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Outline

• Why do we choose to use sampling methods?


• Trans-dimensional sampling: What, why, how, limits?


• Future usage for LISA Data Analysis?



What do we expect for LISA?
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So, what is in the future?
Way too many events to be measured!

• LISA: ~106 DWD (~104 resolvable), (~101) SMBHB/year,  
                ? EMRIs/year, ~106 SOBBHs (~101 resolvable) 
                ? Stochastic GW backgrounds. 

• In some cases, we’ll have so many sources, that they will generate a 
stochastic GW signal above the detector noise!

arXiv:1702.00786 
arXiv:2109.09882



Why sampling methods &  
Global fit for LISA DA? 
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Matched filtering
… this is what we normally do, first assume

<latexit sha1_base64="nkdsij28KZYmCs4tn3578tPvTPA=">AAAB9XicbVBNS8NAEN3Ur1q/qh69BIvgqSRS1GPRi8cK9gOaWDbbSbt0swm7k0oJ/R9ePCji1f/izX/jts1BWx8MPN6bYWZekAiu0XG+rcLa+sbmVnG7tLO7t39QPjxq6ThVDJosFrHqBFSD4BKayFFAJ1FAo0BAOxjdzvz2GJTmsXzASQJ+RAeSh5xRNNKjNwaWeTgEpNOe2ytXnKozh71K3JxUSI5Gr/zl9WOWRiCRCap113US9DOqkDMB05KXakgoG9EBdA2VNALtZ/Orp/aZUfp2GCtTEu25+nsio5HWkygwnRHFoV72ZuJ/XjfF8NrPuExSBMkWi8JU2BjbswjsPlfAUEwMoUxxc6vNhlRRhiaokgnBXX55lbQuqu5ltXZfq9Rv8jiK5IScknPikitSJ3ekQZqEEUWeySt5s56sF+vd+li0Fqx85pj8gfX5A63akqM=</latexit>

~✓1

2500 5000 7500 10000

°2

0

2

4

2500 5000 7500 10000

°2

0

2

2500 5000 7500 10000

°2

0

2

2500 5000 7500 10000

°2

0

2

2500 5000 7500 10000

°1

0

1

2500 5000 7500 10000

°1

0

1

2500 5000 7500 10000

°1

0

1
<latexit sha1_base64="fU84qvYSXQcESUh+AehkuRDnWnI=">AAAB9XicbVBNS8NAEN34WetX1aOXYBE8lUSLeix68VjBfkATy2Y7aZduNmF3Uimh/8OLB0W8+l+8+W/ctjlo64OBx3szzMwLEsE1Os63tbK6tr6xWdgqbu/s7u2XDg6bOk4VgwaLRazaAdUguIQGchTQThTQKBDQCoa3U781AqV5LB9wnIAf0b7kIWcUjfTojYBlHg4A6aR70S2VnYozg71M3JyUSY56t/Tl9WKWRiCRCap1x3US9DOqkDMBk6KXakgoG9I+dAyVNALtZ7OrJ/apUXp2GCtTEu2Z+nsio5HW4ygwnRHFgV70puJ/XifF8NrPuExSBMnmi8JU2Bjb0wjsHlfAUIwNoUxxc6vNBlRRhiaoognBXXx5mTTPK+5lpXpfLddu8jgK5JickDPikitSI3ekThqEEUWeySt5s56sF+vd+pi3rlj5zBH5A+vzB7DikqU=</latexit>

~✓3

<latexit sha1_base64="ku8tvU3gUPV5Hgf15RM565ULGsY=">AAAB9XicbVBNS8NAEN34WetX1aOXYBE8laQU9Vj04rGC/YAmls120i7dbMLupFJC/4cXD4p49b9489+4bXPQ1gcDj/dmmJkXJIJrdJxva219Y3Nru7BT3N3bPzgsHR23dJwqBk0Wi1h1AqpBcAlN5CigkyigUSCgHYxuZ357DErzWD7gJAE/ogPJQ84oGunRGwPLPBwC0mmv2iuVnYozh71K3JyUSY5Gr/Tl9WOWRiCRCap113US9DOqkDMB06KXakgoG9EBdA2VNALtZ/Orp/a5Ufp2GCtTEu25+nsio5HWkygwnRHFoV72ZuJ/XjfF8NrPuExSBMkWi8JU2BjbswjsPlfAUEwMoUxxc6vNhlRRhiaoognBXX55lbSqFfeyUruvles3eRwFckrOyAVxyRWpkzvSIE3CiCLP5JW8WU/Wi/VufSxa16x85oT8gfX5A69ekqQ=</latexit>

~✓2

- =

<latexit sha1_base64="pw85KkpwHVE/cXRnZUWBSJLd6yQ=">AAAB/3icbVDJSgNBEO2JW4xbVPDipTEIESHMSFAvQtCLxwhmgSSEnk5NpknPQndNIIw5+CtePCji1d/w5t/YWQ4afVDweK+KqnpuLIVG2/6yMkvLK6tr2fXcxubW9k5+d6+uo0RxqPFIRqrpMg1ShFBDgRKasQIWuBIa7uBm4jeGoLSIwnscxdAJWD8UnuAMjdTNH4zolV9sD4GnbfQB2fiEnlJjFOySPQX9S5w5KZA5qt38Z7sX8SSAELlkWrccO8ZOyhQKLmGcaycaYsYHrA8tQ0MWgO6k0/vH9NgoPepFylSIdKr+nEhZoPUocE1nwNDXi95E/M9rJehddlIRxglCyGeLvERSjOgkDNoTCjjKkSGMK2FupdxninE0keVMCM7iy39J/azknJfKd+VC5XoeR5YckiNSJA65IBVyS6qkRjh5IE/khbxaj9az9Wa9z1oz1nxmn/yC9fENRU6U/A==</latexit>

y = h(~✓) + n



N. Karnesis, AUTh, LISA DA: from classical methods to machine learning, 2022

A hyperbolic likelihood function: Towards robust
inference

Nikolaos Karnesis

Albert-Einstein-Institut, Max-Planck-Institut für Gravitationsphysik und Universität

Hannover, 30167 Hannover, Germany

E-mail: karnesis@aei.mpg.de

Abstract. blah

1. Introduction

In this document we will present a new formulation of a likelihood function as an

alternative to the standard Gaussian likelihood used in most cases. This Hyperbolic

Likelihood Function (HLF) is studied on its robustness in various data analysis scenarios.

It can be proven useful in cases where the data are distributed in a non-Gaussian way

(outliers etc.), or when we need to e↵ectively model the background coloured model of

the noise.

2. Background

2.1. The Gaussian case

A common treatment for system identification (and detection) experiments, is to begin

with two assumptions, that practically have the same consequences:

• The measured noise of the system is Gaussian, or

• The Signal-to-Noise Ratio (SNR) is high enough that we can formulate a likelihood

function of the form of
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1
2
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�
= C ⇥ e��2/2. (1)

Here, we have assumed that the measured data set is y = h(~✓) + n, with h(~✓) being the

template and n the noise. The (·|·) denotes the noise weighted inner product

(a|b) = 2
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h
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i
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In practice, we define a likelihood function, 
form a posterior, which we then need to investigate.
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Defining the parameter space
Way too many events to be measured!

