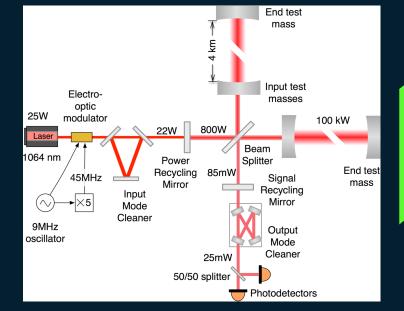
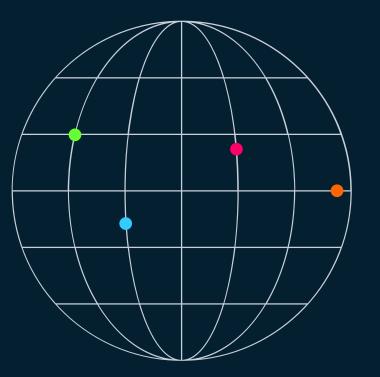


Detection of Gravitational Waves Signals in LIGO-Virgo data

PhD day – October 4, 2022 Nitoglia Elisa


Gravitational Waves in General Relativity


- > Predicted by Einstein in 1915 in his theory of General Relativity
- > Directly observed for the first time in 2015 with GW150914^[1]
- > Ripples in the curvature of the spacetime generated by the acceleration of masses
- Propagating at the speed of light
- Gravitational Waves (GW) create a deformation in the spacetime with a time dependence h(t)

Measurement Technique

- The instruments used to detect the passage of a GW are kilometer-scale Michelson interferometers equipped with Fabry-Pérot cavities
- GWs stretch the space in one direction and simultaneously compress in another direction
- They produce a modulation of the distance between the end test mass optics and the beam splitter
- If no GWs are passing, the pattern fringes is in total destructive interference



