Theory aspects of $b \rightarrow c \ell \nu$ decays

Martin Jung

Topical Discussion Session: Discrepancies in $b \rightarrow c\ell\nu$ Decays Marseille, 27th of September 2022

IN N

UNIVERSITÀ DEGLI STUDI DI TORINO

Istituto Nazionale di Fisica Nucleare Sezione di Torino Importance of (semi-)leptonic hadron decays

In the Standard Model:

- Tree-level, $\sim |V_{ij}|^2 G_F^2 \, {
 m FF}^2$
- Determination of $|V_{ij}|$ (6(+1)/9)
- Lepton-flavour universal W couplings!

Beyond the Standard Model:

- Leptonic decays ~ m_l²
 ▶ large relative NP influence possible (e.g. H[±])
- NP in semi-leptonic decays small/moderate
 Need to understand the SM very precisely!

Key advantages:

- Large rates
- Minimal hadronic input \Rightarrow systematically improvable
- Differential distributions \Rightarrow large set of observables

Puzzling V_{cb} results

The V_{cb} puzzle has been around for 20+ years...

- $\sim 3\sigma$ between exclusive (mostly $B
 ightarrow D^* \ell
 u$) and inclusive V_{cb}
- Inclusive determination: includes $\mathcal{O}(1/m_b^3, \alpha_s/m_b^2, \alpha_s^3)$
 - Excellent theoretical control, $|V_{cb}| = (42.2 \pm 0.5) \times 10^{-3}$

[Bordone+'21,Fael+'20,'21]

- Confirmed by q^2 -moments analysis (ρ_D ?) [Bernlochner+'22]
- Exclusive determinations: $B \rightarrow D^{(*)} \ell \nu$, using CLN (\rightarrow later)

Lepton-non-Universality in b ightarrow c au u

 $R(X) \equiv \frac{\text{Br}(B \to X\tau\nu)}{\text{Br}(B \to X\ell\nu)} \quad \bullet \text{ Partial cancellation of uncertainties}$ $\bullet \text{ Precise predictions (and measurements)}$

- $R(D^{(*)})$: BaBar, Belle, LHCb • average $\sim 3 - 4\sigma$ from SM
 - New BaBar result!?

More flavour $b \rightarrow c \tau \nu$ observables:

- au-polarization (au
 ightarrow had) [1608.06391]
- $B_c
 ightarrow J/\psi au
 u$ [1711.05623] : huge
- Differential rates from Belle, BaBar
- Total width of B_c
- $b
 ightarrow X_c au
 u$ by LEP
- *D*^{*} polarization (Belle)
- $R(\Lambda_c) \rightarrow \text{below SM}$

Note: only 1 result $\geq 3\sigma$ from SM

Form factors: basics

Form Factors (FFs) parametrize fundamental mismatch:

Theory (e.g. SM) for partons (quarks) vs. Experiment with hadrons

 $\left\langle D_{q}^{(*)}(p')|\bar{c}\gamma^{\mu}b|\bar{B}_{q}(p)\right\rangle = (p+p')^{\mu}f_{+}^{q}(q^{2}) + (p-p')^{\mu}f_{-}^{q}(q^{2}), \ q^{2} = (p-p')^{2}$

Most general matrix element parametrization, given symmetries: Lorentz symmetry plus P- and T-symmetry of QCD $f_{\pm}(q^2)$: real, scalar functions of one kinematic variable

How to obtain these functions?

- Calculable w/ non-perturbative methods (Lattice, LCSR,...) Precision?
- Measurable e.g. in semileptonic transitions Normalization? Suppressed FFs? NP?

q^2 dependence

- q^2 range can be large, e.g. $q^2 \in [0,12]~{
 m GeV}^2$ in B
 ightarrow D
- Calculations give usually one or few points
- **•** Knowledge of functional dependence on q^2 cruical
- This is where discussions start...

Give as much information as possible independent of this choice!

