The Physics of AGN Jets

Markus Böttcher North-West University Potchefstroom South Africa

science & innovation Department Science and Innovation
REPUBLIC OF SOUTH AFRICA

Supported by the South African Research Chairs Initiative (SARChI) of the Department of Science and Innovation and the National Research Foundation of South Africa (grant no. 64789).

Active Galactic Nuclei (AGN)

Nuclei of galaxies with peculiar properties:

- Extremely bright nuclei
- Variability
- High-Energy $(X-\gamma)$ -ray) emission
- Emission lines
- Polarization
- Relativistic outflows (jets)

Types of radio-loud AGN and AGN Unification

Black
hole

Observing direction

Cyg A (radio)

Radio Galaxy:

Powerful *radio lobes* at the end points of the jets, where kinetic jet power is dissipated.

Types of radio-loud AGN and AGN Unification

Contribution Section

Black
hole

Flat-Spectrum Radio Quasar or BL Lac object

Emission from the jet pointing towards us is Doppler boosted compared to the jet moving in the other direction ("counter jet").

- Class of AGN consisting of BL Lac objects and gamma-ray bright quasars with relativistic jets pointing close to our line of sight
- Rapidly (often intra-day) variable
- Strong gamma-ray sources
- Radio knots often with superluminal motion
- Radio and optical (and X-ray?) polarization

Blazar Spectral Energy Distributions (SEDs)

Blazar Classification

3C66A

Low-frequency component from radio to optical/UV,

 $v_{sv} \le 10^{14}$ Hz

High-frequency component from X-rays to γ -rays, often dominating total power

Intermediate-Synchrotron Peaked (ISP): Intermediate BL Lacs (IBLs):

 10^{18}

 v [Hz]

Chandra, Oct.

 10^{16}

 10^{12} 10^{14}

(Abdo et al. 2011)

 10^{24}

 10^{26}

Fermi Dark Run

MDM: Oct. 6, 08:24 UT MDM: Oct. 10, 09:36 UT

Fermi Flare

UVOT: Oct. 4 **UVOT: Oct. 5**

XRT: Oct. 4

XRT: Oct. 5

PAIRITEL, Oct. 6

PAIRITFI Oct 9

VERITAS Flare

F-Gamma

 10^{20}

VERITAS Dark Run

 10^{22}

Peak frequencies at IR/Optical and GeV gammarays,

10¹⁴ Hz < $v_{\rm sv}$ ≤ 10¹⁵ Hz

Intermediate overall luminosity

Sometimes γ -ray dominated

⁽Acciari et al. 2009)

High-Synchrotron Peaked (HSP): High-frequency peaked BL Lacs (HBLs):

Low-frequency component from radio to UV/X-rays,

 $v_{\rm sv}$ > 10¹⁵ Hz

often dominating the total power

High-frequency component from hard X-rays to highenergy gamma-rays

Multi-wavelength variability on various time scales (months – minutes) Sometimes correlated, sometimes not

Observed optical polarization degrees Π_{opt} <~ 30 %

Both degree of polarization and polarization angles vary. Swings in polarization angle sometimes associated with high-energy flares!

Open Physics Questions

- Source of Jet Power (Blandford-Znajek / Blandford-Payne?)
- Physics of jet launching / collimation / acceleration role / topology of magnetic fields
- Composition of jets (e-p or e+-e plasma?) leptonic or hadronic high-energy emission?
- Mode of particle acceleration (shocks / shear layers / magnetic reconnection?) - role of magnetic fields
- Location of the energy dissipation / gamma-ray emission region

Leptonic Blazar Model

Hadronic Blazar Models

Lepto-Hadronic Model Fits to Blazar SEDs

RGB J0710+591 (HBL)

The IceCube Neutrino Detector at the South Pole

Fully operational since 2010.

High-Energy Neutrino Detectors

IceCube: $E_v \sim 100$ TeV – few PeV

v-matter scattering, followed by particle cascades in ice/water → Cherenkov light detection.

The IceCube Neutrino Spectrum

First evidence for astrophysical neutrinos published in 2013.