<latexit sha1_base64="2sZo752QSTad84dZm1iusywPuWU="></latexit>

N~✓ = Nucbs +Nsmbhb +Nsobhbs +Nemris +Nstoch +Nnoise ⇡ O(105)

• Focusing on LISA, we get to measure thousands of overlapping signals of different types. 
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Defining the parameter space
Way too many events to be measured!

• Focusing on LISA, we get to measure thousands of overlapping signals of different types. 

<latexit sha1_base64="2sZo752QSTad84dZm1iusywPuWU="></latexit>

N~✓ = Nucbs +Nsmbhb +Nsobhbs +Nemris +Nstoch +Nnoise ⇡ O(105)

LISA Global Fit 
- Computational reasons: sequential fits are inefficient  
- Grid searches are almost impossible 
- Correlations between sources become important for that many signals 
- Imperfect source subtraction yields imperfect residuals  
- Uncertainties propagation 
- Not fixed dimensions!



Trans-dimensional MCMC
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Start with fixed dimensionality 

https://blog.stata.com/  
https://blog.revolutionanalytics.com/


‣ Start from theta_0


‣ Propose a new point from proposal distribution q


‣ Accept, or reject with a probability

<latexit sha1_base64="06V6bpZLbn2jyBdbJ4AnX52fvos="></latexit>
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Continue with non-fixed dimensionality 
Assume a model with a changing dimensionality…

parameter space

po
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Continue with non-fixed dimensionality 
Assume a model with a changing dimensionality…

parameter space
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• Same procedure, now generalized for k-order of model. 
It is organized in two steps.


• Before all, we begin with θk for model k.


1. In-Model Step: The usual MH step, for model k.


2. Outer-Model Step:


‣ Propose new θm for model m from a given proposal 
distribution q.


‣ Essentially propose the “birth” or “death” of dimensions 
at each iteration.  


‣ Accept, or reject with a probability:
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Continue with non-fixed dimensionality 
Assume a model with a changing dimensionality…
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‣Usually, this means that we have to compute a 
Jacobian term at each iteration, which is given by: 
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• Same procedure, now generalized for k-order of model. 
It is organized in two steps.


• Before all, we begin with θk for model k.


1. In-Model Step: The usual MH step, for model k.


2. Outer-Model Step:


‣ Propose new θm for model m from a given proposal 
distribution q.


‣ Essentially propose the “birth” or “death” of dimensions 
at each iteration.  


‣ Accept, or reject with a probability:
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‣Usually, this means that we have to compute a 
Jacobian term at each iteration, which is given by: 
 
 

‣Fortunately, in our case we use nested models 
‣Complicated models are essentially ensembles of 

simpler ones.  
‣Use independent proposals for each k. 
‣Very useful for multiple signals detection. 
‣Then, we get: 
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• Same procedure, now generalized for k-order of model. 
It is organized in two steps.


• Before all, we begin with θk for model k.


1. In-Model Step: The usual MH step, for model k.


2. Outer-Model Step:


‣ Propose new θm for model m from a given proposal 
distribution q.


‣ Essentially propose the “birth” or “death” of dimensions 
at each iteration.  


‣ Accept, or reject with a probability:
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A simple example.
Searching for Gaussian pulses.
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Video source: https://www.youtube.com/watch?v=wBTGoA_dIIo

https://www.youtube.com/watch?v=wBTGoA_dIIo


What about the LISA Data Analysis? 
It really sounds quite painful to achieve convergence…
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Two ways to improve
One focusing on the sampler, the second on the waveforms/likelihoods.

‣Ensemble Walkers. 
‣Delayed Rejection. 
‣Multiple Try. 
‣Parallel Tempering.

‣CPU parallelization. 
‣GPU accelerated Waveforms. 
‣Advanced Search techniques. 
‣Efficient proposals.
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• Ensemble Walkers.


• Delayed Rejection.


• Multiple Try.


• Parallel Tempering.

On the sampler side
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• Ensemble Walkers. 

• Delayed Rejection.


• Multiple Try.


• Parallel Tempering.

On the sampler side

▲ Allows for locating secondary maxima.


▲ Healthier chains, good mixing.


▲ Parallelizable. 

• Run multiple walkers in parallel.


• Sample a transform of the parameters: 
 
 

• Less sensitive to covariance “features”.


• Use walkers to draw candidates  
(stretch proposal).

3

a probability density p(~✓|y), then the ~⇣ = A~✓ + b has a
density of

pA, b(~⇣|y) = pA, b(A~✓ + b|y) / p(~✓|y). (4)

This kind of mapping transforms the given target den-
sity to one which is easier to sample from. In essence,
the a�ne-invariant samplers are not sensitive to the cor-
relations between the parameters [25] [Natalia: I do not
understand what you mean by saying that it is not sen-
sitive to correlation between parameters]. In practice,
this is achieved by introducing the so-called stretch-move
proposal. The stretch move is based on utilizing all the
current states of the multiple walkers running in par-
allel [25]. Each walker at state Xi(t) is updated by
randomly selecting another walker j and updating to
Y (t+1) as Xi(t) ! Yi(t+1) = Xj(t)+Z[Xi(t)�Xj(t)],
where Z is a random variable drawn from a given dis-
tribution [26]. Following this scheme, the detailed bal-
ance is maintained, and it can be proven that a�ne-
invariant samplers converge faster to their target distri-
bution [Michael: should we cite this]. The benefits of run-
ning MCMC chains in parallel, combined with a proposal
distribution that requires almost no tuning, have con-
tributed to an increasing popularity of the A�ne Invari-
ant [Michael: di↵erent style than the other mentions?]
samplers. In particular, the EMCEE package [25], has been
used in plentiful applications in Astrophysics and Cos-
mology [27–30].

B. Delayed Rejection

[Natalia: If I am not mistaken and remember every-
thing correctly, you introduced delayed rejection, to use
it in the context of reversible jump, maybe it is better to
place if after the description to keep the logic of why each
thing is introduced] The Delayed Rejection (DR) scheme
of sampling was devised in order to improve two aspects
of an MCMC algorithm. First, it allowed for improve-
ments in the acceptance rate of the proposals, yielding
“healthier” parameter chains. Secondly, it is more ro-
bust against an algorithm that keeps getting trapped in
local maxima of the posterior surface [31–34]. The strat-
egy, as the name suggests, can be summarized: at each
iteration, instead of immediately rejecting the newly pro-
posed point based on algorithm 1, we keep proposing new
points while maintaining detailed balance by computing
both the forwards and backwards transition probabili-
ties. For the sake of simplicity, let us assume a given
proposal distribution q, that will give us the newly pro-
posed point ~✓1 at t = 1 starting from ~✓0 at t = 0. The
acceptance probability, following the notation of eq. (1),
will be written as

↵1(~✓0, ~✓1) = 1 ^

(
p(~✓1|y)q(~✓1, ~✓0)

p(~✓0|y)q(~✓0, ~✓1)

)
, (5)

which is the same as eq. (3). If ~✓1 is rejected, then instead
of going back to step 1 of algorithm 1, we propose a new
point from ~✓1, and decide its acceptance probability by
computing a new ↵2(~✓0, ~✓1, ~✓2), which is given by

1 ^

8
<

:
p(~✓2|y)q(~✓1, ~✓0)q(~✓2, ~✓1, ~✓0)

h
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⇣
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⌘i

p(~✓0|y)q(~✓0, ~✓1)q(~✓0, ~✓1, ~✓2)
h
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⌘i

9
=

; .