In the following: discuss BGL and HQE (\rightarrow CLN) parametrizations

 q^2 dependence usually rewritten via conformal transformation:

$$z\left(t=q^{2},t_{0}
ight)=rac{\sqrt{t_{+}-t}-\sqrt{t_{+}-t_{0}}}{\sqrt{t_{+}-t}+\sqrt{t_{+}-t_{0}}}$$

 $t_{+} = (M_{B_q} + M_{D_q^{(*)}})^2$: pair-production threshold $t_0 < t_{+}$: free parameter for which $z(t_0, t_0) = 0$

Usually $|z| \ll 1$, e.g. $|z| \le 0.06$ for semileptonic $B \to D$ decays Good expansion parameter

The BGL parametrization [Boyd/Grinstein/Lebed, 90's]

FFs are parametrized by a few coefficients the following way:

- 1. Consider analytical structure, make poles and cuts explicit
- 2. Without poles or cuts, the rest can be Taylor-expanded in z
- Apply QCD properties (unitarity, crossing symmetry)
 dispersion relation
- 4. Calculate partonic part perturbatively (+condensates)

Result:

$$F(t)=\frac{1}{P(t)\phi(t)}\sum_{n=0}^{\infty}a_n[z(t,t_0)]^n.$$

- *a_n*: real coefficients, the only unknowns
- P(t): Blaschke factor(s), information on poles below t_+
- $\phi(t)$: Outer function, chosen such that $\sum_{n=0}^{\infty} a_n^2 \leq 1$
- Series in z with bounded coefficients (each $|a_n| \le 1$)!
- Uncertainty related to truncation is calculable!

$B \rightarrow D\ell\nu$

- $B \rightarrow D\ell\nu$, aka "What it should look like":
 - Excellent agreement between experiments [BaBar'09,Belle'16]
 - Excellent agreement between two lattice determinations [FNAL/MILC'15,HPQCD'16]
 - Lattice data contradict CLN parametrization! (Not HQE@1/m, discussed later)
 - BGL fit [Bigi/Gambino'16] :

 $|V_{cb}| = 40.5(10) \times 10^{-3}$ R(D) = 0.299(3).

See also [Jaiswal+,Berlochner+'17,MJ/Straub'18,Bordone/MJ/vanDyk'19]

 $f_{+,0}(z)$, inputs:

- FNAL/MILC'15
- HPQCD'16
- BaBar'09
- Belle'16

 $V_{cb} + R(D^*)$ w/ data + lattice + unitarity [Gambino/MJ/Schacht'19] Belle'17+'18 provide FF-independent data for 4 single-differential rates Analysis of these data with BGL form factors:

- Datasets roughly compatible
- d'Agostini bias + syst. important
- All FFs to z² to include uncertainties
 50% increased uncertainties
- 2018: no parametrization dependence

$$\begin{split} |V_{cb}^{D^*}| &= & 39.6^{+1.1}_{-1.0} \left[39.2^{+1.4}_{-1.2} \right] \times 10^{-3} \\ R(D^*) &= & 0.254^{+0.007}_{-0.006} \left[0.253^{+0.007}_{-0.006} \right] \\ \text{In brackets: 2018 only } (\Delta V_{cb}^{\text{Belle}} = 0.9) \end{split}$$

Updating the $|V_{cb}|$ puzzle:

- Tension 1.9 σ (larger $\delta V_{cb}^{B \rightarrow D^*}$)
- $B_s
 ightarrow D_s^{(*)}$ reduces tension further
- $V_{cb}^{B \rightarrow D^*}$ vs. V_{cb}^{incl} still problematic

See also [Bigi+,Bernlocher+,Grinstein+'17,Jaiswal+'17'19,MJ/Straub'18,Bordone+'19/20]

HQE parametrization

HQE parametrization uses additional information compared to BGL

- Heavy-Quark Expansion (HQE)
 - $m_{b,c} \to \infty$: all $B \to D^{(*)}$ FFs given by 1 Isgur-Wise function
 - Systematic expansion in $1/m_{b,c}$ and α_s
 - Higher orders in $1/m_{b,c}$: FFs remain related
 - Parameter reduction, necessary for NP analyses!

CLN parametrization [Caprini+'97] :

HQE to order $1/m_{b,c}$, α_s plus (approx.) constraints from unitarity [Bernlochner/Ligeti/Papucci/Robinson'17] : identical approach, updated and consistent treatment of correlations

Problem: Contradicts Lattice QCD (both in $B \to D$ and $B \to D^*$) Dealt with by varying calculable ($(@1/m_{b,c})$ parameters, e.g. $h_{A_1}(1)$ Not a systematic expansion in $1/m_{b,c}$ anymore!

