\bar{d}_{p}\gamma^{\mu}d_{r})$	c_G	$f^{ABC}G^{A\nu}_{\mu}G^{B\rho}_{\nu}G^{C\mu}_{\rho}$

ATLAS-CONF-2020-053

or d > 4. d=6, ∧=1 TeV

Effective field theory interpretation (II)

even more global interpretation

• More granular measurement as a function of several observables characterising the kinematics of Higgs boson production (Higgs p_T , N_{jets}, leading-jet p_T , invariant mass of leading and subleading jets (if present), ...)

Measured observables can be sensitive to production mode xsection ratios / spin / CP / Higgs boson couplings ...

- In fiducial phase space, very close to experimental selection

Giovanni Marchiori

Going even more fiducial: (fiducial) differential cross-sections

Minimise model dependence from extrapolation from selected to full phase space; efficiency similar for all production modes

Combination (in full phase space)

arXiv:2207.08615

Constraints on κ_c similar to those from direct searches

Giovanni Marchiori

Combination with direct constraints from VH(qq) (|\kappa_c|<2.5)

Exotic Higgs decays?

Invisible decays (e.g. to dark matter)

JHEP 08 (2022) 104

BR inv < 15% in VBF channel (Run2 only), ~11% including others

Lepton-flavour violating decays

ATLAS-CONF-2022-060

Upper limits at per mille level

Does the Higgs couple to itself?

- One of the novelties of Run2 was the systematic search for di-Higgs production in as many decay channels as possible
- Double-Higgs production = direct probe of Higgs self-coupling $\lambda \Rightarrow$ crucial for determining shape of Higgs field potential

- Tiny cross section ~1/1000 of Higgs production (33 fb at 13 TeV) \Rightarrow extremely challenging!
- Multiple topologies investigated. No significant signal seen yet \Rightarrow upper limits!

 $V(\phi^{\dagger}\phi)$

=

H

H

bbyy/bbtt/4b

bbyy: <u>arXiv:2112.11876</u> bbbb: ATLAS-CONF-2022-035 bbtt: ATLAS-CONF-2021-030

combination

ATLAS-CONF-2022-050

 $\mu < 2.4$ (2.9)

 $\mu^2 \phi^{\dagger} \phi + \lambda (\phi^{\dagger} \phi)^2$

Higgs boson self-coupling

- Taking into account the λ dependence of the cross-section, limits on λ are determined
- Large correlation with other Higgs couplings (in particular to top) resolved by combining with single-Higgs measurements
 - corrections)

Profile κ_{λ} only: -0.4 < κ_{λ} < 6.3 (95%CL)

Profile κ_{λ} , κ_{t} , κ_{v} , κ_{b} , κ_{τ} : -1.3 < κ_{λ} < 6.1 (95% CL)

With the other channels + full Run 3 ATLAS+CMS could reach 2σ sensitivity on diHiggs production

• Little increase in sensitivity on λ also provided by single-H xsection measurements from triple-Higgs vertex diagrams (NLO

Conclusion

- 10 years after its landmark discovery, the Higgs boson is now a grown-up kid
- Its characteristics resemble remarkably the SM predictions
 - Though accuracy of some measurement is still O(10%) or worse
- The Higgs physics programme of ATLAS and the (HL)-LHC is only in its infancy
 - Expect ~3x the current data adding Run3 (2022-2025) and 20x by the end of the HL-LHC
 - On the watchlist (among others): rare and invisible decays, di-Higgs production (selfcoupling), CP violation in Higgs interactions, ...

Thanks for listening and many thanks to the organisers!

Giovanni Marchiori

Extra material

Inputs for the global coupling combination

Decay mode	Targeted production processes	\mathcal{L} [fb ⁻¹]	Ref.	Fits deployed in
$H \rightarrow \gamma \gamma$	ggF, VBF, WH, ZH, ttH, tH	139	[31]	All
$H \rightarrow ZZ$	ggF, VBF, $WH + ZH$, $t\bar{t}H + tH$	139	[28]	All
	$t\overline{t}H + tH$ (multilepton)	36.1	[39]	All but fit of kinematics
$H \rightarrow WW$	ggF, VBF	139	[29]	All
	WH, ZH	36.1	[30]	All but fit of kinematics
	$t\overline{t}H + tH$ (multilepton)	36.1	[39]	All but fit of kinematics
$H \rightarrow Z\gamma$	inclusive	139	[32]	All but fit of kinematics
$H \rightarrow b \bar{b}$	WH, ZH	139	[33, 34]	All
	VBF	126	[35]	All
	$t\overline{t}H + tH$	139	[36]	All
	inclusive	139	[37]	Only for fit of kinematics
$H \rightarrow \tau \tau$	ggF, VBF, $WH + ZH$, $t\bar{t}H + tH$	139	[38]	All
	$t\bar{t}H + tH$ (multilepton)	36.1	[39]	All but fit of kinematics
$H \rightarrow \mu \mu$	$ggF + t\overline{t}H + tH$, VBF + $WH + ZH$	139	[<mark>40</mark>]	All but fit of kinematics
$H \rightarrow c \bar{c}$	WH + ZH	139	[41]	Only for free-floating κ_c
$H \rightarrow \text{invisible}$	VBF	139	[42]	κ models with $B_{\rm u.}$ & $B_{\rm inv.}$
	ZH	139	[43]	κ models with $B_{\rm u.}$ & $B_{\rm inv.}$

