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Active Galactic Nuclei (AGN)
Nuclei of galaxies with peculiar properties:

• Extremely bright nuclei

• Variability

• High-Energy (X-/g-ray) emission

• Emission lines

• Polarization

• Relativistic outflows (jets)



Radio Galaxy:

Powerful radio lobes at 

the end points of the 

jets, where kinetic jet 

power is dissipated.

Cyg A (radio)

Types of radio-loud AGN and 
AGN Unification



Types of radio-loud AGN and 
AGN Unification

Flat-Spectrum Radio Quasar 

or BL Lac object

Emission from the jet pointing 

towards us is Doppler boosted 

compared to the jet moving in the 

other direction (“counter jet”).



Blazars

• Class of AGN consisting of BL Lac objects and 

gamma-ray bright quasars with relativistic jets 

pointing close to our line of sight

• Rapidly (often intra-day) variable

• Strong gamma-ray sources

• Radio knots often with superluminal motion

• Radio and optical (and X-ray?) polarization



Blazar Spectral Energy 

Distributions (SEDs)

Non-thermal spectra with 

two broad bumps:

• Low-energy (probably synchrotron): 

radio-IR-optical(-UV-X-rays)

• High-energy (X-ray – g-rays)

3C66A



Blazar Classification

Low-Synchrotron Peaked 

(LSP): Quasars (FSRQs)/ 

Low-frequency peaked BL 

Lac Objects (LBLs)

Low-frequency component 

from radio to optical/UV, 

nsy ≤ 1014 Hz

High-frequency component 

from X-rays to g-rays, often 

dominating total power

(Hartman et al. 2000)

High-Synchrotron Peaked 

(HSP): High-frequency peaked 

BL Lacs (HBLs):

Low-frequency component 

from radio to UV/X-rays, 

nsy > 1015 Hz

often dominating the total 

power

High-frequency component 

from hard X-rays to high-

energy gamma-rays

Intermediate-Synchrotron 

Peaked (ISP): Intermediate 

BL Lacs (IBLs):

Peak frequencies at 

IR/Optical and GeV gamma-

rays,

1014 Hz < nsy ≤  1015 Hz

Intermediate overall 

luminosity

Sometimes g-ray dominated

(Abdo et al. 2011)

3C66A

(Acciari et al. 2009)



Flux and 

Polarization 

Variability

(3C279: Abdo et al. 2010)

Observed optical polarization degrees 

Popt <~ 30 % 

Both degree of polarization and 

polarization angles vary.

Swings in polarization angle 

sometimes associated with 

high-energy flares!

Multi-wavelength variability on various 

time scales (months – minutes)

Sometimes correlated, sometimes not



Open Physics Questions

• Source of Jet Power (Blandford-Znajek / Blandford-Payne?)

• Physics of jet launching / collimation / acceleration – role / 

topology of magnetic fields

• Composition of jets (e--p or e+-e- plasma?) – leptonic or 

hadronic high-energy emission?

• Mode of particle acceleration (shocks / shear layers / 

magnetic reconnection?) - role of magnetic fields

• Location of the energy dissipation / gamma-ray emission 

region



Leptonic Blazar Model

Relativistic jet outflow with G ≈ 10

Injection, 

acceleration of 

ultrarelativistic 

electrons
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Radiative cooling 

↔ escape =>

Seed photons:

Synchrotron (within same region [SSC] or 

external sources, e.g., accretion disk, BLR, 

dust torus (EC = External Compton)
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Hadronic Blazar Models
Relativistic jet outflow 

with G ≈ 10

Injection, 

acceleration of 

ultrarelativistic

electrons and 

protons
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Proton-induced 

radiation mechanisms:
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• Proton 

synchrotron

• pg → pp0

p0 → 2g

• pg → np+ ;   p+ → m+nm

m+ → e+nenm

→ secondary m-, 

e-synchrotron

• Cascades …



Lepto-Hadronic Model Fits 

to Blazar SEDs

Red = leptonic

Green = lepto-hadronic

(HBL)

In many cases, leptonic 

and hadronic models 

can produce equally 

good fits to the SEDs.

