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Outline

 Why do we choose to use sampling methods?
* Trans-dimensional sampling: What, why, how, limits?

* Future usage for LISA Data Analysis?



What do we expect for LISA?
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So, what is in the future?

Way too many events to be measured!

e LISA: ~106 DWD (~104 resolvable), (~101) SMBHB/year,
? EMRIs/year, ~106 SOBBHs (~101 resolvable)
? Stochastic GW backgrounds.

* |n some cases, we’ll have so many sources, that they will generate a
stochastic GW signal above the detector noise!



Why sampling methods &
Global fit for LISA DA?
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In practice, we define a likelihood function,

form a posterior, which we then need to investigate.
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Defining the parameter space

Way too many events to be measured!

 Focusing on LISA, we get to measure thousands of overlapping signals of different types.

N@"’ — Nucbs + Nsmbhb + Nsobhbs + Nemris + Nstoch + Nnoise ~ 0(105)



Defining the parameter space

Way too many events to be measured!

* Focusing on LISA, we get to measure thousands of overlapping signals of different types.

N@" — Nucbs + Nsmbhb + Nsobhbs + Nemris + Nstoch + Nnoise ~ 0(105)

LISA Global Fit
- Computational reasons: sequential fits are inefficient
- Grid searches are almost impossible
- Correlations between sources become important for that many signals

- Imperfect source subtraction yields imperfect residuals
- Uncertainties propagation
- Not fixed dimensions!

N. Karnesis, AUTh, LISA DA: from classical methods to machine learning, 2022



Trans-dimensional MCMC



Start with fixed dimensionality

Markov chains Posterior density
Density MCMC Iteration
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Step 2: Acceptance probability a(0..., ,0.1)= min{rb... 6.1 ), 1} = min{0.039, 1} = 0.039 "
Step 3: Draw u ~ Uniform(0,1) = 0.247 https://blog.stata.com/
Step4: If U<a(0pen,0) — If 0.247 <0.039 Then 0 = 0., = 0.088 https://blog.revolutionanalytics.com/
Otherwise 6, = 6., = 0.286
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Continue with non-fixed dimensionality

Assume a model with a changing dimensionality...

>

posterior density

>

parameter space
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Continue with non-fixed dimensionality

Assume a model with a changing dimensionality...

 Same procedure, now generalized for k-order of model.
It is organized in two steps.

* Before all, we begin with 8k for model k.

>

1. In-Model Step: The usual MH step, for model k.
2. Outer-Model Step:

> Propose new Om for model m from a given proposal
distribution q.

posterior density

> Essentially propose the “birth” or “death” of dimensions
at each iteration.

> Accept, or reject with a probability:

p(y\fk)p(ﬁk)Q({k, Or }, {m, 0m})

parameter space g 0 = min 1’ 1 N
P(Y; 0 )p(Om)q({m, O }, { K, O })
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Continue with non-fixed dimensionality
Assume a model with a changing dimensionality...

 Same procedure, now generalized for k-order of model.
It is organized in two steps.

> Usually, this means that we have to compute a
Jacobian term at each iteration, which is given by: * Before all, we begin with 8k for model k.

1. In-Model Step: The usual MH step, for model k.

2. Outer-Model Step:

> Propose new Om for model m from a given proposal
distribution q.

> Essentially propose the “birth” or “death” of dimensions
at each iteration.

POStET10T

> Accept, or reject with a probability:

. |y P00 a({k, Ok}, {m. Omn})
parameter space p(y, 00 )p(00)qg({m, 0, },{k, O })
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Continue with non-fixed dimensionality
Assume a model with a changing dimensionality...

 Same procedure, now generalized for k-order of model.
It is organized in two steps.

> Usually, this means that we have to compute a

Jacobian term at each iteration, which is given by: * Before all, we begin with 8k for model k.

agca 1. In-Model Step: The usual MH step, for model k.

.:".-" 2. Outer-Model Step:
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IS S > Propose new Om for model m from a given proposal

§ T manzeadURRSNSSSSEEE: _. distribution q.

9 .

s » Fortunately, in our case we use nested models > Essentially propose the “birth” or “death” of dimensions

~ Complicated models are essentially ensembles of at each iteration.

simpler ones.

»Use independent proposals for each k. > Accept, or reject with a probability:

>Very useful for multiple signals detection.
> Then, we get:

J| =1 i |1 POIBIREIE B, (.6

—

p(y, Hm)p(9m>Q({m7 Jm}a {ka Hk})
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A simple example.

Searching for Gaussian pulses.
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Video source: https://www.youtube.com/watch?v=wBTGoA dllo
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https://www.youtube.com/watch?v=wBTGoA_dIIo

What about the LISA Data Analysis?

It really sounds quite painful to achieve convergence...



Two ways to improve

One focusing on the sampler, the second on the waveforms/likelihoods.

»Ensemble Walkers. > CPU parallelization.
>Delayed Rejection. > GPU accelerated Waveforms.

> Multiple Try. > Advanced Search techniques.
> Parallel Tempering. > Efficient proposals.
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On the sampler side

e Ensemble Walkers.
 Delayed Rejection.
 Multiple Try.