Significant correlation of IceCube neutrinos with **blazars** (chance coincidence $p = 6.10^{-7}$) – but can not be responsible for all IceCube neutrinos (e.g., Murase et al. 2018)

Photo-pion induced neutrino production in relativistic jets

Photo-Pion Production Cross Section

Photo-Pion Production

For realistic target photon fields, most interactions occur near threshold (at Δ^+ resonance).

Photo-pion production - **Energetics**

At Δ^+ resonance:

$$
s = E'_p E'_t (1 - \beta_p' \mu) \sim E'_p E'_t \sim E_{\Delta^+}^2 = (1232 \text{ MeV})^2
$$

and $E'_v \sim 0.05 E'_p$

 \Rightarrow To produce IceCube neutrinos (~ 100 TeV \rightarrow E_y = 10¹⁴ E₁₄ eV): (i.e., E'_{v} = 10 E_{14} δ_{1} ⁻¹ TeV)

Photo-pion production – **Origin of Target Photons**

To produce IceCube neutrinos (~ 100 TeV \rightarrow E_y = 10¹⁴ E₁₄ eV):

(At least) two possible scenarios for target photons:

- a) Co-moving with the emission region
- \Rightarrow E $_{\rm t}^{\rm obs}$ ~ 16 E $_{\rm 14}^{\rm -1}$ $\delta_{\rm 1}^{\rm -2/(1+z)}$ keV
- \Rightarrow Observed as hard X-rays
- \Rightarrow Doppler boosted into observer's frame
- \Rightarrow Stringent constraints on co-moving energy density
- \Rightarrow Typically large proton power requirements!
- b) Stationary in the AGN frame
- \Rightarrow E $_{\rm t}^{\rm obs}$ ~ 160 E $_{\rm 14}^{\rm -1/(1+z)}$ eV
- \Rightarrow Observed as UV / soft X-rays
- \Rightarrow Doppler boosted into co-moving frame
- \Rightarrow Strongly relaxed constraints on energy density
- \Rightarrow Much lower proton power requirements!

The py Efficiency Problem

- Efficiency for protons to undergo py interaction $\sim \tau_{p\gamma} = R \sigma_{p\gamma} n_{ph}$
- Likelihood of γ -ray photons to be absorbed $\sim \tau_{\gamma\gamma} = R \sigma_{\gamma\gamma} n_{\text{ph}}$

 $\tau_{_{\cal D}{\cal V}}$ $\tau_{\gamma\gamma}$ $=\frac{\sigma_{\text{pv}}}{\sigma_{\text{pv}}}$ $\sigma_{\gamma\gamma}^{}$ $\approx \frac{1}{20}$ 300 at $E_{\gamma} \sim \frac{2 \, m_e^{\; 2} \, c^4}{E}$ E_{t} \sim 3 \times 10 $^{-5}$ E_{ν} /(1+z) \sim 3 $E_{\rm 14}$ /(1+z) GeV

- \Rightarrow Photons at E_y ~ GeV are heavily absorbed.
- \Rightarrow Cascade emission at lower energies.
- \Rightarrow Expect correlation with X-rays / soft γ -rays and VHE γ -rays.

Example: BLR Target Photon Field

Opacity decreases towards multi-TeV energies

=> H.E.S.S. follow-up program on potential IceCube neutrino counterpart blazars

Summary

- 1. Many open questions concerning jet acceleration / collimation / composition / …
- 2. VHE γ -ray observations of blazars may probe PeV cosmicray acceleration in AGN jets through
	- a) Characteristic spectral signatures
	- b) Characteristic variability signatures
	- c) Correlation of VHE γ -ray activity (not necessarily Fermi-LAT GeV γ -ray activity!) with IceCube neutrino alerts.

Supported by the South African Research Chairs Initiative (SARChI) of the Department of Science and Innovation and the National Research Foundation of South Africa (grant no. 64789).

Thank you!

Any opinion, finding and conclusion or recommendation expressed in this material is that of the authors and the NRF does not accept any liability in this regard.