(6)
Naturally, the proposal q can be di↵erent at each step,

as long as this is reflected in eq. (6). For example,
in [31] the proposal is built upon a Gaussian mixture
model that e�ciently tries further points in the parame-
ter space with the aim of exploring the possible multiple
modes of he posterior distribution. At the same time,
the number of steps in the DR scheme can be arbitrar-
ily large, approaching slowly an acceptance probability
of zero after many DR draws. Practically, this algorithm
is also limited due to its computationally high demands,
since we need to always compute the backwards proba-
bility (the ↵1(~✓2, ~✓1) from eq. (6) ) for each new delayed
rejection proposal. Nevertheless, the DR scheme o↵ers
many advantages, and despite the computational cost, it
is very useful for mainly two classes of problems: when
the posterior surface exhibits high dimensionality, and
when acceleration techniques are laterally available [Na-
talia: What does ’laterally available’ mean]. These, for
example, might include the usage of GPUs, and/or het-
erodyned likelihoods [35]. In our implementation here,
we follow closely the one in [31], for improving the ac-
ceptance rate of the between-model step of the Reversible
Jump algorithm (see section II F). As already mentioned,
the Reversible Jump MCMC allows for sampling dynam-
ical parameter spaces. In the special case of nested mod-
els, such as the case of searching multiple signals on the
parameter space, proposing the ‘birth’ of a signal out of
a very wide prior can be very ine�cient. A delayed re-
jection scheme alleviates this problem, by essentially per-
forming a small search around the first set of rejections,
thus improving the mixing of the chains.

C. Multiple Try Metropolis

The Multiple Try Metropolis (MTM) [36–39] is a sub-
class of the implementation of the MH algorithm, that is
based on the idea of first generating a number of propos-
als for each individual current state, and then selecting
one of them based on their importance weight. It can
be proven that a suitable weight for each point gener-
ated at a given stage of the chain t, can be computed by
choosing [36]

w(~✓t, ~✓t�1) = p(y|~✓t)q(~✓t�1, ~✓t)⇠(~✓t�1, ~✓t), (7)

where ⇠(~✓t�1, ~✓t) = ⇠(~✓t, ~✓t�1), 8~✓t, ~✓t�1 2 D ✓ RD, with
D being the dimensionality of the problem at hand. In
particular, the Independent MTM, which we implement
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Y (t+1) as Xi(t) ! Yi(t+1) = Xj(t)+Z[Xi(t)�Xj(t)],
where Z is a random variable drawn from a given dis-
tribution [26]. Following this scheme, the detailed bal-
ance is maintained, and it can be proven that a�ne-
invariant samplers converge faster to their target distri-
bution [Michael: should we cite this]. The benefits of run-
ning MCMC chains in parallel, combined with a proposal
distribution that requires almost no tuning, have con-
tributed to an increasing popularity of the A�ne Invari-
ant [Michael: di↵erent style than the other mentions?]
samplers. In particular, the EMCEE package [25], has been
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[Natalia: If I am not mistaken and remember every-
thing correctly, you introduced delayed rejection, to use
it in the context of reversible jump, maybe it is better to
place if after the description to keep the logic of why each
thing is introduced] The Delayed Rejection (DR) scheme
of sampling was devised in order to improve two aspects
of an MCMC algorithm. First, it allowed for improve-
ments in the acceptance rate of the proposals, yielding
“healthier” parameter chains. Secondly, it is more ro-
bust against an algorithm that keeps getting trapped in
local maxima of the posterior surface [31–34]. The strat-
egy, as the name suggests, can be summarized: at each
iteration, instead of immediately rejecting the newly pro-
posed point based on algorithm 1, we keep proposing new
points while maintaining detailed balance by computing
both the forwards and backwards transition probabili-
ties. For the sake of simplicity, let us assume a given
proposal distribution q, that will give us the newly pro-
posed point ~✓1 at t = 1 starting from ~✓0 at t = 0. The
acceptance probability, following the notation of eq. (1),
will be written as
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(
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which is the same as eq. (3). If ~✓1 is rejected, then instead
of going back to step 1 of algorithm 1, we propose a new
point from ~✓1, and decide its acceptance probability by
computing a new ↵2(~✓0, ~✓1, ~✓2), which is given by
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(6)
Naturally, the proposal q can be di↵erent at each step,

as long as this is reflected in eq. (6). For example,
in [31] the proposal is built upon a Gaussian mixture
model that e�ciently tries further points in the parame-
ter space with the aim of exploring the possible multiple
modes of he posterior distribution. At the same time,
the number of steps in the DR scheme can be arbitrar-
ily large, approaching slowly an acceptance probability
of zero after many DR draws. Practically, this algorithm
is also limited due to its computationally high demands,
since we need to always compute the backwards proba-
bility (the ↵1(~✓2, ~✓1) from eq. (6) ) for each new delayed
rejection proposal. Nevertheless, the DR scheme o↵ers
many advantages, and despite the computational cost, it
is very useful for mainly two classes of problems: when
the posterior surface exhibits high dimensionality, and
when acceleration techniques are laterally available [Na-
talia: What does ’laterally available’ mean]. These, for
example, might include the usage of GPUs, and/or het-
erodyned likelihoods [35]. In our implementation here,
we follow closely the one in [31], for improving the ac-
ceptance rate of the between-model step of the Reversible
Jump algorithm (see section II F). As already mentioned,
the Reversible Jump MCMC allows for sampling dynam-
ical parameter spaces. In the special case of nested mod-
els, such as the case of searching multiple signals on the
parameter space, proposing the ‘birth’ of a signal out of
a very wide prior can be very ine�cient. A delayed re-
jection scheme alleviates this problem, by essentially per-
forming a small search around the first set of rejections,
thus improving the mixing of the chains.

C. Multiple Try Metropolis

The Multiple Try Metropolis (MTM) [36–39] is a sub-
class of the implementation of the MH algorithm, that is
based on the idea of first generating a number of propos-
als for each individual current state, and then selecting
one of them based on their importance weight. It can
be proven that a suitable weight for each point gener-
ated at a given stage of the chain t, can be computed by
choosing [36]

w(~✓t, ~✓t�1) = p(y|~✓t)q(~✓t�1, ~✓t)⇠(~✓t�1, ~✓t), (7)

where ⇠(~✓t�1, ~✓t) = ⇠(~✓t, ~✓t�1), 8~✓t, ~✓t�1 2 D ✓ RD, with
D being the dimensionality of the problem at hand. In
particular, the Independent MTM, which we implement

D. Foreman-Mackey +, 2013
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• Ensemble Walkers.


• Delayed Rejection. 

• Multiple Try.


• Parallel Tempering.