Higgs boson selection efficiency

				H(125 GeV) — approximate numb
Channel	Produced	S	Selected	Mass resolution
$H \rightarrow \gamma \gamma$	18,200		6,440	1–2%
$H \rightarrow ZZ^*$	210,000	$(\rightarrow 4\ell)$	210	1–2%
$H \rightarrow WW^*$	1,680,000	$(\rightarrow 2\ell 2\nu)$	5,880	20%
$H \rightarrow \tau \tau$	490,000		2,380	15%
$H \rightarrow bb$	4,480,000		9,240	10% A. Hoecker, CEF

• Out of 8M Higgs boson events only about 20k are selected and used to study the properties of the Higgs boson!

Higgs couplings fit in the presence of extra particles in loops or invisible decays

- Left: invisible/undetected BR fixed to zero
- Right: invisible/undetected BR floating
 - Use BR(inv) experimental upper limit
 - Assume κ_W , $\kappa_Z <= 1$

	(a) $B_{inv.} = B_{u.} = 0$	(b) B_{inv} free, $B_{u} \ge 0$, $\kappa_{W,Z} \le 1$
κ _Z	$0.99^{+0.06}_{-0.06}$	$0.98^{+0.02}_{-0.05}$
κ _W	$1.05^{+0.06}_{-0.06}$	$1.00_{-0.02}$
K _t	$0.94^{+0.11}_{-0.11}$	$0.94^{+0.11}_{-0.11}$
КЪ	$0.89^{+0.11}_{-0.11}$	$0.82^{+0.09}_{-0.08}$
$\kappa_{ au}$	$0.93^{+0.07}_{-0.07}$	$0.91^{+0.07}_{-0.06}$
κ_{μ}	$1.06^{+0.25}_{-0.30}$	$1.04^{+0.23}_{-0.30}$
Кд	$0.95^{+0.07}_{-0.07}$	$0.94^{+0.07}_{-0.06}$
κγ	$1.01^{+0.06}_{-0.06}$	$0.98^{+0.05}_{-0.05}$
$\kappa_{Z\gamma}$	$1.38^{+0.31}_{-0.37}$	$1.35^{+0.29}_{-0.36}$
B_{inv} .	-	< 0.13
$B_{u.}$	-	< 0.12

HL-LHC Higgs couplings projections

Ļ	TLAS - CMS Run 1 combination	NEW Higgs 2021 ATLAS Run 2	CMS Run 2
κ_γ	13%	1.04 ± 0.06	$1.01 + 0.0 \\ -0.1$
κ_W	11%	1.06 ± 0.06	$-1.11^{+0.1}_{-0.0}$
κ_Z	11%	0.99 ± 0.06	0.96 ± 0.0
κ_g	14%	$0.92 \substack{+0.07 \\ -0.06}$	$1.16^{+0.12}_{-0.1}$
κ_t	30%	0.92 ± 0.10	1.01 ± 0.1
κ_b	26%	0.87 ± 0.11	$1.18^{+0.19}_{-0.27}$
$\kappa_{ au}$	15%	0.92 ± 0.07	0.94 ± 0.1
• • • • • • • • • • • • • • •			

JHEP 08 (2016)045

ATLAS-CONF-2021-53

CMS-PAS-HIG-19-005

Measurements here assume no BSM in Higgs width

Still 25 times more data and reduction of a factor of 3 uncertainty!

Higgs boson self-coupling

- HL-LHC projection (~2038, ~20x more data than Run2): $0.5 < \kappa_{\lambda} < 1.5$
 - could constrain models which predict strong first-order electroweak phase transitions
 - complementary to information provided by gravitational waves detected by space-based interferometers

1. Parameter space scan for the singlet model of IIA. An orange point indicates a first-order phase transition, a blue point indicates a strongly first-order phase transition (3.4), and a green point indicates a very strong first-order phase transition with potentially detectable gravitational wave signal at eLISA. The right panels shows the predicted gravitational wave spectrum today along with the projected sensitivity of eLISA [2].

