

cherenkov telescope array

Southern African Large Telescope Spectroscopy of *Fermi*-LAT Blazars

ELI KASAI for the CTA Consortium

Department of Physics, Chemistry & Material Science University of Namibia

17 October 2022

SALT Spectroscopy of Fermi-LAT Blazars H.E.S.S. 20th Anniversary: Science Symposium ekasai@unam.na

- Overview of CTA Redshift Task Force
- Motivation for the SALT redshift program of *Fermi*-LAT blazars
- Sample selection
- Observing strategy
- SALT Robert Stobie Spectrograph observations
- Results
- Summary & future work

Overview of CTA Redshift Task Force: Observational Campaigns

Telescope	Mirror size (m)	Spectrograph	λ coverage (Å)	λ / Δλ
SALT	11	RSS	4500 - 7500	~ 1000
Keck-II	10	ESI	3900 - 10000	~ 10000
ESO/NTT	3.5	EFOSC2	3860 - 8070	~ 500
Shane-3m	3	KAST double (B)	3500 – 5600	~ 1000
Shane-3m	3	KAST double (R)	5400 - 8000	~ 1500
ESO/VLT	8.2	FORS2	3300 - 11000	260 - 1600
GTC	10.4	OSIRIS	3650 - 10000	300 - 2500

PHOTOMETRY

- NOT (ALFOSC)
- SOAR (SAM)
- Gemini (GMOS)

SALT Spectroscopy of Fermi-LAT Blazars H.E.S.S. 20th Anniversary: Science Symposium ekasai@unam.na

Overview of CTA Redshift Task Force: Observational Campaigns

SPECTROSCOPY

Telescope	Mirror size (m)	Spectrograph	λ coverage (Å)	λ / Δλ
SALT	11	RSS	4500 - 7500	~ 1000
Keck-II	10	ESI	3900 - 10000	~ 10000
ESO/NTT	3.5	EFOSC2	3860 - 8070	~ 500
Shane-3m	3	KAST double (B)	3500 – 5600	~ 1000
Shane-3m	3	KAST double (R)	5400 - 8000	~ 1500
ESO/VLT	8.2	FORS2	3300 - 11000	260 - 1600
GTC	10.4	OSIRIS	3650 - 10000	300 - 2500

PHOTOMETRY

- NOT (ALFOSC)
- SOAR (SAM)
- Gemini (GMOS)

17 October 2022

SALT Spectroscopy of Fermi-LAT Blazars H.E.S.S. 20th Anniversary: Science Symposium ekasai@unam.na

Brief overview of the Southern African Large Telescope (SALT)

- Location: Sutherland Observatory, 32.4° S, 20.8° E
- Altitude: 1.798 m a.s.l
- Observations conducted at declinations between
 +10° and -80°

SALT visibility window

- Sources must be within the annular region to be observed
- Objects in equatorial zones have longer annulus crossing times
- Instruments:
 - Robert Stobie Spectrograph: Long-slit, MOS, Spectropolarimetry, Fabry-Perot

Motivation for the SALT redshift program of *Fermi*-LAT blazars

The primary motivation is to

- compile a special blazar sample with redshifts for the CTA observations
 - VHE BL Lacs cosmological evolution studies
 - Constrain the EBL density
 - Constrain the photo-axion coupling theories

Redshifts are also crucial to the *Fermi*-LAT collaboration science objectives (Atwood et al. 2009):

- Resolving the gamma-ray sky
- Understanding the particle acceleration mechanisms
- Studying the high-energy behaviour of GRBs and transients
- Probing the nature of DM
- Probing the early universe

17 October 2022

SED simulation for a distant blazar *credit:* J. Becerra González

credit: D. J. Thompson et al. 2012

1. The focus is on 1040 BL Lacs and BCUs from the 3FHL catalogue, of which only 373 have a known redshift.

2. MC simulations were performed using Gammapy to estimate the minimum CTA 5σ detection observation time.

3. The resultant 221 sources detectable in under 50 hours by CTA underwent a second phase of MC simulations, after revision of 32 redshifts, leading to 165 sources detectable at 5σ in under 30 hours.