On the sampler side

Figure 3: Graphical representation of the idea we want to implement to efficiently explore
different maxima of the target distribution using the Delayed Rejection algorithm: an initial
big jump (proposed by qa) which may not land in the peak of the neighbourring node, followed
by multiple small steps (drawn from qb) in order to explore the region we landed. In this
paper we show that this exploration cannot be “up-hill”, as in a standard Metropolis-Hastings
method, but blind in order to achieve reasonable acceptance probabilities.

Delayed Rejection algorithm, only one parameter is being updated. All the con-
clusions and results contained in the following sections can be straightforwardly
extended to the case of updating several independent parameters; furthermore
all the guiding principles (but not the numerical results) would be unaffected
for the general case of updating correlated parameters.

3.1. Choice of proposals: Functional form

The first and last terms of the product of proposal probabilities,

qa(βi,βi−1)

qa(λ,β1)
and

qb(x̄[βi, . . . ,β1],λ)

qb(x̄[λ, . . . ,βi−1],βi)
(11)

are the ones which involve either the initial ‘big jump’ proposal or the elements
of the chain generated from it. In the numerator of the first fraction, we are
evaluating a ‘big jump’ proposal, qa, but with two elements of the chain (mostly
probably) separated by a small distance in the parameter space. The opposite
case happens in the numerator of the other fraction, where two elements of the
chain with a likely big separation in the parameter space are evaluated with an
‘small jump’ proposal, qb.

Having a qa proposal only contemplating big jumps and qb small jumps,
would result in a tiny value for the ratio of proposal probabilities, Eq. (9), very
difficult to compensate with the likelihood ratio in order to finally get non-
negligible values for the acceptance probability in Equation (4). The solution to
this problem comes through including a certain probability of doing small jumps
in qa and big jump proposals in qb and therefore, all our proposals become
a mixture of three Gaussian distributions (3-Gaussian, in future references),
symmetrical around the central mode.

In Figure 4 we graphically represent the proposal functions that we are going

10
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Naturally, the proposal q can be di↵erent at each step,
as long as this is reflected in eq. (6). For example, in [21]
the proposal is built upon a Gaussian mixture model that
e�ciently tries further points in the parameter space with
the aim of exploring the possible multiple modes of he
posterior distribution. At the same time, the number
of steps in the DR scheme can be arbitrarily large, ap-
proaching slowly an acceptance probability of zero after
many DR draws. Practically, this algorithm is also lim-
ited due to its computationally high demands, since we
need to always compute the backwards probability (the

↵1(~✓2, ~✓1) from eq. (6) ) for each new delayed rejection
proposal. Nevertheless, the DR scheme o↵ers many ad-
vantages, and despite the computational cost, it is very
useful for mainly two classes of problems; When the pos-
terior surface exhibits high dimensionality, and when ac-
celeration techniques are laterally available. These, for
example, might include parallel computing via the use
of GPUs, and heterodyned likelihoods [Nikos: Add ref-
erences for these]. In our implementation here, we fol-
low closely the one in [21]. [Nikos: Add implications on
nested models, and our choice to do DR on only birth
moves.]

C. Multiple Try Metropolis

The Multiple Try Metropolis (MTM) [25–28] is a sub-
class of the implementation of the MH algorithm, that is
basically based on the idea of first generating a number
of proposals, and then selecting one of them based on
their weight. It can be proven that a suitable weight for
each point generated at a given stage of the chain t, can
be computed by choosing [25]

w(~✓t, ~✓t�1) = p(y|~✓t)q(~✓t�1, ~✓t)⇠(~✓t�1, ~✓t), (7)

where ⇠(~✓t�1, ~✓t) = ⇠(~✓t, ~✓t�1), 8~✓t, ~✓t�1 2 D ✓ RD, with
D being the dimensionality of the problem at hand. In
particular, the Independent MTM, which we implement
as an option in Eryn, can be explained following the ex-
ample of the MH algorithm 1. In this setting, instead of
just one sample we draw N new points, and we calcu-
late the weights as w(~✓nt ) = p(y|~✓t)/q(~✓t�1, ~✓nt ), for each
n 2 N . Then, a single candidate is selected based on the
probability mass for each of the ~✓nt

w =
w(~✓nt )

PN
n w(~✓nt )

. (8)

Then newly proposed point ~✓jt is then accepted with a
probability that is given by

↵(~✓t�1, ~✓t) = 1 ^

(
w(~✓jt ) +

PN
n,n 6=j w(~✓nt )

w(~✓t�1) +
PN

n,n 6=j w(~✓nt )

)
. (9)

Following this strategy, which is based on generating a
large amount of candidates, yields certain advantages.
As expected, the first advantage is the fact that there is
usually very good coverage of the parameter space. The
second point, which is connected to the first, is that the
implementation of the MTM usually results into states
in the chains with very low correlation between them.
Nevertheless, as in the case of the Delayed Rejection, this
algorithm requires increased computational resources, es-
pecially for computing the weights for each candidate at
each iteration of the chain. This cost can be o↵set in
cases where the computations can be parallelized, for
example using either CPU of GPU acceleration codes.
[Nikos: @Michael: We should add here how it works in
an ensemble sampler such as Eryn, and also other possi-
bilities.]

D. Adaptive Parallel Tempering

The concept of Parallel Tempering was introduced
in order to e�ciently sample surfaces with high multi-
modality [29–31]. The idea is based on mapping the given
surface with a number of chains running in parallel, but
each exploring it after applying a di↵erent temperature.
This “heating” causes the smoothening of the target dis-
tribution, allowing for easier transitions on the parameter
space ⇥. Obviously, the larger the applied temperature,
the greater the flattening of the target distribution. By
applying di↵erent temperatures T , the heated posterior
can be written as

pT (~✓|y) / p(y|~✓)1/T p(~✓). (10)

The information propagates from the hottest to the cold-
est chain[32] by proposing swaps of the states between the
di↵erent chains. This is achieved via computing the swap
acceptance probability between two tempered chains i
and j at each step as

↵i,j = 1 ^

8
<

:

 
p(y|~✓i)

p(y|~✓j)

!�j��i
9
=

; , (11)

with �i = 1/Ti being the inverse temperature, and ~✓i the
given parameter state for the i-th chain. The tempera-
ture ladder Ti should be chosen in order to maximize the
information flow, so as to e�ciently sample the complete
parameter space. Typically, this ladder can be static or
dynamically adjusted during the sampling procedure. In
this work we have implemented the procedure of [31],
which is based on the swap acceptance rate that is being
calculated directly from the running chains.

▲ Allows for locating secondary maxima.


▲ Healthier chains, good mixing.


▼  Serial calculations
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• Ensemble Walkers.


• Delayed Rejection.


• Multiple Try. 

• Parallel Tempering.

On the sampler side
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▲ Allows for mapping the posterior surface.


▲ Healthier chains, good mixing.