Phys. Rev. D 94 (2016) 7, 075008

Higgs boson CP

• CPV in t-H interactions with $ttH(\gamma\gamma)$: Phys. Rev. Lett. 125, 061802 (2020)

 $\mathcal{L}_{t\bar{t}H} = -\kappa'_t y_t \phi \bar{\psi}_t (\cos \alpha + i\gamma_5 \sin \alpha) \psi_t$

ATLAS-CONF-2022-032

• CPV in τ -H interactions with H \rightarrow $\tau\tau$:

 $\mathcal{L}_{H\tau\tau} = -\frac{m_{\tau}}{\nu} \kappa_{\tau} \left(\cos \phi_{\tau} \bar{\tau} \tau + \sin \phi_{\tau} \bar{\tau} i \gamma_{5} \tau \right) H$

• CPV in HVV interactions with VBF: arXiv:2208.02338

	68% (exp.)	95% (exp.)	68% (obs.)	
$c_{H\tilde{W}}$ (inter. only)	[-0.48, 0.48]	[-0.94, 0.94]	[-0.16, 0.64]	[-
$c_{H\tilde{W}}$ (inter.+quad.)	[-0.48, 0.48]	[-0.95, 0.95]	[-0.15, 0.67]	[-

Higgs boson as a portal to dark matter?

Higgs invisible decays and WIMP-nucleon cross-section

Higgs portal model: the Higgs boson is assumed to be the only mediator in the WIMP-nucleon scattering The upper limit on the invisible BR is converted to an upper limit on the partial width for the decay:

$$\Gamma_{H}^{\text{inv}} = \frac{\text{BF}(H \to \text{invisible})}{1 - \text{BF}(H \to \text{invisible})} \times \Gamma_{H},$$

This in turn implies an upper limit on the Higgs-DM coupling λ :

$$\begin{split} \Gamma_{H\to SS}^{\text{inv}} &= \frac{\lambda_{HSS}^2 v^2 \beta_S}{64\pi m_H}, \\ \Gamma_{H\to VV}^{\text{inv}} &= \frac{\lambda_{HVV}^2 v^2 m_H^3 \beta_V}{256\pi m_V^4} \Big(1 - 4\frac{m_V^2}{m_H^2} + 12\frac{m_V^4}{m_H^4}\Big), \\ \Gamma_{H\to ff}^{\text{inv}} &= \frac{\lambda_{Hff}^2 v^2 m_H \beta_f^3}{32\pi \Lambda^2}, \end{split}$$

which can then be converted into a limit on the WIMP-proton cross-section:

$$\begin{split} \sigma_{SN}^{\rm SI} &= \frac{\lambda_{HSS}^2}{16\pi m_H^4} \frac{m_N^4 f_N^2}{(m_S + m_N)^2}, \\ \sigma_{VN}^{\rm SI} &= \frac{\lambda_{HVV}^2}{16\pi m_H^4} \frac{m_N^4 f_N^2}{(m_V + m_N)^2}, \\ \sigma_{fN}^{\rm SI} &= \frac{\lambda_{Hff}^2}{4\pi \Lambda^2 m_H^4} \frac{m_N^4 m_f^2 f_N^2}{(m_f + m_N)^2}, \end{split}$$

$$\beta_{\chi} = \sqrt{1 - 4m_{\chi}^2/m_H^2} \ (\chi = S, V, f),$$

Vacuum expectation value	$v/\sqrt{2}$	174 GeV
Higgs boson mass	m_H	125 GeV
Higgs boson width	Γ_H	4.07 MeV
Nucleon mass	m_N	939 MeV
Higgs-nucleon coupling form factor	f_N	$0.33^{+0.30}_{-0.07}$

Higgs boson invisible decays

- If Higgs decays to dark matter particles, $BR(H \rightarrow invisible)$ could be enhanced to a detectable level
- Most sensitive signature: VBF-tagged jets + large missing momentum
- Further combination with other searches (such as V(lep)H, V(had)H, ..)

 $BR(H \rightarrow invisible) < 14.5\% @95\% CL$

BR(H \rightarrow invisible) = 0.1% in SM (H \rightarrow ZZ^(*) \rightarrow 4v), too small for detection (poor missing momentum resolution, backgrounds from Z \rightarrow vv)