LIGO Hanford Washington, US 4kms

LIGO Livingston Louisiana, US 4kms

Virgo Cascina, IT 3kms

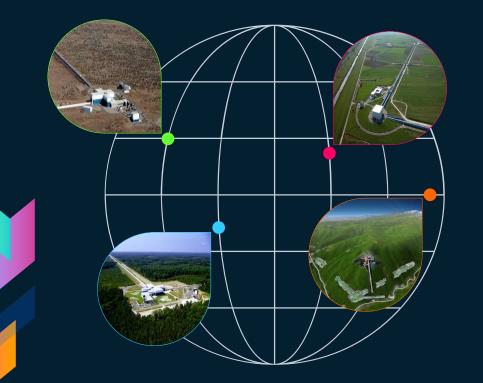
LIGO Hanford Washington, US 4kms

LIGO Livingston Louisiana, US 4kms

Virgo Cascina, IT 3kms

LIGO Hanford Washington, US 4kms

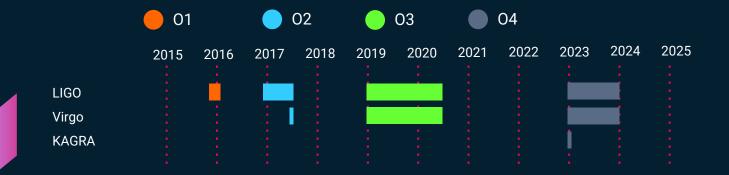
LIGO Livingston Louisiana, US 4kms


Virgo Cascina, IT 3kms

LIGO Hanford Washington, US 4kms

LIGO Livingston Louisiana, US 4kms

Virgo Cascina, IT 3kms

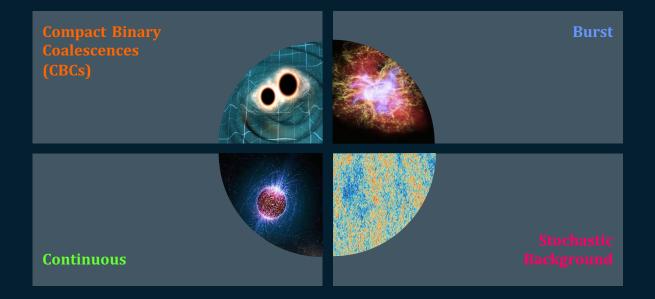


LIGO Hanford Washington, US 4kms

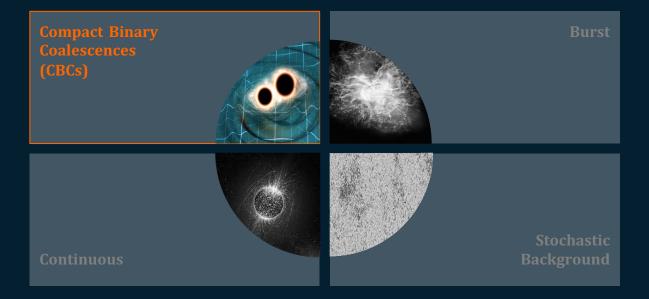
LIGO Livingston Louisiana, US 4kms

Virgo Cascina, IT 3kms

Observing Runs


Observing Runs

4


Sources of Gravitational Waves

- > Massive and compact objects
- > Events violent enough to induce a sufficiently strong gravitational deformation of the spacetime
- > Necessarily of astrophysical origin

Sources of Gravitational Waves

- > Massive and compact objects
- > Events violent enough to induce a sufficiently strong gravitational deformation of the spacetime
- Necessarily of astrophysical origin

Compact Binary Coalescences

- CBCs are a class of GW sources composed by two compact objects spiraling towards each other due to the loss of energy and angular momentum of the system, caused by the emission of GWs
- Binary systems capable of generating signals potentially detectable on Earth are Binary Black Holes (BBHs), Binary Neutron Stars (BNs) and Neutron Star-Black Hole binaries (NSBHs)

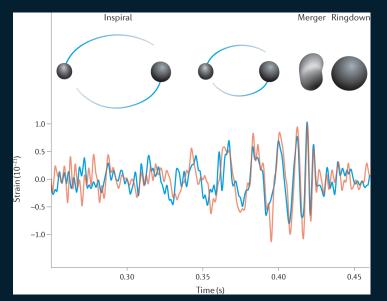


Illustration of the evolution of GW150914. The waveforms are shifted and inverted to compensate for the slightly different arrival times and different orientations of the detectors (red: LIGO Hanford, blue: LIGO Livingston).

Compact Binary Coalescences

- CBCs are a class of GW sources composed by two compact objects spiraling towards each other due to the loss of energy and angular momentum of the system, caused by the emission of GWs
- Binary systems capable of generating signals potentially detectable on Earth are Binary Black Holes (BBHs), Binary Neutron Stars (BNs) and Neutron Star-Black Hole binaries (NSBHs)

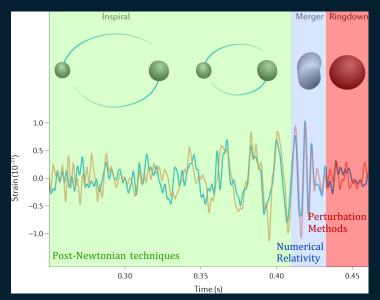
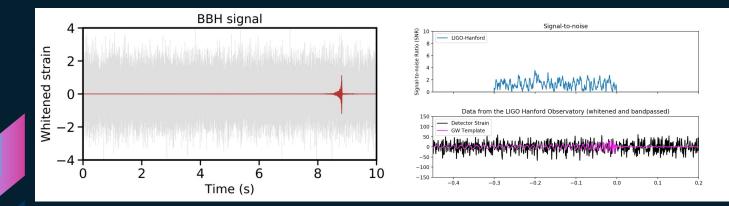
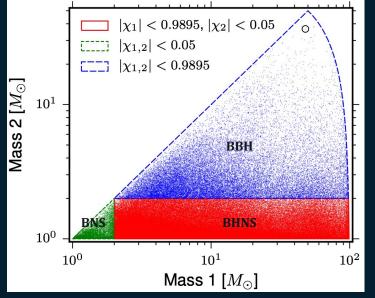
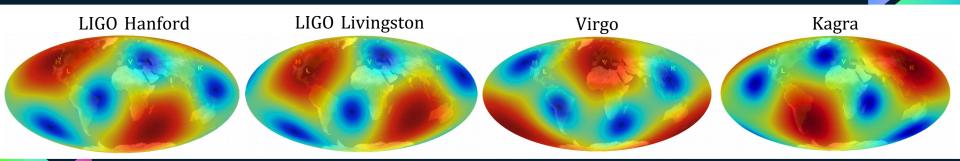



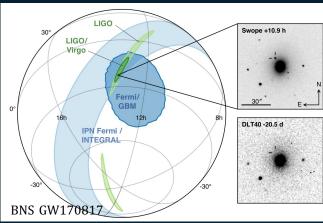
Illustration of the evolution of GW150914. The waveforms are shifted and inverted to compensate for the slightly different arrival times and different orientations of the detectors (red: LIGO Hanford, blue: LIGO Livingston).