▼  Many likelihood evaluations.
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as an option in Eryn, can be explained following the ex-
ample of the MH algorithm 1. In this setting, instead of
just one sample we draw N new points, and we calculate
the weights as w(~✓nt ) = p(y|~✓nt )/q(~✓t�1, ~✓nt ), [Natalia: I
do not understand why do you devide here and not mul-
tiply] for each n 2 N . Then, a single candidate is selected

based on the probability mass for each of the ~✓nt

w =
w(~✓nt )

PN
n w(~✓nt )

. (8)

The newly proposed point ~✓jt is then accepted with a
probability that is given by

↵(~✓t�1, ~✓t) = 1 ^

(
w(~✓jt ) +

PN
n,n 6=j w(~✓nt )

w(~✓t�1) +
PN

n,n 6=j w(~✓nt )

)
. (9)

Following this strategy that is based on generating a large
amount of candidates yields certain advantages. As ex-
pected, the first advantage is the fact that there is usually
very good coverage of the parameter space. The second
point, which is connected to the first, is that the im-
plementation of the MTM usually results in chain states
with very low correlation between them. Nevertheless, as
in the case of the Delayed Rejection, this algorithm re-
quires increased computational resources, especially for
computing the weights for each candidate at each it-
eration of the chain. This cost can be o↵set in cases
where the computations can be parallelized, for exam-
ple using either CPU or GPU acceleration codes. [Nikos:
@Michael: We should add here how it works in an ensem-
ble sampler such as Eryn, and also other possibilities.]

D. Adaptive Parallel Tempering

The concept of Parallel Tempering was introduced
in order to e�ciently sample surfaces with high multi-
modality [40–42]. The idea is based on mapping the given
surface with a number of chains running in parallel, but
each exploring it after applying a di↵erent temperature.
This “heating” causes the smoothening of the target dis-
tribution, allowing for easier transitions on the parameter
space ⇥. Obviously, the larger the applied temperature,
the greater the flattening of the target distribution. By
applying di↵erent temperatures T , the heated posterior
can be written as

pT (~✓|y) / p(y|~✓)1/T p(~✓). (10)

The information propagates from the hottest to the cold-
est chain [43] by proposing swaps of the states between
the di↵erent chains. This is achieved via computing
the swap acceptance probability between two tempered
chains i and j at each step as

↵i,j = 1 ^
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with �i = 1/Ti being the inverse temperature, and ~✓i the
given parameter state for the i-th chain. The tempera-
ture ladder Ti should be chosen in order to maximize the
information flow, so as to e�ciently sample the complete
parameter space. Typically, this ladder can be static or
dynamically adjusted during the sampling procedure. In
this work we have implemented the procedure of [42],
which is based on the swap acceptance rate that is cal-
culated directly from the running chains. [Natalia: So
we choose static or dynamic? :)] Ideally, one should
aim for equal acceptance ratio between all the neigh-
boring tempered chains, thus tuning their log-di↵erence
Si ⌘ log(Ti � Ti�1), according to the swap acceptance
rate from eq. (11):

dSi

dt
= (t) [↵i,i�1(t) � ↵i+1,i(t)] , (12)

where (t) tunes the timescale of the evolution of the
temperatures. The function (t) can be chosen depend-
ing on the desired behavior of the procedure. For ex-
ample, in [42] a hyperbolic dependence on the t state is
chosen, in order to suppress large dynamic adjustments
on long-scales. This process is more straightforward for
ensemble samplers, where multiple walkers are used, sim-
ply because one can get an estimate of the acceptance
rate directly from the particular state of the walkers at
any given time step t. Otherwise, the acceptance rate
is computed after an iteration of a predefined number of
steps, which is another parameter to be user-defined for
the given problem at hand. It can be proven [42] that
the temperature ladder will converge to a particular sta-
ble configuration, but one may use this scheme only for
a particular stage of the sampling, such as the burn-in
period, and then continue with a stationary ladder for
the rest of the analysis.

E. Marginal posterior calculation for model
selection

One of the most frequently encountered problems in
astronomy, and in physics in general, is the problem of
model or variable selection. This problem is usually man-
ifested in defining the best supported model by the given
observed data. Working in a Bayesian framework, the
comparison between hypotheses is done via computing
the Bayes Factor, or in other words by comparing directly
their marginal posteriors [44]. The marginal posterior
density, or evidence, is given by the integral of eq. (2)
and is usually quite challenging to compute. However,
for some high Signal-to-Noise (SNR) cases it can be easily
approximated if the covariance matrix ⌃ of the param-
eters for all candidate models M are known. This ap-
proach is called the Laplace approximation, and is given
by [44, 45]

p(~y|M) ' (2⇡)D/2
|⌃|

1
2 p(y|~✓MAP, M), (13)

4

as an option in Eryn, can be explained following the ex-
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. (8)

The newly proposed point ~✓jt is then accepted with a
probability that is given by
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PN

n,n 6=j w(~✓nt )

)
. (9)
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8
<
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!�j��i
9
=

; , (11)
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ifested in defining the best supported model by the given
observed data. Working in a Bayesian framework, the
comparison between hypotheses is done via computing
the Bayes Factor, or in other words by comparing directly
their marginal posteriors [44]. The marginal posterior
density, or evidence, is given by the integral of eq. (2)
and is usually quite challenging to compute. However,
for some high Signal-to-Noise (SNR) cases it can be easily
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Figure 18. The equilibrium density of chains per log T , from
(19), for the TaylorF2 BBH runs described in Section 5.2 at var-
ious SNRs.

Figure 19. The fractional improvements in ACT conferred by
a uniform-A temperature ladder over a geometric ladder for the
CBC parameter estimation problem described in Section 5.2 at
various SNRs.

6.2 Evidence calculations

The current paper focuses mainly on the e�ciency of a par-
allel tempered MCMC sampler in producing independent
samples from its target distribution. Another important task
in Bayesian statistical inference is to compute the evidence
integral of the posterior distribution. At a given tempera-

ture, this is given by

Z(�) ⌘
Z

L(~✓)�p(~✓) d~✓, (24)

where � ⌘ 1/T is the inverse temperature.
Since we are interested in the untempered posterior,

we wish to calculate Z(1). From (24), we can use thermody-
namic integration (Goggans & Chi 2004; Lartillot & Philippe
2006) to express the log evidence (relative to the prior) in
terms of the mean logL, such that

� logZ ⌘ logZ(1)� logZ(0) =

Z 1

0

E[logL]� d�, (25)

to which the logarithm of the integral of the prior, logZ(0),
can be added to give the absolute evidence logZ(1).

The log evidence can therefore be computed by a sam-
pler through numerical integration of the mean logL values
collected over all of the chains. In the same way that inter-
chain communication is hindered by phase transitions in the
system, numerical estimation of this integral is susceptible to
sharp changes in logL with the temperature T . Such phase
transitions are marked by a diverging specific heat CV since,
from (3), CV is the derivative of logL with respect to T .

Since allocating temperatures for uniform acceptance
ratios yields a logarithmic chain density ⌘ that appears to
scale with

p
CV , such a temperature ladder will naturally

increase the accuracy of numerical estimates of (25) with
respect to one that does not increase ⌘ around phase tran-
sitions.

We can test the degree of improvement conferred by
a uniform-A ladder by returning to the truncated Gaus-
sian discussed in Section 4.1. Normalising (17) so that
max logL = 0, the log evidence is

� logZ =

 p
2

R
erf

✓
Rp
2

◆!n

�

✓
1 +

n

2

◆

⇡ �55.1,

(26)

with R = 30 and n = 25.
Figure 21 illustrates the numerical estimates of � logZ

from a uniform-A ladder (with Tmax = 1) and from geomet-
ric ladders with Tmax = 10 and Tmax = 104. The evidence
quadratures for the geometric ladders are augmented with
a copy of E[logL]Tmax placed at T = 1 as a crude measure
to cover the integration domain.

