
Antoine Basset, Antoine Tran, Matthieu Marseille, Hugues Larat, Hong-Nga Nguyen

LIDA Workshop
25 November 2022

• Current assumptions

• Practical approach with an embryonic GlobalFit

• Coding for Computing Centers

2LIDA Workshop25 November 2022

Current Assumptions1

• DDPC = Consortium contribution to SGS

• Science pipeines

• System components

• Infrastructure

• Several DCCs (Data Computing Centers)

• One main DCC for orchestration

• One CI/CD platform

LIDA Workshop 425 November 2022

• Low Latency Alert

• Real time-like constraints

• GlobalFit, the heavy one

• CPU-, (intermediate) data storage-greedy

• Different implementations will run in

production to crosscheck the results

• For a given implementation, different

instances will run on different data

segments (1, 3, 6, 12 months)

LIDA Workshop 525 November 2022

• GlobalFit is too complex to be distributed over several Computing Centers

• Need to better understand concretely a GlobalFit

– How to parallelize?

– How to distribute a GlobalFit in a center?

– How to build the DDPC?

LIDA Workshop 625 November 2022

Practical Approach
with an Embryonic
GlobalFit2

MBH https://github.com/eXtremeGravityInstitute/LISA-Massive-Black-Hole.git
Globalfit https://github.com/tlittenberg/ldasoft

Builder
(gcc, etc.)

Runtime
Redhat 7.9

Ubuntu
22.04

openmpi issue

With InfinityBand
drivers (network)

https://gitlab.in2p3.fr/LISA/LDPG/globalfit_prototyping
25 November 2022 8LIDA Workshop

25 November 2022 LIDA Workshop 9

CNES HPC

OpenPbs submit

Performance of mcmc (1 step = 100 likelihood calculations * 15 chain = 1500):
* simple mode: no mbh / vgb , only noise + ucb

Conclusion: increasing number of MPI processes/nodes increases walltime

25 November 2022 LIDA Workshop 10

More GB MCMC mpiprocs = more f analyze
Eg: mpiprocs = 5
=============== Global Fit Analysis ==============
1 noise processes (pid 0) = noise model
1 vbmcmc processes (pid 1) = Verification Galactic Binaries
1 mbh processes (pid 2-2) = Massive Black Hole
2 gbmcmc processes (pid 3-4) = Ultra Compact Binaries

Conclusion: increasing the number of MPI processes/nodes, because the code allocates the
additional cores to more frequencies bands to analyse, thus increasing walltime

25 November 2022 LIDA Workshop 11

CNES HPC

OpenPbs submit

Performance of mcmc (1 step = 100 likelihood calculations * 15 chain = 1500):
* simple mode: no mbh / vgb , only noise + ucb

Conclusion: increasing OpenMP threads decrease walltime.

• Cloud: 18 * 72 cpus = 1296 cpus

– 12 mpiprocs, 6 openmp threads

– sangria training v2

– 1 year input => walltime 7 days, 218k cpu.hour

– 3 months input => walltime 3 days

• Cloud: 78 * 96 cpus = 7500 cpus

– 8 mpiprocs / node, 12 openmp threads

– 1 year input => walltime 7 days, 1260k cpu.hour

• 5400 CPUs for 1 execution of 24h

– 12 * 448 vCPU = 294,783.54 USD / month

– 42 * 128 vCPU = 99,424.54 USD / month

• 1000 CPUs for 1 execution of 7days

– 15 * 64 vCPU = 15,056.35 USD / month

– 8 * 128 vCPU = 18,938.01 USD / month

25 November 2022 LIDA Workshop 12

• Big number of nodes and CPUs/GPUs

• Shared ressources

• Eg for CSC (Finland)

– large : 2-1040 cores 3 days max runtime

– longrun : 1-40 cores 14 days max runtime

Conclusion: in HPC, jobs can be submitted with large ressources and small walltime, or small resources and large

walltime, but not large resources and large walltime. There are exceptions but to negotiate and other projects might

suffer from exceptions.

25 November 2022 LIDA Workshop 13

1. Reduce dataset reading from 1 year to 3 month analysis => reduce walltime from 7 to 3 days with 1300cpus

=> not enough!