• Related uncertainty remains $\mathcal{O}[\Lambda^2/(2m_c)^2] \sim 5\%$, insufficient

 $\begin{array}{l} \mbox{Solution: Include systematically $1/m_c^2$ corrections} \\ \mbox{[Bordone/MJ/vDyk'19,Bordone/Gubernari/MJ/vDyk'20] ,using [Falk/Neubert'92]} \\ \mbox{[Bernlochner+'22] : model for $1/m_c^2$ corrections} \rightarrow \mbox{fewer parameters} \end{array}$

Theory determination of $b \rightarrow c$ Form Factors

[Bordone/MJ/vanDyk'19,Bordone/Gubernari/MJ/vanDyk'20] To determine general NP, FF shapes needed from theory! Fit to all $B \rightarrow D^{(*)}$ FFs, using lattice, LCSR, QCDSR and unitarity [CLN,BGL,HPQCD'15'17,FNAL/MILC'14'15,Gubernari+'18,Ligeti+'92'93] k/l/m order in z for leading/subleading/subsubleading IW functions 2/1/0 works, but only 3/2/1 captures uncertainties Consistent V_{cb} value from Belle'17+'18 Predictions for diff. rates, perfectly confirmed by data Explicit inclusion of $B_s \rightarrow D_s^{(*)}$: improvement for all FFs

- FNAL/MILC'21
- HQE $01/m_c^2$
- Exp (BGL)
- JLQCD prel

- FNAL/MILC'21
- HQE $01/m_c^2$
- Exp (BGL)
- JLQCD prel

- FNAL/MILC'21
- HQE $@1/m_c^2$
- Exp (BGL)
- JLQCD prel
- Compatible. Slope?

Major improvement: $B \rightarrow D^*_{(s)}$ FFs@w > 1!

- FNAL/MILC'21
- HQE $@1/m_c^2$
- Exp (BGL)
- JLQCD prel
- Compatible. Slope?

• Deviation wrt previous FFs

- FNAL/MILC'21
- HQE $@1/m_c^2$
- Exp (BGL)
- JLQCD prel
- Compatible. Slope?

- Deviation wrt previous FFs
- Deviation wrt experiment

- FNAL/MILC'21
- HQE $01/m_c^2$
- Exp (BGL)
- JLQCD prel
- Compatible. Slope?

- Deviation wrt previous FFs
- Deviation wrt experiment
- JLQCD "diplomatic"
- Requires further investigation!

- FNAL/MILC'21
- HQE@1/m²_c
- Exp (BGL)
- JLQCD prel
- Compatible. Slope?

- Also in R₀ deviation wrt previous FFs
- JLQCD again "diplomatic"
- Requires further investigation!

Major improvement: $B \rightarrow D^*_{(s)}$ FFs@w > 1!

Comparison to HPQCD results for $B_s \rightarrow D_s^*$:

- Overall very good compatibility
- Slight tension in $R_1^s(w)$, below 2σ
- Combination with previous results wip

Points of discussion regarding presentation of lattice results:

- Priors on theory parameters
- Inclusion (or not) of unitarity constraints

Overview over predictions for $R(D^*)$

Malaa				· · · ·
value	Method	Input Theo	Input Exp	Reference
→ →→	BGL	Lattice, HQET	Belle'17	Bigi et al.'17
i	BGL	Lattice, HQET	Belle'17	Jaiswal et al.'17
	HQET@1/ m_c, α_s	Lattice, QCDSR	Belle'17	Bernlochner et al.'17
·	Average			HFLAV'19
i	BGL	Lattice, HQET	Belle'17'18	Gambino et al.'19
	BGL	Lattice, HQET	Belle'18	Jaiswal et al.'20
	HQET@1/ m_c^2, α_s	Lattice, LCSR, QCDSR	Belle'17'18	Bordone et al.'20
—	Average			HFLAV'21
н	BGL	Lattice	Belle'18, Babar'19	Vaquero et al.'21v2
н	BGL	Lattice Lattice	Belle'18, Babar'19 Belle'18	Vaquero et al.'21v2 MJ (JLQCD prel.)
н н н	BGL BGL HQET@1/m _c ,α _s	Lattice Lattice Lattice, QCDSR	Belle'18, Babar'19 Belle'18	Vaquero et al.'21v2 MJ (JLQCD prel.) Bernlochner et al.'17
	BGL BGL HQET@1/ m_{c}, α_s HQET@1/ $m_{c}^2 \alpha_s$	Lattice Lattice Lattice, QCDSR Lattice, LCSR, QCDSR	Belle'18, Babar'19 Belle'18 	Vaquero et al.'21v2 MJ (JLQCD prel.) Bernlochner et al.'17 Bordone et al.'20
	BGL BGL HQET@1/ m_{c} , α_s HQET@1/ m_{c}^2 , α_s BGL	Lattice Lattice Lattice, QCDSR Lattice, LCSR, QCDSR Lattice	Belle'18, Babar'19 Belle'18 	Vaquero et al.'21v2 MJ (JLQCD prel.) Bernlochner et al.'17 Bordone et al.'20 Vaquero et al.'21v2
	BGL BGL HQET@1/ m_c , α_s HQET@1/ m_c , α_s BGL → DM	Lattice Lattice Lattice, QCDSR Lattice, LCSR, QCDSR Lattice Lattice	Belle'18, Babar'19 Belle'18 	Vaquero et al.'21v2 MJ (JLQCD prel.) Bernlochner et al.'17 Bordone et al.'20 Vaquero et al.'21v2 Martinelli et al.
	BGL BGL HQET@1/ m_c, α_s HQET@1/ m_c^2, α_s BGL DM BGL	Lattice Lattice Lattice, QCDSR Lattice, LCSR, QCDSR Lattice Lattice Lattice	Belle'18, Babar'19 Belle'18 	Vaquero et al.'21v2 MJ (JLQCD prel.) Bernlochner et al.'17 Bordone et al.'20 Vaquero et al.'21v2 Martinelli et al. MJ (JLQCD prel.)