The evidence estimates recovered from these samplers
are reported in Table 2 for 6 chains and 10, from which it
is clear that selecting temperatures for uniform acceptance
ratios can greatly increase the accuracy of the evidence esti-
mate, bypassing the need to select a good initial temperature
ladder. Note that the under- and over-estimates of � logZ
from the geometric ladders in this case are a consequence of
poor choices of Tmax rather than of sharp changes in E[logL].
While these comparisons are reasonable – since for a geomet-
ric ladder it is very di�cult to pick an appropriate Tmax in
advance – we expect the presence of phase transitions to in-
crease this disparity, and with it the advantages of adapting
the ladder dynamically for uniform acceptance ratios.

6.3 Other measures of optimality

We have investigated the performance of a temperature lad-
der adapted for uniform acceptance ratios in reducing the

MNRAS 000, 1–21 (2002)
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mate, bypassing the need to select a good initial temperature
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from the geometric ladders in this case are a consequence of
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Adaptive Parallel Tempering in action
As presented in Vousden et al 2016
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Simple applications
Usually encountered in data analysis 
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Simple applications
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A realization
All of the above methods for improving, have one requirement:

▼ Many likelihood evaluations.

• Running this machinery with limited resources requires a long convergence 
time. 


• Parallelizing really helps! 


‣ Analyze the data in segments.


‣ Parallelize MCMC processes.


• GPU waveforms/likelihoods change the game!
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Erebor!
A proposal for a pipeline
• M. Katz, J Gair (AEI), & N. Korsakova 

(APC Paris), N Stergioulas, NK (AUTh).  
 

• Using Eryn plus: 


1. GPU accelerated Waveforms.


2. Advanced Search techniques.


3. Efficient proposals.


4. Ability to search for multiple models.

➡https://github.com/mikekatz04/Eryn
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FIG. 6: Left panel: In this figure, the histogram of the number of UCB sources preferable by the data is presented
for the particular run. The true injected number is shown with the red dashed line. It is fairly obvious, that for the
given measurement duration of the particular data set, we manage to confidently resolve eight binaries, out of total

ten. Right panel: Corner plot including only two out of the total eight parameters of the waveform of the UCB
sources. These are the given amplitude in SNR ⇢, and the main emission frequency f0 [mHz] (see text for more

details). The violet crosses represent the injected parameter values. A more detailed plot is presented in the
Appendix, in figure A.7.

We choose to work on the frequency segment between
3.997 and 4 mHz, which contains 10 UCB objects, drawn
directly from the LDC2 catalogue [78]. Those are pre-
sented on the top panel of figure 5 which shows the power
spectrum of the A data channel of LISA. We use the
two noise-orthogonal A and E Time Delay Interferome-
try variables [85–87][Nikos: Add more?], which are essen-
tially a combination of the LISA relative frequency TDI
measurements X, Y , and Z as:

A =
1

p
2
(Z � X), E =

1
p

6
(X � 2Y + Z),

T =
1

p
3
(X + Y + Z).

(20)

In ideal conditions (equal noises across space-crafts, and
equal LISA arms), the noise orthogonality between A
and E holds, while the T data-stream is used as a null
channel, useful for instrument noise calibration. We first
simulated the injection data for observation time Tobs =
1 year.

That being said, the optimal SNR computed for each
source ⇢opt, is given in table I. The ⇢opt quantity refers
to the SNR of each source in isolation, with respect to
the instrumental noise, and can be written as

⇢2opt =
X

C

(hC |hC) , (21)

with C 2 {A, E} the noise-orthogonal TDI channels of
eq. (20), while the (·|·) notation represents the noise
weighted inner product expressed for two time series a

and b as

(a|b) = 2

1Z

0

df
h
ã⇤(f)b̃(f) + ã(f)b̃⇤(f)

i
/S̃n(f). (22)

The tilde represents the data in Fourier frequency do-
main, and the asterisk stands for the complex conjugate.
The S̃n(f) is one-sided PSD of the noise for the di↵erent
TDI channels.

For our investigation we chose to analyze noiseless data
(no noise realization), while in the likelihood we are using
the PSD noise levels taken from the LISA design stud-
ies [88]. For the signals, we utilize the fast frequency-
domain UCB waveform model of [89]. Then, the two
polarizations of an emitting UCB are written as

h+(t) =
2M

DL
(⇡fgw(t))2/3

�
1 + cos2 ◆

�
cos ,

h⇥(t) = �
4M

DL
(⇡fgw(t))2/3 cos ◆ sin ,

(23)

where M is the chirp mass, fgw is the instantaneous grav-
itational wave frequency, DL is the luminosity distance,
◆ is the inclination of the binary orbit, and  is the grav-
itational wave phase over time. The phase  can be ex-
pressed as  = �0 + 2⇡

R t
fgw(t0)dt0, with �0 being an

initial arbitrary phase shift. For more details about the
waveform model, we refer the reader to [48, 89, 90].

In our simplified scenario, and with respect to the So-
lar System Barycenter, each binary signal is then gov-
erned by a set of eight parameters. Those are the
~✓ = {A, fgw [mHz], �0, cos ◆, ,�, sin�}, where A is the

See next talk of K. Lackeos!

https://github.com/mikekatz04/Eryn


And yet…
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Tuning this type of algorithms is hard!

• The scale of the problem of LISA DA is huge!


• The algorithm needs to be exactly fine-tuned to the specific problem, also 
depending on the frequency band, also accounting for other types of sources, 
also …


• Convergence greatly depends on efficiently sampling: 


‣ Need to improve acceptance rate.


• This is where different improvements/enhancements can enter.  
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Proposal distributions are crucial

• First run a search phase on the 
data.


• Subtract “loudest” sources.


• Get an estimate of residuals,


• and then run a set of RJ MCMC on 
those residuals, looking for the 
“harder-to-get” lower SNR signals.


• Use those samples we to construct 
efficient proposals! 

An example application, part of Erebor, led by N. Korsakova
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Proposal distributions are crucial

• First run a search phase on the 
data.


• Subtract “loudest” sources.


• Get an estimate of residuals,


• and then run a set of RJ MCMC on 
those residuals, looking for the 
“harder-to-get” lower SNR signals.


• Use those samples we to construct 
efficient proposals! 

‣ Fit probability distribution function from 
the samples.


‣ Use Normalising Flows as a density 
estimator.


‣ Train network by optimising  
Kullback–Leibler divergence between 
samples and transformed base 
distribution. 
 
 
 

‣ Use estimated distribution for proposals.

KL(p||q) =
X

x

p(x) log


p(x)

q(x)

�

An example application, part of Erebor, led by N. Korsakova
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Proposal distributions are crucial
An example application, part of Erebor, led by N. Korsakova

‣This is a good idea to aid the sampler work efficiently. 

‣More ideas out there, many papers exploiting ML methods for sampling. 

‣Example of such tools: nessai, pocomc, […]



• Trans-dimensional methods for LISA global fit are extremely useful. 