2. Generate a new dataset with smaller number of Gravitational Wave sources

=> in progress to generate a new LDC dataset

3. GPU use?

=> work to do, to confirm or not if MCMC can benefit

4. Introduce Checkpoint/Resume

=> see next slide

25 November 2022 LIDA Workshop 14

• At application level: Globalfit does not implement yet CR
• At HPC framework level: very very experimental and in development

• Berkeley Lab Checkpoint/Restart (BLCR)
• Alternative MPI (MPICH2, MVAPICH, IntelMPI) implements CR using BLCR

Old OpenMPI implemented CR using BLCR, but not maintained in latest
Too old (last stable in 2013) and might not work in latest kernel

• CRIU
• Great integration in recent kernel/OS

Currently not integrated in OpenMPI (stalled development)
• DMTCP
• Runs in userland so no need of kernel integration

Trouble with infiniband TBC + singularity integration

Conclusion: not easy to implement CR at HPC level, but possible. Anyway, application level CR is always more efficient (less memory
state to save) but requires more work.

25 November 2022 LIDA Workshop 15

1. Run with enough CPUs in HPC

2. To have quick scientific validation (post-processing, human verification)

=> generates quick results for automatic verification

3. Benchmark minimum globalfit steps to reduce walltime and have valid results

=> create another metrics called « quality/precision »?

=> generates intermediate output data (like each 10000 steps) to avoid the same calculations but for 10000, 50000,

100000, etc.

25 November 2022 LIDA Workshop 16

Coding for Computing
Centers3

Developer

• Minimize walltime

• Parallelize as much as possible

• Book unlimited resources!

• Get dedicated hardware (GPU, FPGA...)

Computing Center

• Maximize resource usage efficiency...

• Share resources between users

• Limit walltime (target a few hours)

• Limit memory per core (target a few GBs)

• Provide generic/homogeneous hardware

• ... ≈ Minimize sum of all walltimes

LIDA Workshop 1825 November 2022

• Long pipelines must be resumable

– Regular checkpoints where the global state is saved

– Restart from a previously saved global state

• Pipelines must have good scalability (= speedup vs # threads, see next slide)

– Profile and then optimize and then parallelize! (and loop)

– Target one thread per booked core

– If scalability is poor, run sequentially (or rather find the best operating point)

– Parallelizing small portions of a job is wasting resources (see Amdal's law)

LIDA Workshop 1925 November 2022

• Strong Scaling = Speedup vs # threads, for a given total amount of data

• (Weak Scaling = Speedup vs # threads, for a given amount of data per thread)

• Efficiency = Speedup / # threads

• 1 - Efficiency = wasted resources!

threads Time Speedup Efficiency
1 3.93 1 100%
2 2.00 1.96 98%
4 1.09 3.61 90%
8 0.61 6.41 80%

https://www.kth.se/blogs/pdc/2018/11/scalability-strong-and-weak-scaling/

Wasted!

LIDA Workshop 2025 November 2022

• High-level optimization saves orders of magnitude

– Minimize operations: algorithm

– Minimize (shared) file system usage: pass-by-memory, sparsity

• Mid-level optimization saves factors

– Minimize instructions per operation: design, implementation, language, precision, vectorization

– Cache computation: compile-time computation, just-in-time compilation

– Minimize parallelization overheads: top-level parallelization, no parallelization!

• Low-level optimization saves percents to factors

– Minimize cache misses per instruction: data-oriented design

– Minimize branch mispredicts: data-oriented design

LIDA Workshop 2125 November 2022

• Pessimization = Something less efficient while not simpler than another option

– Allocate many small objects, e.g. a list of N-D arrays instead of one (N+1)-D array

– Bunny hop in memory, e.g. misorder nested loops

– Iterate over many containers at once instead of creating one container of structs

– Use non-contiguous containers like linked lists or dictionnaries

– Fill classes with temporary members, i.e. mix hot and cold variables

– Follow multiple indirections in loops

LIDA Workshop 2225 November 2022

• The Wise One (Hugues) once said: “85% of the lifetime of a code is spent in reading it, not writing it or executing it!”