» Parallel Tempering.
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On the Sampler Side D. Foreman-Mackey +, 2013

 Run multiple walkers in parallel.

e Sample a transform of the parameters:
C= A0+ b
pa,b(Cly) = pa, (A0 + bly) o< p(Aly)

e Less sensitive to covariance “features”.

 Ensemble Walkers.
* Delayed Rejection.

 Multiple Try.

* Use walkers to draw candidates
* Parallel Tempering. (stretch proposal).

A Allows for locating secondary maxima.
A Healthier chains, good mixing.

A Parallelizable.



On the sampler side

Trias+ 2009

e Ensemble Walkers.

 Delayed Rejection.

 Multiple Try.

* Parallel Tempering. A Allows for locating secondary maxima.

A Healthier chains, good mixing.

V Serial calculations
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On the sampler side

e Ensemble Walkers.

 Delayed Rejection.

 Multiple Try.

» Parallel Tempering.

A Allows for mapping the posterior surface.
A Healthier chains, good mixing.

V¥V Many likelihood evaluations.
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On the sampler side

posterior density

» Ensemble Walkers. S

: : A T
* Delayed Rejection. o |
» Multiple Try. | A T

[ 1+1..

>

McMC chain update

 Parallel Tempering.

A Allows for mapping the posterior surface.
A Healthier chains, good mixing.

V¥V Many likelihood evaluations.
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Adaptive Parallel Tempering in action

As presented in Vousden et al 2016

Samples

N. Karnesis, AUTh, LISA DA: from classical methods to machine learning, 2022



Simple applications

Usually encountered in data analysis
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Simple applications

Usually encountered in data analysis
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A realization

All of the above methods for improving, have one requirement:

¥V Many likelihood evaluations.

 Running this machinery with limited resources requires a long convergence
time.

 Parallelizing really helps!
> Analyze the data in segments.
> Parallelize MCMC processes.

 GPU waveforms/likelihoods change the game!
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Erebor!

A proposal for a pipeline i
M. Katz, J Gair (AEl), & N. Korsakova
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1. GPU accelerated Waveforms.

2. Advanced Search techniques.
3. Efficient proposals. gﬁ’%
4. Ability to search for multiple models. iﬁ%i
S
See next talk of K. Lackeos! % o 4'» & %;
P
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https://github.com/mikekatz04/Eryn

And yet...



Tuning this type of algorithms is hard!

* The scale of the problem of LISA DA is huge!

* The algorithm needs to be exactly fine-tuned to the specific problem, also

depending on the frequency band, also accounting for other types of sources,
also ...

 Convergence greatly depends on efficiently sampling:
> Need to improve acceptance rate.

* This Iis where different improvements/enhancements can enter.



Proposal distributions are crucial

An example application, part of Erebor, led by N. Korsakova

* First run a search phase on the
data.

 Subtract “loudest” sources.

 (Get an estimate of residuals,

* and then run a set of R4 MCMC on
those residuals, looking for the
“harder-to-get” lower SNR signals.

 Use those samples we to construct
efficient proposals!



Proposal distributions are crucial

An example application, part of Erebor, led by N. Korsakova

* First run a search phase on the > Fit probabillity distribution function from
data. the samples.
» Use Normalising Flows as a densit

¢ SUbtraCt “IOUdeSt” Sources. estimat()r_ g y

* Get an estimate of residuals, > Train network by optimising
Kullback-Leibler divergence between

e and then run a set of R MCMC on samples and transformed base
distribution.

those residuals, looking for the

“harder-to-get” lower SNR signals. p(z)”
L(pllq) = Zp Nog | o5

 Use those samples we to construct

" " '
efficient proposals! » Use estimated distribution for proposals.
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Proposal distributions are cruc
An example application, part of Erebo
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Proposal distributions are cruc

Korsakova

I, led by N
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Korsakova

I, led by N
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Proposal distributions are crucial

An example application, part of Erebor, led by N. Korsakova

amp = 1.997}3¢

iota = —0.01%343
I

> This is a good idea to aid the sampler work efficiently.
>More ideas out there, many papers exploiting ML methods for sampling.

> Example of such tools: nessai, pocomg, [...]
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Trans-dimensional methods for LISA global fit are extremely useful.
But also very hard to tune and scale them to the problem.
We are in a good state though! [See next talk by K. Lackeos]

Novel methods can help ease the burden of stochastic methods, or Iin
some cases replace them entirely.

The scale of the problem is so large, that any improvement counts!
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_ pylk)p(k)  Jo, POk k)p(Ok|k)db) p(k)

Posterior: p(kly)
p(y) p(y)
. . . p(K', Ok |y) a1 (ks k') qo () 5(9k'»u)>
Acceptance ratio: o = min (1, AN ORI

Proposal distributions for

dimension matching parameters: ¢ (u) and g (u')
Map functions for different k: Ok = g(Ok, u') Ok = 9Ok, u)
Jacobian is Unity when we use
independent proposals: Or = g(Ok,u) = wand O = g(Ok,u') = o'
Godsill, 2001
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