Trans-dimensional sampling methods for LISA Data Analysis: Current status and future prospects Nikolaos Karnesis Aristotle University of Thessaloniki karnesis@auth.gr

LIDa Workshop 32/10/2022

Outline

- Why do we choose to use sampling methods?
- Trans-dimensional sampling: What, why, how, limits?
- Future usage for LISA Data Analysis?

What do we expect for LISA?

So, what is in the future? Way too many events to be measured!

- LISA: ~10⁶ DWD (~10⁴ resolvable), (~10¹) SMBHB/year, ? EMRIs/year, ~10⁶ SOBBHs (~10¹ resolvable) ? Stochastic GW backgrounds.
- stochastic GW signal above the detector noise!

N. Karnesis, AUTh, LISA DA: from classical methods to machine learning, 2022

In some cases, we'll have so many sources, that they will generate a

arXiv:1702.00786 arXiv:2109.09882

Why sampling methods & Global fit for LISA DA?

Matched filtering ... this is what we normally do, first assume $y = h(\theta) + n$

N. Karnesis, AUTh, LISA DA: from classical methods to machine learning, 2022

In practice, we define a likelihood function, form a posterior, which we then need to investigate.

 $\pi(y|\vec{\theta}) = C \times e^{-\frac{1}{2}(y - h)}$ $\pi(\vec{\theta}|y) \propto \pi(y|\vec{\theta})p(\vec{\theta})$

$$h(\vec{\theta}) | y - h(\vec{\theta}) \rangle = C \times e^{-\chi^2/2}$$

$$(a|b) = 2 \int_{0}^{\infty} df \left[\tilde{a}^*(f)\tilde{b}(f) + \tilde{a}(f)\tilde{b}^*(f) \right] / \tilde{S}_n$$

Defining the parameter space Way too many events to be measured!

Focusing on LISA, we get to measure thousands of overlapping signals of different types.

$N_{\vec{\theta}} = N_{\text{ucbs}} + N_{\text{smbhb}} + N_{\text{sobhbs}} + N_{\text{emris}} + N_{\text{stoch}} + N_{\text{noise}} \approx \mathcal{O}(10^5)$

Defining the parameter space Way too many events to be measured!

- Computational reasons: sequential fits are inefficient
- Grid searches are almost impossible
- Imperfect source subtraction yields imperfect residuals
- Uncertainties propagation
- Not fixed dimensions!

Focusing on LISA, we get to measure thousands of overlapping signals of different types.

$$+ N_{\text{emris}} + N_{\text{stoch}} + N_{\text{noise}} \approx \mathcal{O}(10^5)$$

LISA Global Fit - Correlations between sources become important for that many signals

Trans-dimensional MCMC

Start with fixed dimensionality

- Start from theta_0
- Propose a new point from proposal distribution q
- Accept, or reject with a probability

$\alpha = \min\left[1, \frac{p(\vec{\theta_1}|y)q(\vec{\theta_0}, \vec{\theta_1})}{p(\vec{\theta_0}|y)q(\vec{\theta_1}, \vec{\theta_0})}\right]$

- Same procedure, now generalized for *k*-order of model. \bullet It is organized in two steps.
- Before all, we begin with θ_k for model k. lacksquare
- 1. In-Model Step: The usual MH step, for model **k**.
- 2. Outer-Model Step:
- Propose new θ_m for model *m* from a given proposal distribution q.
- Essentially propose the "birth" or "death" of dimensions at each iteration.
- Accept, or reject with a probability:

$$\alpha = \min\left[1, \frac{p(y|\vec{\theta}_k)p(\vec{\theta}_k)q(\{k, \vec{\theta}_k\}, \{m, \theta_m\})}{p(y, \vec{\theta}_m)p(\vec{\theta}_m)q(\{m, \vec{\theta}_m\}, \{k, \theta_k\})}\right]$$

•Usually, this means that we have to compute a Jacobian term at each iteration, which is given by:

$$|\mathbf{J}| = \left| \frac{\partial(\vec{\theta}_m, u_m)}{\partial(\vec{\theta}_k, u_k)} \right|$$