• Top priority is on clean code, not fastest code... (which are not adversarial, though)

https://gamesfromwithin.com/data-oriented-design

LIDA Workshop 2325 November 2022

Supplementary
Material4

• Branch mispredict

– 10-20 cycles

• Division

– 10-40 cycles

• Virtual function call

– 30-60 cycles

• RAM access

– 100-150 cycles

• Allocation + deallocation

– 200-500 cycles

LIDA Workshop 25
http://ithare.com/infographics-operation-costs-in-cpu-clock-cycles/

25 November 2022

Numpy Array Ordering

Matrices -- and more generally ND arrays -- are stored linearly in memory. By default, numpy uses row-major ordering (C_CONTIGUOUS in numpy's wording), which means

neihboring elements of a row are contiguous in memory, while neighboring elements of a column are separated in memory by the width of the array.

Let us create some random matrix and check the memory layout:

 C_CONTIGUOUS : True

 F_CONTIGUOUS : False

 OWNDATA : True

 WRITEABLE : True

 ALIGNED : True

 WRITEBACKIFCOPY : False

 UPDATEIFCOPY : False

import numpy as np

side = 2048

shape = (side, side)

a = np.random.random(shape)

a.flags

The Numpy Transpose Fraud/Optimization

With numpy, transpose() -ing an array realy means changing the indexing scheme, not touching the data in memory. See how fast the "transform" is (effectively a mere

copy) and how we go from row-major ordering to column-major ordering (F_CONTIGUOUS).

98.2 ns ± 2.31 ns per loop (mean ± std. dev. of 7 runs, 10,000,000 loops each)

 C_CONTIGUOUS : False

 F_CONTIGUOUS : True

 OWNDATA : False

 WRITEABLE : True

 ALIGNED : True

 WRITEBACKIFCOPY : False

 UPDATEIFCOPY : False

We can check that the underlying memory of both arrays have the same contents with ravel('K') , which returns a 1D array without reordering elements in memory:

True

It is possible to force row-major ordering with ascontiguousarray() :

68.6 ms ± 3.75 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)

 C_CONTIGUOUS : True

 F_CONTIGUOUS : False

 OWNDATA : True

 WRITEABLE : True

 ALIGNED : True

 WRITEBACKIFCOPY : False

 UPDATEIFCOPY : False

%timeit a.transpose()

at = a.transpose()

at.flags

np.all(a.ravel('K') == at.ravel('K'))

%timeit np.ascontiguousarray(at)

at_c = np.ascontiguousarray(at)

at_c.flags

Quiet Cache Misses

In the previous section, we have instantiated three matrices, with the following properties:

• a is a random square matrix stored with row-major ordering;

• at is the transpose of a stored with column-major ordering;

• at_c is at stored with row-major ordering.

Let's sum a and each of its transposes:

68.4 ms ± 4.42 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)

7.43 ms ± 152 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)

True

Obviously, results are the same. On paper, the exact same mathematical operations are performed, i.e. exactly a.size additions. Yet, computation times differ by an order

of magnitude. What happened?

The only difference is how efficiently cache memory is used, relying on CPU internal functionning.

In the first case (a + at), the CPU is effectively busy at 100%, but it spends most of its time filling and emptying its memory instead of carrying actual computations.

Unfortunately, it is very difficult to detect the so-called cache misses. Profilers like prints, psutils or cProfile won't help. Instead, intrusive tools like cachegrind or proprietary

profilers are needed.

Moreover, libraries like numpy abstract the underlying memory layout away, for convenience, which makes it quite difficult to track memory usage in Python and take care of

it.

Still, understanding how code is handled by CPUs, applying a few good practices or benchmarking a few implementation options helps designing cache-efficient programs.

This is the purpose of Data Oriented Design...

%timeit a + at

%timeit a + at_c

np.all(a + at == a + at_c)

Organize Data for Your Computation

For completeness, here is what happens if we now compute the product of the two matrices:

157 ms ± 20.9 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)

219 ms ± 16.7 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)

Again, actual mathematical operations are the same, but elements are more efficiently visited in the first case because the computation is performed row-wise on a and

column-wise on at . This demonstrates that there is no computation-agnostic best solution: the only way to organize data well is to do so accordingly to their usage.

%timeit np.matmul(a, at)

%timeit np.matmul(a, at_c)