The Search Method


We use a technique called matched filtering to extract CBC signals from the GW channel data of each detector in the network independently which computes the correlation between the hypothetical signal and the interferometer output signal

Task: to find out which filter maximize the signal-to-noise ratio (SNR)


Template Bank


- Need to know the shape of the signal we are looking for → waveform modeling
- Optimize the filter for a particular signal → use source parameters
 Deal with many possible signal shapes → generate template banks
- Covers the target parameters space Discrete and limited Should not over-cover the parameters space
- For O3 we used ~O(10⁶) of templates over the entire parameters space
 The BHNS parameters space is the most populated

The LIGO Scientific Collaboration and the Virgo Collaboration. GW150914: First results from the search for binary black hole coalescence with Advanced LIGO - 2016

Detector Coincidences

Apparent host galaxy NGC4993 (10.9h after the merger)


- Hanford-Livingston (190 deg²) green
 Hanford-Livingston-Virgo (31 deg²) dark green
 Triangulation from the time delay between Fermi and INTEGRAL blue
- Triangulation from the time delay between Fermi-GBM – dark blue

Apparent host galaxy NGC4993 (20.5 days prior the merger)

Analysis Pipelines

- Different analysis pipelines are involved in the CBC search and in the production of catalogues: MBTA (Multi-Band Template Analysis), PyCBC and GstLAL
- The search results from each observing run are reported in the *catalog papers*
 - All the information derived from the search are used for other studies:
 - Multimessenger astronomy
 - Sources parameters estimation (within catalogues)
 - > Constraint on merger rates
 - > Constraints on population properties of compact objects
 - > Constraints on cosmological parameters
 - > Constraints on nuclear matter inside NSs
 - > Test of General Relativity

0 B S E R VING 01 2015 - 2016	GZ		02 2016 - 2017			The second					03a+b	
36 31	• • 23 14	14 7.7	• • • • • • • • • • • • • • • • • • •	11 7.6	50 34	35 24	31 25	 1.5 1.3	35 27	40 29	88 22	• • 25 18
63 GW150914	36 GW151012	21 GW151226	49 GW170104	18 GW170608	80 GW170729	56 GW170809	53 GW170814	≤ 2.8 GW170817	60 GW170818	65 GW170823	105 GW190403_051519	41 GW190408_181802
30 8.3	• • 35 24	48 • ³²	41 32	••• 2 1.4	107 77	43 28	23 13	36 18	39 28	37 25	66 • 41	95 69
37 GW190412	56 GW190413_052954	76 GW190413_134308	70 GW190421_213856	3.2 cw190425	175 GW190426_190642	69 GW190503_185404	35 GW190512_180714	52 GW190513_205428	65 GW190514_065416	59 GW190517_055101	101 GW190519_153544	156 GW190521
• • • 33	* * 37 23	69 4 8	57 36	35 24	54 41	67 38	12 8.4	18 13	37 21	13 7.8	12 6.4	• • 38 29
71 GW190521_074359	56 GW190527_092055	111 GW190602_175927	87 GW190620_030421	56 GW190630_185205	90 GW190701_203306	99 GW190706_222641	19 GW190707_093326	30 GW190708_232457	55 GW190719_215514	20 GW190720_000836	17 GW190725_174728	64 cw190727_060333
12 8.1	• • • • • • • • • • • • • • • • • • •	* 37 27	48 3 2	23 2.6	32 26	• · · 24 10	44 36	35 24	• • 44 • 24	• 9.3 2.1	8.9 5	21 16
20 GW190728_064510	67 GW190731_140936	62 GW190803_022701	76 GW190805_211137	26 GW190814	55 cw190828_063405	33 cw190828_065509	76 GW190910_112807	57 GW190915_235702	66 GW190916_200658	11 GW190917_114630	13 cw190924_021846	35 GW190925_232845
• • 40 23	81 • 24	12 7.8	12 7.9	11 7. 7	65 47	29 5.9	12 8.3	• • 53 • ²⁴	11 6.7	27 19	12 8.2	25 18
61 cw190926_050336	102 CW190929_012149	19 GW190930_133541	19 cw191103_012549	18 GW191105_143521	107 GW191109_010717	34 GW191113_071753	20 GW191126_115259	76 GW191127_050227	17 CW191129_134029	45 GW191204_110529	19 GW191204_171526	41 CW191215_223052
12 7.7	• • 31 1.2	• • 45 • 35	49 • 37	• 9 1.9	• • • • • • • • • • • • • • • • • • •		42 33	34 29	10 7.3	38 27	51 · 12	36 27
19 CW191216_213338	32 GW191219_163120	76 GW191222_033537	82 GW191230_180458	11 GW200105_162426	61 GW200112_155838	7.2 cw200115_042309	71 GW200128_022011	60 GW200129_065458	17 GW200202_154313	63 GW200208_130117	61 cw200208_222617	60 GW200209_085452
0 24 2.8	• • 51 • 30	* * 38 * 28	87 61	* * 39 * 28	40 33	19 14	38 20	28 15	36 14	34 28	13 7.8	34 14
27 GW200210_092254	78 GW200216_220804	62 GW200219_094415	141 GW200220_061928	64 GW200220_124850	69 GW200224_222234	32 GW200225_060421	56 GW200302_015811	42 GW200306_093714	47 cw200308_173609	59 cw200311_115853	20 GW200316_215756	53 GW200322_091133