0.24 0.26 0.28 R_{D^*} Lattice $B \rightarrow D^*$: $h_{A_1}(w = 1)$ [FNAL/MILC'14,HPQCD'17], [FNAL/MILC'21] Other lattice: $f^{B \rightarrow D}_{+,0}(q^2)$ [FNAL/MILC,HPQCD'15] QCDSR: [Ligeti/Neubert/Nir'93,'94], LCSR: [Gubernari/Kokulu/vDyk'18]

> Overall consistent SM predictions! Even further improvement expected from lattice

Priors and potential biases

Different conclusions starting from identical information **Example:** $R(D^*)$ extraction from FNAL/MILC data

 $R(D^*)$ including kinematical identities and weak unitarity $R(D^*) \stackrel{\text{WU}}{=} 0.269 \stackrel{+0.020}{_{-0.008}} \stackrel{\text{FM}}{=} 0.274 \pm 0.010 \stackrel{\text{Rome}}{=} 0.275 \pm 0.008$. Difference WU-FM: FM apply prior on BGL coefficients Difference WU-Rome (educated guess): iterated "unitarity filter" + different error estimate

Applying data: $R(D^*) = 0.249 \pm 0.001(!)$ universally.

 V_{cb}^{Rome} : Uncorrelated, unweighted average of 4 10-bin values

$$\mu = \frac{1}{N} \sum_{k=1}^{N} x_k, \quad \sigma_x^2 = \frac{1}{N} \sum_{k=1}^{N} \sigma_k^2 + \frac{1}{N} \sum_{k=1}^{N} (x_k - \mu_x)^2$$

Flavour universality in $B \rightarrow D^*(e,\mu)\nu$

 $[{\sf Bobeth}/{\sf Bordone}/{\sf Gubernari}/{\sf MJ}/{\sf vDyk'21}]$

So far: Belle'18 data used in SM fits, flavour-averaged

However: Bins 40 \times 40 covariances given separately for $\ell=e,\mu$

Belle'18: $R_{e/\mu}(D^*) = 1.01 \pm 0.01 \pm 0.03$

b What can we learn about flavour-non-universality? \rightarrow 2 issues:

1. $e-\mu$ correlations not given \rightarrow constructable from Belle'18

2. 3 bins linearly dependent, but covariances not singular Two-step analysis:

1. Extract 2×4 angular observables for 2×30 angular bins

Model-independent description including NP!

2. Compare with SM predictions, using FFs@ $1/m_c^2$ [Bordone+'19]

Conclusions

Semileptonic $b \rightarrow c$ transitions remain exciting!

Form-factor treatment essential:

- q^2 dependence critical \rightarrow need FF-independent data
- Inclusion of higher-order (theory) uncertainties important
- BGL: model-independent, truncation uncertainty limited
- $igstarrow B o D^*$: Reduced V_{cb} puzzle, somewhat lower $R(D^*)$ prediction
- Theory determinations for NP required \rightarrow HQE to relate FFs
- $\mathcal{O}(1/m_c)$ not good enough for precision analyses
- \blacktriangleright First analysis at $1/m_c^2$ provides all $B \rightarrow D^{(*)}$ FFs
- ♥ V_{cb} consistent w/ BGL
- First LQCD analyses in $B
 ightarrow D^*$ and $B_s
 ightarrow D^*_s$ @ finite recoil
- Tension with experiment as well as other theory inputs
- LFU-violation in $b \rightarrow c \ell \nu @\sim 4\sigma!$
- Experimental issues? NP?