- Same procedure, now generalized for *k*-order of model. ulletIt is organized in two steps.
- Before all, we begin with θ_k for model k. lacksquare
- 1. In-Model Step: The usual MH step, for model **k**.
- 2. Outer-Model Step:
- Propose new θ_m for model *m* from a given proposal distribution q.
- Essentially propose the "birth" or "death" of dimensions at each iteration.
- Accept, or reject with a probability:

$$\alpha = \min\left[1, \frac{p(y|\vec{\theta}_k)p(\vec{\theta}_k)q(\{k, \vec{\theta}_k\}, \{m, \theta_m\})}{p(y, \vec{\theta}_m)p(\vec{\theta}_m)q(\{m, \vec{\theta}_m\}, \{k, \theta_k\})}\right]$$

• Usually, this means that we have to compute a Jacobian term at each iteration, which is given by:

$$|\mathbf{J}| = \left| \frac{\partial(\vec{\theta}_m, u_m)}{\partial(\vec{\theta}_k, u_k)} \right|$$

Fortunately, in our case we use nested models

- Complicated models are essentially ensembles of simpler ones.
- Use independent proposals for each k.
- Very useful for multiple signals detection.
- Then, we get:

sterior

$$|\mathbf{J}| = 1$$

- Same procedure, now generalized for *k*-order of model. ulletIt is organized in two steps.
- Before all, we begin with θ_k for model k. lacksquare
- 1. In-Model Step: The usual MH step, for model **k**.
- 2. Outer-Model Step:
- Propose new θ_m for model *m* from a given proposal distribution q.
- Essentially propose the "birth" or "death" of dimensions at each iteration.
- Accept, or reject with a probability:

$$\alpha = \min\left[1, \frac{p(y|\vec{\theta}_k)p(\vec{\theta}_k)q(\{k, \vec{\theta}_k\}, \{m, \theta_m\})}{p(y, \vec{\theta}_m)p(\vec{\theta}_m)q(\{m, \vec{\theta}_m\}, \{k, \theta_k\})}\right]$$

A simple example. **Searching for Gaussian pulses.**

Video source: https://www.youtube.com/watch?v=wBTGoA_dllo N. Karnesis, AUTh, LISA DA: from classical methods to machine learning, 2022

What about the LISA Data Analysis? It really sounds quite painful to achieve convergence...

Two ways to improve One focusing on the sampler, the second on the waveforms/likelihoods.

- Ensemble Walkers.
- Delayed Rejection.
- Multiple Try.
- Parallel Tempering.

- GPU accelerated Waveforms.
- Advanced Search techniques.
- Efficient proposals.

- Ensemble Walkers.
- Delayed Rejection.
- Multiple Try.
- Parallel Tempering.

- Ensemble Walkers.
- Delayed Rejection.
- Multiple Try.
- Parallel Tempering.

D. Foreman-Mackey +, 2013

- Run multiple walkers in parallel.
- Sample a transform of the parameters: $\vec{\zeta} = A\vec{\theta} + b$ $p_{A,b}(\vec{\zeta}|y) = p_{A,b}(A\vec{\theta} + b|y) \propto p(\vec{\theta}|y)$
- Less sensitive to covariance "features".
- Use walkers to draw candidates (stretch proposal).

Allows for locating secondary maxima.

Healthier chains, good mixing.

- Ensemble Walkers.
- Delayed Rejection.
- Multiple Try.
- Parallel Tempering.

$$1 \wedge \left\{ \frac{p(\vec{\theta}_2|y)q(\vec{\theta}_1,\vec{\theta}_0)q(\vec{\theta}_2,\vec{\theta}_1,\vec{\theta}_0) \left[1-\alpha_1\left(\vec{\theta}_2,\vec{\theta}_1\right)\right]}{p(\vec{\theta}_0|y)q(\vec{\theta}_0,\vec{\theta}_1)q(\vec{\theta}_0,\vec{\theta}_1,\vec{\theta}_2) \left[1-\alpha_1\left(\vec{\theta}_0,\vec{\theta}_1\right)\right]} \right\}$$

Allows for locating secondary maxima.

