

STRONG-2020 ANNUAL MEETING (2022)

JRA8 - ASTRA Johann Zmeskal Stefan Meyer Institute

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 824093

JR8 - PROJECT MEMBERS

Beneficiary	Organization legal name	Short name
number	(in italics the Research Units)	
2	Oesterreichische Akademie der Wissenschaften	OEAW
26	Sveuciliste u Zagrebu	UNIZG
28	Consiglio Nazionale delle Ricerche	CNR
30	Istituto Nazionale di Fisica Nucleare	INFN
31	Politecnico di Milano	POLIMI
38	Uniwersytet Jagiellonski	UJ

ASTRA will develop a versatile advanced detector system, from sensors and read-out electronics, to DAQ and controls for compact (large-area) CdZnTe detectors to perform high precision photon energy measurements from a few10 keV up to the MeV range.

Task 1: Low energy detection region - energy range: $\sim 10 - 100$ keV

Task 2: High energy detection region - energy range: ~100 – 1000 keV

LOW ENERGY DETECTOR

consisting of a 3×3 matrix with a pitch of 1.9 mm, thickness 1.5 mm (pixel size: 1850 μ m x 1850 μ m pixel, 50 μ m gap)

LED - CROSS-TALK DETERMINATION USING CO-57

LED - CROSS-TALK DETERMINATION USING CO-57

LED - TIMING WITH ELECTRON SOURCE SR-90

LED - TIMING WITH ELECTRON SOURCE SR-90

STRONG-2020 Annual Meeting, 18-19 October 2022

HIGH ENERGY DETECTOR

Lateral surfaces of sample were covered with Kapton foils and at the anode side a 5mm Cu tape was coiled around the samples (Frisch-grid)

HED TIMING

HED TIMING — 511 KEV PHOTON STOPPING DISTRIBUTION

80 Stopping distribution of Α C 511 keV photons in CdZnTe lmm MC simulation (Geant 4) 60 counts per 511 keV 40 20 0 10 5 15 20 distance [mm]

HED TIMING WITH 511KEV PHOTONS

LED AND HED - CHARACTERIZATION

Low energy detector

- ✓ Energy resolution
- \checkmark Drift time
- ✓ Cross-talk, charge sharing

High energy detector

- ✓ Energy resolution
- ✓ Drift time

FIRST TEST MEASUREMENTS WITH CZT AT DAFNE

FIRST TEST MEASUREMENTS WITH CZT AT DAFNE

FIRST TEST MEASUREMENTS WITH CZT AT DAFNE

SUMMARY AND OUTLOOK

Low energy detector

Pixel structure: very good timing (drift time < 20 ns) high rate capability

good energy resolution, working on improvements

High energy detector

Frisch-grid design: very good timing (drift time < 2 µs) energy resolution as planned (~1% at 511 keV) working on a 2x2 matrix

First test measurements of CdZnTe detector at DAFNE

("New opportunities for kaonic atoms measurements with CdZnTe detectors", to be published)