Central lesson: experiment and theory need to work closely together! $\frac{1}{17/17}$

Some numerical results

Fitting the data with the corresponding FFs, applying weak unitarity + correction for d'Agostini bias:

$$|V_{cb}| \stackrel{
m FM}{=} (39.3 \pm 0.9) imes 10^{-3} \quad \stackrel{
m JL}{=} (40.7^{+1.0}_{-0.9}) imes 10^{-3}$$
 .

Differences wrt FNAL/MILC: Coulomb factor, prior on a_i^{BGL} , 40 vs 80 bins, d'Agostini correction Without d'Agostini correction:

$$|V_{cb}| \stackrel{\mathrm{FM}}{=} (38.8 \pm 0.9) \times 10^{-3} \quad \stackrel{\mathrm{JL}}{=} (40.1^{+1.0}_{-0.9}) \times 10^{-3} \,.$$

 $R(D^*)$ from JLQCD: 0.252^{+0.009}_{-0.016}

Uncertainty determination

MC points together with χ^2 profile (minimizing for each FF value) Vertical: CV MC, "1 σ " MC, symmetric 68.3% interval MC, $\Delta \chi^2 = 1$

Theory determination of $b \rightarrow c$ Form Factors

SM: BGL fit to data + FF normalization $\rightarrow |V_{cb}|$

NP: can affect the q^2 -dependence, introduces additional FFs

To determine general NP, FF shapes needed from theory

[MJ/Straub'18,Bordone/MJ/vDyk'19] used all available theory input:

- Unitarity bounds (using results from [CLN, BGL])
 non-trivial 1/m vs. z expansions
- LQCD for $f_{+,0}(q^2)$ $(B \to D)$, $h_{A_1}(q^2_{\max})$ $(B \to D^*)$ [HPQCD'15,'17,Fermilab/MILC'14,'15]
- LCSR for all FFs (mod f_T) [Gubernari/Kokulu/vDyk'18]
- QCDSR results for 1/m IW functions [Ligeti+'92'93]
- HQET expansion to $\mathcal{O}(\alpha_s, 1/m_b, 1/m_c^2)$

FFs under control; $R(D^*) = 0.247(6)$ [Bordone/MJ/vDyk'19]

Robustness of the HQE expansion up to $1/m_c^2$ [Bordone/MJ/vDyk'19]

Testing FFs by comparing to data and fits in BGL parametrization:

• Fits 3/2/1 and 2/1/0 are theory-only fits(!)

- k/l/m denotes orders in z at $\mathcal{O}(1, 1/m_c, 1/m_c^2)$
- w-distribution yields information on FF shape $ightarrow V_{cb}$
- Angular distributions more strongly constrained by theory, only
- \blacktriangleright Predicted shapes perfectly confirmed by $B \to D^{(*)} \ell \nu$ data
- V_{cb} from Belle'17 compatible between HQE and BGL!

Robustness of the HQE expansion up to $1/m_c^2$ [Bordone/MJ/vDyk'19]

Testing FFs by comparing to data and fits in BGL parametrization:

• $B \rightarrow D^*$ BGL coefficient ratios from:

- 1. Data (Belle'17+'18) + weak unitarity (yellow)
- 2. HQE theory fit 2/1/0 (red)
- 3. HQE theory fit 3/2/1 (blue)

Again compatibility of theory with data

2/1/0 underestimates the uncertainties massively

For $b_i, c_i \ (\rightarrow f, \mathcal{F}_1)$ data and theory complementary

Including $ar{B}_s
ightarrow D_s^{(*)}$ Form Factors [Bordone/Gubernari/MJ/vDyk'20]

Dispersion relation *sums* over hadronic intermediate states Includes $B_s D_s^{(*)}$, included via SU(3) + conservative breaking Explicit treatment can improve also $\overline{B} \rightarrow D^{(*)} \ell \nu$

Experimental progress in $\bar{B}_s \rightarrow D_s^{(*)} \ell \nu$:

2 new LHCb measurements [2001.03225, 2003.08453]

Improved theory determinations required, especially for NP

We extend our $1/m_c^2$ analysis by including:

- Available lattice data: (2 $\bar{B}_s
 ightarrow D_s$ FFs (q^2 dependent), 1 $\bar{B}_s
 ightarrow D^*$ FF (only $q^2_{
 m max}$))
- Adaptation of existing QCDSR results [Ligeti/Neubert/Nir'93'94], including SU(3) breaking
- New LCSR results extending [Gubernari+'18] to B_s , including SU(3) breaking
- Fully correlated fit to $\bar{B} \to D^{(*)}, \bar{B}_s \to D^{(*)}_s$ FFs

Including $\bar{B}_s \rightarrow D_s^{(*)}$ Form Factors, Results

We observe the following:

- Theory constraints fitted consistently in an HQE framework
- $\mathcal{O}(1/m_c^2)$ power corrections have $\mathcal{O}(1)$ coefficients
- No indication of sizable SU(3) breaking
- Slight influence of strengthened unitarity bounds

• Improved determination of $ar{B}_{s}
ightarrow D_{s}^{(*)}$ FFs

Including $\bar{B}_s \rightarrow D_s^{(*)}$ Form Factors, Results

We observe the following:

- Theory constraints fitted consistently in an HQE framework
- $\mathcal{O}(1/m_c^2)$ power corrections have $\mathcal{O}(1)$ coefficients
- No indication of sizable SU(3) breaking
- Slight influence of strengthened unitarity bounds

• Improved determination of $ar{B}_s o D_s^{(*)}$ FFs

Including $\bar{B}_s \rightarrow D_s^{(*)}$ Form Factors, Results

We observe the following:

- Theory constraints fitted consistently in an HQE framework
- $\mathcal{O}(1/m_c^2)$ power corrections have $\mathcal{O}(1)$ coefficients
- No indication of sizable SU(3) breaking
- Slight influence of strengthened unitarity bounds
- Improved determination of $ar{B}_{s}
 ightarrow D_{s}^{(*)}$ FFs

Theory-only predictions:

$$R(D) = 0.299(3)$$
 $R(D^*) = 0.247(5)$
 $R(D_s) = 0.297(3)$ $R(D_s^*) = 0.245(8)$

Theory+Experiment (Belle'17) predictions:

R(D) = 0.298(3) $R(D^*) = 0.250(3)$ $R(D_s) = 0.297(3)$ $R(D_s^*) = 0.247(8)$

A puzzle in non-leptonic $b \rightarrow c$ transitions

[Bordone/Gubernari/Huber/MJ/vDyk'20] FFs also of central importance in non-leptonic decays:

- Complicated in general, $B
 ightarrow M_1 M_2$ dynamics
- Simplest cases: $\bar{B}_d \to D_d^{(*)} \bar{K}$ and $\bar{B}_s \to D_s^{(*)} \pi$ (5 diff. quarks)
 - Scolour-allowed tree, $1/m_b^0 @ \mathcal{O}(lpha_s^2)$ [Huber+'16] , factorizes at $1/m_b$
 - Amplitudes dominantly $\sim ar{B}_q o D_q^{(*)}$ FFs
 - Used to determine f_s/f_d at hadron colliders [Fleischer+'11]

Updated and extended calculation: tension of 4.4σ w.r.t. exp.!

- Large effect, $\sim -30\%$ for BRs
- Ratios of BRs ok
- QCDf uncertainty $\mathcal{O}(1/m_b^2, \alpha_s^3)$
- Data consistent (too few abs. BRs)
- NP? $\Delta_P \sim \Delta_V \sim -20\%$ possible
- We will learn something important!

Generalities regarding this anomaly

15% of a SM tree decay ~ V_{cb}: This is a huge effect!
 ▶ Need contribution of ~ 5 - 10% (w/ interference) or ≥ 40% (w/o interference) of SM

What do we do about this?

• Check the SM prediction!

 $[\rightarrow \mathsf{Bigi}+,\mathsf{Bordone}+,\mathsf{Gambino}+,\mathsf{Grinstein}+,\mathsf{Bernlochner}+]$

 $\delta R(D^*)$ larger, anomaly remains

- Combined analysis of all b → cτν observables [100+ papers]
 ▶ First model discrimination
- Related indirect bounds (partly model-dependent)
 ➡ High p_T searches, lepton decays, LFV, EDMs,
- Analyze flavour structure of potential NP contributions
 ▶ quark flavour structure, e.g. b → u
 - **b** lepton flavour structure, e.g. $b \rightarrow c\ell(=e,\mu)\nu$