Serial calculations

- Ensemble Walkers.
- Delayed Rejection.
- Multiple Try.
- Parallel Tempering.

$$\alpha(\vec{\theta}_{t-1},\vec{\theta}_t) = 1 \wedge \left\{ \frac{w(\vec{\theta}_t^j) + \sum_{n,n\neq j}^N w(\vec{\theta}_t^n)}{w(\vec{\theta}_{t-1}) + \sum_{n,n\neq j}^N w(\vec{\theta}_t^n)} \right\}$$

Allows for mapping the posterior surface.
 Healthier chains, good mixing.

Many likelihood evaluations.

- Ensemble Walkers.
- Delayed Rejection.
- Multiple Try.
- Parallel Tempering.

Healthier chains, good mixing.

Many likelihood evaluations.

Adaptive Parallel Tempering in action

As presented in Vousden et al 2016

N. Karnesis, AUTh, LISA DA: from classical methods to machine learning, 2022

A realization All of the above methods for improving, have one requirement:

- time.
- Parallelizing really helps!
 - Analyze the data in segments.
 - Parallelize MCMC processes.
- GPU waveforms/likelihoods change the game!

Many likelihood evaluations.

• Running this machinery with limited resources requires a long convergence

Erebor! A proposal for a pipeline

• M. Katz, J Gair (AEI), & N. Korsakova (APC Paris), N Stergioulas, NK (AUTh).

ttps://github.com/mikekatz04/Eryn

- Using Eryn plus:
 - 1. GPU accelerated Waveforms.
 - 2. Advanced Search techniques.
 - 3. Efficient proposals.
 - 4. Ability to search for multiple models.

See next talk of K. Lackeos!

N. Karnesis, AUTh, LISA DA: from classical methods to machine learning, 2022

And yet...

Tuning this type of algorithms is hard!

- The scale of the problem of LISA DA is huge!
- also ...
- Convergence greatly depends on efficiently sampling:
 - Need to improve acceptance rate.
- This is where different improvements/enhancements can enter.

• The algorithm needs to be exactly fine-tuned to the specific problem, also depending on the frequency band, also accounting for other types of sources,

- First run a search phase on the data.
- Subtract "loudest" sources.
- Get an estimate of residuals,
- and then run a set of RJ MCMC on those residuals, looking for the "harder-to-get" lower SNR signals.
- Use those samples we to construct efficient proposals!

- First run a search phase on the data.
- Subtract "loudest" sources.
- Get an estimate of residuals,
- and then run a set of RJ MCMC on those residuals, looking for the "harder-to-get" lower SNR signals.
- Use those samples we to construct efficient proposals!

- Fit probability distribution function from the samples.
- Use Normalising Flows as a density estimator.
- Train network by optimising Kullback–Leibler divergence between samples and transformed base distribution.

$$KL(p||q) = \sum_{x} p(x) \log \left[\frac{p(x)}{q(x)}\right]$$

Use estimated distribution for proposals.

• Trans-dimensional methods for LISA global fit are extremely useful.

- But also very hard to tune and scale them to the problem.
- We are in a good state though! [See next talk by K. Lackeos]
- Novel methods can help ease the burden of stochastic methods, or in some cases replace them entirely.
- The scale of the problem is so large, that any improvement counts!

N. Karnesis, AUTh, LISA DA: from classical methods to machine learning, 2022

p(k|y)Posterior:

Acceptance ratio: $\alpha =$

Proposal distributions for dimension matching parameters:

Map functions for different k:

Jacobian is Unity when we use independent proposals:

 $\theta_{k'} =$

 $\theta_k =$

N. Karnesis, AUTh, LISA DA: from classical methods to machine learning, 2022

$$) = \frac{p(y|k)p(k)}{p(y)} = \frac{\int_{\Theta_k} p(y|\theta_k, k)p(\theta_k|k)d\theta_k p(k)}{p(y)}$$

$$\min\left(1, \frac{p(k', \theta_{k'}|y) q_1(k; k') q_2(u)}{p(k, \theta_k|y) q_1(k'; k) q_2(u')} \left| \frac{\partial(\theta_{k'}, u)}{\partial(\theta_k, u')} \right|\right)$$

 $q_2(u)$ and $q_2(u')$

$$= g(\theta_k, u') \qquad \theta_k = g(\theta_{k'}, u)$$

$$g(\theta_{k'}, u) = u$$
 and $\theta_{k'} = g(\theta_k, u') = u'$

Godsill, 2001