• But also very hard to tune and scale them to the problem. 

• We are in a good state though! [See next talk by K. Lackeos] 

• Novel methods can help ease the burden of stochastic methods, or in 
some cases replace them entirely. 

• The scale of the problem is so large, that any improvement counts!   
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FIG. A.7: A triangle plot showing the 2D posterior slices for a greater selection of parameters for the application of
section IV A and figure 6b. The rest of the parameters, if plotted stacked in the same manner, result into more

chaotic surfaces which cannot be easily interpreted, and therefore have been left out. The true injected values are
marked with crosses.
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FIG. 6: Left panel: In this figure, the histogram of the number of UCB sources preferable by the data is presented
for the particular run. The true injected number is shown with the red dashed line. It is fairly obvious, that for the
given measurement duration of the particular data set, we manage to confidently resolve eight binaries, out of total

ten. Right panel: Corner plot including only two out of the total eight parameters of the waveform of the UCB
sources. These are the given amplitude in SNR ⇢, and the main emission frequency f0 [mHz] (see text for more

details). The violet crosses represent the injected parameter values. A more detailed plot is presented in the
Appendix, in figure A.7.

We choose to work on the frequency segment between
3.997 and 4 mHz, which contains 10 UCB objects, drawn
directly from the LDC2 catalogue [78]. Those are pre-
sented on the top panel of figure 5 which shows the power
spectrum of the A data channel of LISA. We use the
two noise-orthogonal A and E Time Delay Interferome-
try variables [85–87][Nikos: Add more?], which are essen-
tially a combination of the LISA relative frequency TDI
measurements X, Y , and Z as:

A =
1

p
2
(Z � X), E =

1
p

6
(X � 2Y + Z),

T =
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p
3
(X + Y + Z).

(20)

In ideal conditions (equal noises across space-crafts, and
equal LISA arms), the noise orthogonality between A
and E holds, while the T data-stream is used as a null
channel, useful for instrument noise calibration. We first
simulated the injection data for observation time Tobs =
1 year.

That being said, the optimal SNR computed for each
source ⇢opt, is given in table I. The ⇢opt quantity refers
to the SNR of each source in isolation, with respect to
the instrumental noise, and can be written as

⇢2opt =
X

C

(hC |hC) , (21)

with C 2 {A, E} the noise-orthogonal TDI channels of
eq. (20), while the (·|·) notation represents the noise
weighted inner product expressed for two time series a

and b as

(a|b) = 2

1Z

0

df
h
ã⇤(f)b̃(f) + ã(f)b̃⇤(f)

i
/S̃n(f). (22)

The tilde represents the data in Fourier frequency do-
main, and the asterisk stands for the complex conjugate.
The S̃n(f) is one-sided PSD of the noise for the di↵erent
TDI channels.

For our investigation we chose to analyze noiseless data
(no noise realization), while in the likelihood we are using
the PSD noise levels taken from the LISA design stud-
ies [88]. For the signals, we utilize the fast frequency-
domain UCB waveform model of [89]. Then, the two
polarizations of an emitting UCB are written as

h+(t) =
2M

DL
(⇡fgw(t))2/3

�
1 + cos2 ◆

�
cos ,

h⇥(t) = �
4M

DL
(⇡fgw(t))2/3 cos ◆ sin ,

(23)

where M is the chirp mass, fgw is the instantaneous grav-
itational wave frequency, DL is the luminosity distance,
◆ is the inclination of the binary orbit, and  is the grav-
itational wave phase over time. The phase  can be ex-
pressed as  = �0 + 2⇡

R t
fgw(t0)dt0, with �0 being an

initial arbitrary phase shift. For more details about the
waveform model, we refer the reader to [48, 89, 90].

In our simplified scenario, and with respect to the So-
lar System Barycenter, each binary signal is then gov-
erned by a set of eight parameters. Those are the
~✓ = {A, fgw [mHz], �0, cos ◆, ,�, sin�}, where A is the
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Associated with each model is a likelihood p(yj≥k; k) that depends upon an (unknown) set
of parameters ≥k , where k 2 f1; : : : ; Mg denotes the kth model in the list of candidates. In
general ≥k may be multivariate and may have different dimensionality and support £k in
different models.A priordistributionp(≥kjk) is assigned to each parametervectorand a prior
distribution p(k) to the model number, reèecting prior knowledge about the probabilities
of individual models. The posterior model probability for model k is then obtained as

p(kjy) =
p(yjk)p(k)

p(y)
=

R
£ k

p(yj≥k; k)p(≥kjk)d≥k p(k)

p(y)
: (1.1)

The term p(yjk) is sometimes referred to as the marginal likelihood for model k. We
assume throughout that the parameter priors p(≥kjk) are proper. In some cases the goal of
the statistical analysis may simply be to summarize the relative posterior probabilities of
the individual models or to estimate a single “best” model through the use of some suitable
risk function. In many applied scenarios, however, model uncertainty can be incorporated
into tasks such as forecasting, interpolation, smoothing, or signal extraction (West and
Harrison 1997) through use of “model mixing,” in which model-dependent inferences are
combined togetherby weightingaccording to their posteriorprobabilities(Hoeting,Raftery,
and Madigan 1996; Raftery, Madigan, and Hoeting 1997).

1.2 MCMC METHODS FOR MODEL UNCERTAINTY

Calculation of posterior model probabilities is rarely achievable in closed form for
realistic models. Approximation methods may be used, and there is a large array of tools
available (see, e.g., Raftery 1996 for a good review). Another effective means of achieving
this is through a Monte Carlo sampling scheme. For distributions of parameters with éxed
dimensionality a suitable scheme for drawing a dependent sequence of samples from the
joint posterior is Markov chain Monte Carlo (MCMC). MCMC methods (Metropolis et al.
1953; Geman and Geman 1984; Gelfand and Smith 1990; Hastings 1970) have become
well established over recent years as a powerful computational tool for analysis of com-
plex statistical problems. Until relatively recently, however, these methods were applied in
statistics only to problems with éxed dimensionality.

A direct MCMC approach to the solution of the variable dimension problem is to
estimate posterior model probabilities from independent MCMC chains running in each
model. This is the approach of, for example, Chib (1995) and Chib and Greenberg (1998).
An appealing alternative is to perform MCMC simulation over both model parameters and
model number: if one can draw random samples (≥i

k; ki) from the joint posteriordistribution
p(≥k; kjy), then Monte Carlo estimates can readily be made for any required posterior
quantities. It is then hoped that models with insigniécant probability are visited only rarely,
while the majority of the computational effort is expended in exploration of models with
high probability. This article considers only computational schemes of this latter variety,
since we believe that these offer greater potential in the solution of the complex modeling
requirements of many realistic applied problems which have high-dimensional parameter
spaces and many competing models. However, we note that in cases where there is no
obvious relationship—such as a nested structure between the parameters of competing
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The sampling step for k is then found to reduce to

k π p(kj≥; y) = p(kjy) =

Z

£ k

p(≥k; kjy) d≥k:

In other words the model index sampling step becomes simply a draw from the true model
posterior probability distribution p(kjy) and does not depend upon the sampled parameter
values ≥i. This is in some sense the ideal case since the aim of model uncertainty sampling
is to design a sampler that explores model space according to p(kjy). We can see then
why choosing pseudo-priors that are close to the parameter conditionals is likely to lead to
effective operation of the algorithm. Of course, the exact scheme is impractical for most
modelssince p(kjy) is typicallyunavailablein closed form, but this still givessome guidance
as to what a suitable pseudo-prior might look like.