- The goal is to search for the stellar absorption features of the host galaxy
- As the host galaxies are usually luminous ellipticals (<u>Urry et al. 2000</u>), the main features that we expect are the:
 - 1. CaHK doublet
 - 2. Mgb
 - 3. NalD
- We also search for the emission lines such as [O II], [O III], H α and [N II]
- In both cases, we expect to measure feature equivalent widths EWs ≤ 5 Å and, to achieve this, we require that each spectrum has
 a spectral resolution λ/Δλ ~ 1000 or higher
 - 2. an average S/N ratio of ~ 100 (or higher) per pixel

Observing strategy (continued)

- If we do not have both these properties, we choose an instrument configuration that allows us to obtain at least one of them.
- We look for the previous spectroscopic results and evidence of extension in the literature, e.g. 2MASX catalogue, and classify the results as high- or low-priority targets:
 - 1. high-priority target: source has a low S/N spectrum and a tentative redshift
 - 2. low-priority target: source has at least one deep and featureless spectrum and/ or is not extended
- For low-priority targets, we have decided to trigger spectroscopic observations during periods of low optical activity.

SALT Robert Stobie Spectrograph (RSS) observations

- The above configuration results in a spectral range of ~4500 to ~7500 Å, with a throughput of > 20 %.
- From November 2019 to February 2022, we have observed a total of 24 BL Lacs.
- Out of the 24, **two turned out to be too faint to obtain sufficient S/N**. We determined redshifts for 10, i.e. 45% success rate.
- Spectral features could not be detected for the rest.

Southern African Large Telescope

17 October 2022

ALT Spectroscopy of Fermi-LAT Blazars H.E.S.S. 20th Anniversary: Science Symposium ekasai@unam.na

Some results

1RXS J015658.6–530208, $z = 0.3043 \pm 0.0004$

Left: SALT/RSS spectrum from two observations in November 2019. **Right:** The same source spectrum in red and scaled (black) to match the average *Swift*/UVOT u, b, and v photometry. Goldoni et al. (2021)

SALT Spectroscopy of Fermi-LAT Blazars H.E.S.S. 20th Anniversary: Science Symposium ekasai@unam.na

1RXS J020922.2-522920, *z* = 0.2110 ± 0.0002

Left: SALT/RSS spectrum taken in December 2019. *Right:* The same source spectrum superimposed on the average REM/ROSS2 *g*, *r* and *i* photometric data points. Goldoni et al. (2021)

SALT Spectroscopy of Fermi-LAT Blazars H.E.S.S. 20th Anniversary: Science Symposium ekasai@unam.na

Some results

SUMMS J0500-4912 z = 0.2129 ± 0.0001

NVSS J125949-37485 z = 0.2107 ± 0.0002

Left: SALT/RSS spectrum from two observations during January 2020. *Right:* SALT/RSS spectrum taken during May 2020. Kasai et al. (2022), submitted to MNRAS

SALT Spectroscopy of Fermi-LAT Blazars H.E.S.S. 20th Anniversary: Science Symposiu ekasai@unam.na

Some results

PMN J2321-6438, z = 0.8126 ± 0.0002

SALT/RSS spectrum from three observations during September and October 2020. Kasai et al. (2022), submitted to MNRAS

17 October 2022

SALT Spectroscopy of Fermi-LAT Blazars H.E.S.S. 20th Anniversary: Science Symposiur

Summary & future work

- Over 90% of the spectra for 22 sources had reasonably good S/N (50 – 150).
- Despite this success, only about half of our spectra resulted in successful redshift measurements.
- For the sources we could not measure redshifts for, we successfully secured a ToO program on SALT to observe them during periods of low optical activity. Dedicated photometric monitoring programs are in place for this purpose.
- To conclude, the program "SALT Spectroscopy of *Fermi*-LAT Blazars" for the CTA project, involving institutions in Africa, Europe, North and South America is ongoing. We have an approved multi-semester observing proposal on SALT, covering the period November 2022 to April 2024, in which we plan to obtain spectra for at least 15 sources.