

JRA9-Tracking and lons Identifications with Minimal Material budget: TIIMM

1) Scientific results obtained since the last year

2) Modifications of the scientific Work Plan (as compared to the initial plan in the Grant Agreement)

3) Possibilities/needs of another request for the extension of the project (beyond 30 November 2023)

CONTEXT

TIIMM target

Precision tracking $\sigma_{pos.} \leq 10 \ \mu m$

Low material budget << % X₀

Energy loss measurement 1-10³ MIPs

Identification

At the limit of feasibility

Limit around 1 % X₀

Strong point

Thick substrate 300-1000 μ m

Monolithic sensors

- ~5 µm ALICE ITS2
 - with 1-10 MIPs
- 5-10 µm FIRST, hadrontherapy
 - lons 150-300 MeV/u

- ALICE ITS2 over 10 m²
- ~0.2 % X₀
 - FOOT prototype over 30 cm²

Available for MIP level

- Initial work for >> MIPs
 - Indirect estimation of ΔΕ

SENSOR'S OVERVIEW

CMOS Monolithic Active Pixel Sensor design in TowerJazz 180 nm process For position and energy measurements

- First submission: preliminary prototype (TIIMMO) submitted in March 2020.
- Second submission: TIIMM0/TIIMM1/TIIMM1A/TIIMM1B prototypes received in August 2022

Chip area: 2.2 mm * 1.5 mm Matrix: 32 (rows) * 24 (col) Pixel pitch: $41.2 \, \mu \text{m} \times 40 \, \mu \text{m}$

New front-end

TIIMM1A sensor Chip area: 2.2 mm * 1.5 mm Matrix: 46 (rows) * 32 (col)

New front end Analog part study only

TIIMM1B sensor

Chip area: 2.2 mm * 1.5 mm Matrix: 32 (rows) * 24 (col) Pixel pitch: $41.2 \mu m \times 40 \mu m$

New front-end enhanced

7 sensing layer variants

	Thickness	Process		
	25 μm Epi High Res.	Standar	Non-uniform N- layer Uniform N- layer + Extra Deep	
	50 μm Epi High Res.	 Non-uniform N- layer Uniform N- layer + Extra Deep P 		
	100 μm Epi High Res.	Non-uniform N- layer Uniform N- layer + Extra Deep P		

TIIMM⁰ (second submission) TIIMM¹ sensor

Chip area: 2.2 mm * 1.5 mm Matrix: 32 (rows) * 16 (col) Pixel pitch: 40 μm×40 μm

Corrected from the first submission

SENSOR'S OVERVIEW - TIIMMO (FIRST SUBMISSION)

<u>Simulations</u>

Monte Carlo simulation of voltage baseline of CSA (Charge Sensitive Amplifier) output

Limitations in TIIMMO (simulations):

- 1. Maximum linear range is only 110ke-
- 2. The baseline spread of the Charge Sensitive Amplifier (CSA) output is large.
- The dispersion of the pulse width of the CSA output is large
- 1. Undershoot problem in CSA output

Measurements

CSA analogue output's / different input charge.

Image with digital readout test

SENSOR'S OVERVIEW - TIIMM1 (SECOND SUBMISSION - SIMULATION ONLY)

■ Spread of input comparator in TIIMMO

Mean: 400.22 mV

Sigma: 15.1 mV

Spread of input comparator in TIIMM1

Mean: 400 mV

Sigma: 1.11 µV

TIIMM1 pixel cell 40 μ m × 41.2 μ m

Optimization in TIIMM1:

- 1. Increase the Cf to have larger dynamic range.
- 2. AC coupling structure to fix the offset problem of the CSA output.
- 3. Optimization of the CSA to minimize dispersion of the pulse width.
- 4. Keep the digital readout structure.

TOT: Time Over Threshold

Limitations in TIIMM1:

- 1. Input dynamic range is greater than TIIMMO but still limited to 250ke- (<10³ MIPs)
- 2. undershoot problem in CSA output
- 3. The input offset (mismatch and process) of the comparator is still large (6mV).

SENSOR'S OVERVIEW - TIIMM1B (SECOND SUBMISSION - SIMULATIONS ONLY)

Gaus
Mean:419.69mV
Sigma:6.60mV
Fit Curve

60

TIIMM1
comparator
offset

0.3 0.32 0.34 0.36 0.38 0.4 0.42 0.44 0.46 0.48 0
Comp_vin(V)
S Curve fit

Gaus Fit Curve Mean:420.22mV Sigma:2.76mV TIIMM1B comparator offset

TIIMM1B pixel cell

TIIMM1 vs TIIMM1B

- ☐ Amplifier structure optimized for larger input dynamic range
- New Comparator structure with less intrinsic input offset

	TIIMM1	TIIMM1B
Range of TOT	Maximum at 250ke ⁻	Maximum at 700ke ⁻
Comparator input offset	6.6 mV	2.7 mV

TIIMM1B Sensor covered

Digital part

Full chain

Setup:

- I. ADC SOC (FPGA: Cyclone V with ARM- A9 running Linux)
- 2. Automatic controlled Pulses generator
- 3. Sensor prototype wire bonded on custom board
- 4. monitoring ADC, biasing DACs, analog outputs readout
- 5. Full control acquisition system

- External digital pulse generator (hits emulator)
- ☐ TOT counting is correct (6bits)

- Internal analog injection pulse (using parasitic capacitor)
- ☐ The full chain working

TIIMM1B - FIRST LASER TESTS

Single pixel CSA output signal with 2 laser pulses —

TIIMM1B sensor

- We can move the laser spot in x/y direction with 1 µm step precision
- We are able to inject charge in a single pixel
- Positioning and number of laser pulses are remotely controlled

8 analog outputs to perform

Pulsed Diode LASER

(Model LDH-P-C-N-1060)

Pulse generator

(Model HP 811A)

Selectable repetition frequencies: 3.25 KHz to 80 MHz

■ Wavelength (average): 1061 nm

Peak power (intensity): from 18 mW to 400 mW

FWHM (time-width): 88 ps to 500 ps

■ Width: 5 ns ; Period: 10 ns

■ Amp: 2 V

Leading-edge: 2ns; Trailing-edge: 2ns

es: 3.25 KHz to 80 MHz

different measurements with the oscilloscope

(

TIIMM1B - FIRST LASER TESTS - FULL MATRIX HEAT MAP

TIIMM1B - CSA output preliminary tests with Fe55 source - Calibration

TIIMM1B - FIRST LASER TESTS ENERGY LOSS MEASUREMENT (SINGLE PIXEL TOT)

Range of measured charges on single pixel: ~ [500e⁻, 900Ke⁻]

No change in the work plan

completed

Tests might not be fully completed by May 2023 but OK for Nov. 2023

CONCLUSIONS & EXTENSION BEYOND NOVEMBER 2023

Current results of second prototypes are very promising

- Continue in-lab test
- Beam tests with ions planned in first half of 2023

Possibility to extend the scope of our WP

- Combine the pixel front-end developed within TIIMM with a faster scalable matrix digital read-out
- Third prototype, still small area ($\sim 5 \times 5 \text{ mm}^2$), but otherwise almost complete sensor / usage in experiment

Schedule

- Third prototype design can be achieved within current project but not with delivery and tests.
- Fabrication and Tests would require an additional 6-12 months

THANKS

