

Principles of Optical Interferometry

Andreas Quirrenbach

Landessternwarte Zentrum für Astronomie der Universität Heidelberg

Motivation: Large Aperture \Rightarrow High Resolution

UNIVERSITÄT HEIDELBERG ZUKUNFT SEIT 1386

Andreas Quirrenbach

Point Spread Function of Telescopes / Interferometer

Andreas Quirrenbach

Synthetic Aperture Imaging with an Interferometer

Andreas Quirrenbach

Schematic Layout of Optical Michelson Interferometer

Andreas Quirrenbach

VLTI Delay Line System

UNIVERSITÄT HEIDELBERG ZUKUNFT SEIT 1386

Basic Definition of Fringe Visibility (= Correlation Factor)

UNIVERSITÄT HEIDELBERG ZUKUNFT

SEIT 1386

Complex Visibility and van Cittert-Zernike Theorem

- The interferometer output at zero delay is called *complex visibility*.
- The complex visibility is the Fourier transform of the source brightness distribution:

$$V = \Gamma(u, 0) = \int \langle |E(\xi)|^2 \rangle e^{-2\pi i \xi u} d\xi$$

- u = interferometer baseline, $\xi = sky coordinates$
- Each observation on one baseline measures one Fourier component of the sky brightness distribution.

- As for any signal, the Nyquist sampling theorem applies.
- The longest baselines determine the resolution of the observations.
- The shortest baselines determine the field-ofview that can be synthesized.
- All intermediate Fourier components have to be sampled adequately.

- Turbulence above atmosphere leads to wavefront distortions.
- Lateral coherence length is described by the *Fried parameter* $r_0 \propto \lambda^{6/5}$.
 - The effective resolution of long exposures is the same as that with a telescope of diameter r_0 .
 - Typical values at good site result in 0.5 ... 1" images.
- Coherence time $\tau_0 = r_0 / v_{wind} \approx \text{milliseconds}$
- Coherence angle $\theta_0 \propto \cos z r_0 / H \approx \text{arcseconds}$

Consequences of Seeing for Interferometry

- Single apertures have to be phased. For apertures larger than ~ 3r₀ adaptive optics is needed.
- Fringe tracking has to be performed with a servo bandwidth larger than $1/\tau_0$.
- Phase referencing is possible only over angles smaller than θ_0 .
- The $\lambda^{6/5}$ scaling of these quantities strongly favors operation at longer wavelengths.
 - #photons in coherence volume $\propto \lambda^{18/5}$

Phase Errors

- Atmospheric turbulence corrupts phase above each telescope in interferometer array.
- The observed phase φ' is given by the sum of the true phase φ, and the phase errors ψ at the two telescopes (with correct signs):

$$\phi_{12}' = \phi_{12} + \psi_1 - \psi_2$$

• The errors are frequently much larger than 1 radian, which makes phase data useless.

Closure Phases

- Look at phase disturbance on triangle of baselines. The phase errors cancel in the sum: $\phi'_{12} = \phi_{12} + \psi_1 - \psi_2$ $\phi'_{23} = \phi_{23} + \psi_2 - \psi_3$ $\phi'_{31} = \phi_{31} + \psi_3 - \psi_1$ $\phi_{123} \equiv \phi'_{12} + \phi'_{23} + \phi'_{31} = \phi_{12} + \phi_{23} + \phi_{31}$
- Closure phases contain useful information for imaging, uncorrupted by phase errors.

Andreas Quirrenbach

Amplitude and Intensity Interferometry

- Amplitude Interferometry: combine light from two telescopes and detect $\langle I \rangle = \langle (E_1 + E_2)^2 \rangle = E^2 \langle (\sin \omega t + \sin (\omega t + \varphi))^2 \rangle$ $= E^2 (1 + \cos \varphi)$
- Intensity Interferometry: detect light at two telescopes and compare signals

$$\langle I_1 I_2 \rangle = E^4 \langle \sin^2 \omega t \sin^2 (\omega t + \varphi) \rangle = E^4 \left(\frac{1}{4} + \frac{1}{8} \cos 2\varphi \right)$$

Andreas Quirrenbach

SNR in Amplitude and Intensity Interferometry

• SNR in amplitude interferometry:

$$SNR_A = \sqrt{\alpha n_{ph} A} \left| \gamma_{ij} \right| \sqrt{T \Delta \nu}$$

• SNR in intensity interferometry:

$$SNR_{I} = \alpha n_{ph} A \left| \gamma_{ij}^{2} \right| \sqrt{T \Delta f}$$

- α: efficiency
- n_{ph} : photon flux
- A: collecting area
- γ_{ij} : coherence factor (visibility)
- T: observing time
- Δν: optical bandwidth
- Δf : electrical bandwidth

Andreas Quirrenbach

SNR in Amplitude and Intensity Interferometry

• SNR in amplitude interferometry:

$$SNR_A = \sqrt{\alpha n_{ph} A} \left| \gamma_{ij} \right| \sqrt{T \Delta \nu}$$

• SNR in intensity interferometry:

$$SNR_{I} = \alpha n_{ph} A \left| \gamma_{ij}^{2} \right| \sqrt{T \Delta f}$$

- For 0^{mag} star: $n_{ph} \approx 10^{-4} \text{m}^{-2} \text{Hz}^{-1} \text{s}^{-1}$
 - Note: 5 mag \triangleq factor 100
- For 5^{mag}, $\alpha = 0.1$, $A = 100 {\rm m}^2$, $\Delta \nu = 10^{13} {\rm Hz}$,

$$|\gamma_{ij}| = 1, \Delta f = 1 \text{GHz}, T = 1 \text{hr};$$

 $SNR_A \approx 600,000, SNR_I \approx 20$

Andreas Quirrenbach

SNR Scaling

- Amplitude Interferometry: $SNR \propto \sqrt{\alpha n_{ph} A \left| \gamma_{ij}^2 \right|}$
- Intensity Interferometry: $SNR \propto \alpha n_{ph} A |\gamma_{ij}^2|$
- Aperture size and photon flux are much more important in intensity interferometry
- In interferometry, the SNR depends on $n_{ph}|\gamma_{ij}^2|$, not just on n_{ph} .
 - More strongly for intensity interferometry

The Problem of Low Coherence Factors

- Most astrophysical measurements require data with low $|\gamma_{ij}|$
 - "There are good fringes, and there are useful fringes."
- Stellar diameters (location of first null of Airy function): $|\gamma_{ij}^2| \approx 0.1$
 - 2.5 mag for intensity interferometry
- Limb darkening (intensity of first Airy ring):
 - $\left|\gamma_{ij}^2\right| \le 0.0175$
 - 4.4 mag for intensity interferometry

SNR for Triple Correlation in Intensity Interferometry

 Triple correlation yields closure phases → imaging

•
$$SNR_{I}^{(3)} = (\alpha n_{ph}A)^{3/2} |\gamma_{ij}\gamma_{jk}\gamma_{ki}| \Delta f \sqrt{\frac{T}{\Delta \nu}}$$

Much lower than amplitude SNR → likely not useful for astronomy