2.3 REVERSIBLE JUMP

The reversible jumpsampler (Green 1995)achievesmodel space moves by Metropolis–
Hastings proposals with an acceptance probability that is designed to preserve detailed
balancewithineach move type.Suppose thatwe proposea move to modelk0 with parameters
≥k 0 from model k with parameters ≥k using a proposal distribution q(k0; ≥k 0 ; k; ≥k). The
acceptance probability in order to preserve detailed balance is given by

¬ = min
µ

1;
p(k0; ≥k 0 jy) q(k; ≥k; k0; ≥k 0 )

p(k; ≥kjy) q(k0; ≥k 0 ; k; ≥k)

¶
: (2.4)

This acceptance probability is expressed without use of measure-theoretic notation.
Rather we have assumed that density functions exist with respect to, for example, Lebesgue
measure for all of the distributionsconcerned, as will nearly always be the case in practice.

In implementationit will often beconvenientto take advantageof anynested structure in
the models or interrelationshipsbetween the parameters of different models in constructing
effective proposal distributions, rather than proposing the entire new parameter vector
as in (2.4). To take a very simple case, a fully nested model structure between models
k and k + 1 can easily be implemented by éxing the érst k parameters in both models
and making a proposal of the form q(k + 1; ≥k + 1; k; ≥k) = q1(k + 1; k)q2(≥k + 1; ≥k) =
q1(k + 1; k)q2(≥

(k + 1)
k + 1 j≥k)¯≥k (≥

(1:k)
k + 1 ), where ≥

(1:k)
k + 1 denotes the érst k elements of ≥k + 1. The

reverse move is then of the form q(k; ≥k; k + 1; ≥k + 1) = q1(k; k + 1)¯
≥

(1:k)
k+1

(≥k) and the

acceptance ratio simpliées to

p(k + 1; ≥k + 1jy) q1(k; k + 1)

p(k; ≥kjy) q1(k + 1; k)q2(≥
(k + 1)
k + 1 j≥k)

:

An example of the application of such a nested sampler, compared with a full parameter
proposal of the form (2.4), is given in Section 2.7. More generally, relationships between
parameters of different models can be used to good effect by drawing “dimensionmatching”
variables u and u0 from proposal distributions q2(u) and q2(u0), and then forming ≥k 0 and
≥k as deterministic functions of the form ≥k = g(≥k 0 ; u) and ≥k 0 = g(≥k; u0). In this way
it is straightforward to incorporate useful information from the current parameter vector ≥k
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into the proposal for the new parameter vector ≥k 0 . Provided that dim(≥k 0 ; u) = dim(≥k; u0)
(dimension matching), the acceptance probability is given by (Green 1995):

¬ = min
µ

1;
p(k0; ≥k 0 jy) q1(k; k0)q2(u)

p(k; ≥kjy) q1(k0; k)q2(u0)

¯̄
¯̄@(≥k 0 ; u)

@(≥k; u0)

¯̄
¯̄
¶

which now includes a Jacobian term to account for the change of measure between (≥k; u0)
and (≥k 0 ; u). Note that the basic form of reversible jump given above in Equation (2.4) is
obtained from this formula when we set ≥k = g(≥k 0 ; u) = u and ≥k 0 = g(≥k; u0) = u0, so
that the Jacobian term is unity:

It is worth commenting that the earlier jump diffusion methods for model uncertainty
(Grenander and Miller 1991; Grenander and Miller 1994; Phillips and Smith 1994) can
be considered as a special version of the reversible jump scheme in which model jumps
are proposed with exponentially distributed time gaps and parameter moves are performed
using discretised Langevin diffusions. Hence we do not address these methods further here.

2.3.1 Reversible Jump Derived From the Composite Model

We now show that Green’s reversible jump sampler can be obtained by applying a
special form of Metropolis–Hastings (M–H) proposal to the composite model space. We
derive the general form given in (2.4), noting as above that nested and other forms can be
obtained from this general case provided that dimension matching constraints are carefully
incorporated.

Consider a proposal from the current state of the composite model (k; ≥) to a new state
(k0; ≥0) that takes the form:

q(k0; ≥0; k; ≥) = q1(k
0; k) q2(≥0

k 0 ; ≥k) p(≥0
¡k 0 j≥0

k 0 ; k0):

This proposal, which forms a joint distribution over all elements of k and ≥, is split into
three component parts: the model index component q1(k

0; k), which proposes a move to a
new model index, k0; a proposal for the parameters used by model k0, q2(≥0

k 0 ; ≥k); and a
proposal for the remaining unused parameters which is chosen to equal the pseudo-prior
p(≥0

¡k 0 j≥0
k 0 ; k0). We thushave a joint proposal across the whole state space of parameters and

model index that satisées the Markov requirement of the M–H method as it depends only
upon the current state (k; ≥) to make the joint proposal (k0; ≥0). There are now no concerns
abouta parameter space with variable dimensionsince the compositemodel retains constant
dimensionality whatever the value of k and any issues of convergence can be addressed by
reference to standard M–H results in the composite space.

The acceptanceprobability for this special form of proposal is given, using the standard
M–H procedure, by

¬ = min
µ

1;
q(k; ≥; k0; ≥0) p(k0; ≥0jy)

q(k0; ≥0; k; ≥) p(k; ≥jy)

¶

= min
µ

1;
q1(k; k0) q2(≥k; ≥0

k 0 ) p(≥¡kj≥k; k) p(k0; ≥0
k 0 jy) p(≥0

¡k 0 j≥0
k 0 ; k0)

q1(k0; k) q2(≥0
k 0 ; ≥k) p(≥0

¡k 0 j≥0
k 0 ; k0) p(k; ≥kjy) p(≥¡kj≥k; k)

¶

= min
µ

1;
q1(k; k0) q2(≥k; ≥0

k 0 ) p(k0; ≥0
k 0 jy)

q1(k0; k) q2(≥0
k 0 ; ≥k) p(k; ≥kjy)

¶
:

Posterior:

Acceptance ratio:

Proposal distributions for  
dimension matching parameters: 

Map functions for different k:

Jacobian is Unity when we use  
independent proposals:
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q(k0; ≥0; k; ≥) p(k; ≥jy)

¶

= min
µ

1;
q1(k; k0) q2(≥k; ≥0

k 0 ) p(≥¡kj≥k; k) p(k0; ≥0
k 0 jy) p(≥0

¡k 0 j≥0
k 0 ; k0)

q1(k0; k) q2(≥0
k 0 ; ≥k) p(≥0

¡k 0 j≥0
k 0 ; k0) p(k; ≥kjy) p(≥¡kj≥k; k)

¶

= min
µ

1;
q1(k; k0) q2(≥k; ≥0

k 0 ) p(k0; ≥0
k 0 jy)

q1(k0; k) q2(≥0
k 0 ; ≥k) p(k; ≥kjy)

¶
:
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