Note that the mass estimates shown here do not include uncertainties, which is why the final i sometimes larger than the sum of the primary and secondary masses. In a tuality the final mass is than the primary claus the secondary mass. The events later here pass one of two thresholds for detection. They either have a probability of be

ARC Centre of Excellence for Gravitational Wave Discovery

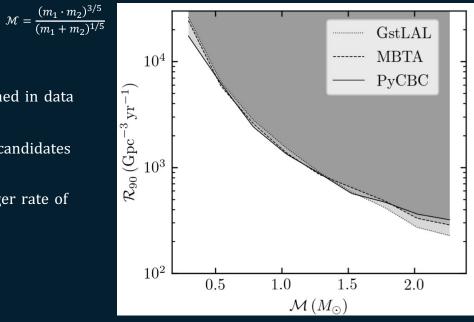
11

Publications

- The MBTA pipeline for Detecting Compact Binary coalescences in the Third LIGO-Virgo Observing run – <u>Class. Quantum Gravity 2021</u>
- Catalog paper CBC on O3a <u>submitted to PRD 2021</u>
- Catalog paper CBC on O3b <u>submitted to PRX 2021</u>
- NSBH discovery paper <u>ApJL 2021</u>
- Sub-Solar Mass CBC search for O3a <u>PRL 2022</u>
- > Sub-Solar Mass CBC search for O3b work in progress

Publications

- The MBTA pipeline for Detecting Compact Binary coalescences in the Third LIGO-Virgo Observing run – <u>Class. Quantum Gravity 2021</u>
- Catalog paper CBC on O3a <u>submitted to PRD 2021</u>
- Catalog paper CBC on O3b <u>submitted to PRX 2021</u>
- NSBH discovery paper <u>ApJL 2021</u>
- Sub-Solar Mass CBC search for O3a <u>PRL 2022</u>
- > Sub-Solar Mass CBC search for O3b work in progress


Sub-Solar Mass Search

- > The MBTA pipeline is involved in the Sub-Solar Mass (SSM) search in O3 data
- > I am the main analyst for this study
- > We seek for signals emitted by compact binaries where at least one component has a mass between $0.2M_{\odot}$ and $1.0M_{\odot}$
- There is no know mechanism for the formation of objects with a mass below $1.0M_{\odot}$ within the standard model of stellar evolution
- Several alternative formation channels proposals as Primordial Black Holes (PBHs), collapse of Dark Matter (DM), interaction between DM and standard model particles ...
- A detection of such systems would be a clear signal of new physics, a non detection would put upper limits on their merger rate and abundance

Sub-Solar Mass Search-03a

Search already performed in data from 01 and 02

- No gravitational wave candidates identified so far
- Constraint on the merger rate of such systems

The LIGO Scientific Collaboration and the Virgo Collaboration. Search for sub-solar mass binaries in the first half of the third observing run - 2021

Conclusions

- Gravitational waves is a multidisciplinary field (astrophysics, nuclear physics, cosmology, particle physics...)
- > 90 identified CBC candidate events so far (used to study CBC rates, population of compact objects, infer cosmology measures, constrain general relativity ...)
- The MBTA group is actively participating to searches and analysis
- What is next?
 - > We are looking forward to the next observing run (04)
 - > Kagra will join the data taking (LVC \rightarrow LVK collaboration)
 - Improved sensitivity during 04 so we expect more detections wrt 03 (factor ~3)
 - We are working on a low-latency version of the SSM search to be performed during O4