Possible 

Diagnostics to 

distinguish:

• Neutrinos

• Variability

• Polarization



The IceCube Neutrino 

Detector at the South Pole

Fully operational since 2010.



High-Energy Neutrino Detectors

n-matter scattering, 

followed by particle 

cascades in ice/water 

→ Cherenkov light 

detection. 

IceCube: 

En ~ 100 TeV – few PeV



The IceCube Neutrino Spectrum

En >> 100 TeV => Likely 

of astrophysical originLarge 

background of 

atmospheric 

neutrinos from 

cosmic-ray 

interactions with 

the atmosphere. 

First evidence for astrophysical neutrinos published in 2013. 



Origin of IceCube-Detected 

Neutrinos

Significant correlation of IceCube neutrinos with blazars

(chance coincidence p = 6∙10-7) – but can not be responsible 

for all IceCube neutrinos (e.g., Murase et al. 2018)

(Buson et al. 2022)



Photo-pion induced neutrino 

production in relativistic jets

pg → p p0

n p+

Earth

𝛿 =
1

Γ (1 − 𝛽 𝑐𝑜𝑠𝜃)

Eobs = d E’



Photo-Pion Production Cross Section

s(pg→pp0) : s(pg→np+)  =  2:1

D+ resonance

(Morejon et al. 2019)



Photo-Pion Production 

Spectral index (n[e] ~ e-

a) of target photon field

Center-of-Momentum energy
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(Mücke et al. 1999)

For realistic target photon fields, most interactions 

occur near threshold (at D+ resonance).



Photo-pion production -

Energetics
At D+ resonance: 

s = E’p E’t (1 – bp’ m) ~ E’p E’t ~ ED+
2 = (1232 MeV)2

and E’n ~ 0.05 E’p

 To produce IceCube neutrinos (~ 100 TeV → En = 1014 E14 eV):

(i.e., E’n = 10 E14 d1
-1 TeV)

Need protons with               E’p ~ 200 E14 d1
-1 TeV

and target photons with     E’t ~ 1.6 E14
-1 d1 keV => X-rays!



Photo-pion production –

Origin of Target Photons

To produce IceCube neutrinos (~ 100 TeV → En = 1014 E14 eV):

Need protons with               E’p ~ 200 E14 d1
-1 TeV

and target photons with     E’t ~ 1.6 E14
-1 d1 keV

(At least) two possible scenarios for target photons:

a) Co-moving with the emission region

 Et
obs ~ 16 E14

-1 d1
2/(1+z) keV

 Observed as hard X-rays

 Doppler boosted into observer’s frame

 Stringent constraints on co-moving 

energy density

 Typically large proton power 

requirements!

b) Stationary in the AGN frame

 Et
obs ~ 160 E14

-1/(1+z) eV

 Observed as UV / soft X-rays

 Doppler boosted into co-moving frame

 Strongly relaxed constraints on energy 

density

 Much lower proton power 

requirements!



The pg Efficiency Problem
• Efficiency for protons to undergo pg interaction ~ tpg = R spg nph

• Likelihood of g-ray photons to be absorbed ~ tgg = R sgg nph

spg
sgg
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~ 3 × 10
− 5

𝐸𝜈 /(1+z) ~ 3 E14/(1+z) GeV

 Photons at Eg ~ GeV are heavily absorbed. 

 Cascade emission at lower energies. 

 Expect correlation with X-rays / soft g-rays and VHE g-rays.



Example: BLR Target Photon Field

Opacity decreases towards multi-TeV energies 

=> H.E.S.S. follow-up program on potential IceCube neutrino counterpart blazars

(Finke 2016)



Summary

1. Many open questions concerning jet acceleration / 
collimation / composition / …

2. VHE g-ray observations of blazars may probe PeV cosmic-
ray acceleration in AGN jets through 

a) Characteristic spectral signatures

b) Characteristic variability signatures

c) Correlation of VHE g-ray activity (not necessarily Fermi-LAT GeV 
g-ray activity!) with IceCube neutrino alerts.
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Thank you!

Any opinion, finding and conclusion or recommendation 

expressed in this material is that of the authors and the 

NRF does not accept any liability in this regard.


