SEARCHING FOR PRIMORDIAL FEATURES WITH LISA

JACOPO FUMAGALLI (ICCUB) LIDA WORKSHOP - Toulouse 21st – 25th November 2022

Based on

2012.02761, 2105.06481, 2110.09480, 2111.14664, 2112.06903 with S. Renaux-Petel & L. T. Witkowski, + G. Domenech, S.Sypsas, G.Palma, C. Zenteno , M. Pieroni + Work in Progress with CosWG LISA

Institut de Ciències del Cosmos UNIVERSITAT DE BARCELONA

INFLATION: WINDOW IN THE EARLY UNIVERSE

STRUCTURE IN THE UNIVERSE EMERGE FROM VACUUM QUANTUM FLUCTUATIONS

Perturbations: Almost scale-invariant, Gaussian, super-Horizon...

$$\mathcal{P}_{\zeta}(k) = A_s \left(\frac{k}{k_*}\right)^{n_s - 1} \sim 0.9649$$
$$\sim 2.2 \cdot 10^{-9}$$

PROBING THE HIGHEST POSSIBLE ENERGY SCALES

1) DEPARTURE FROM GAUSSIAN STATISTICS...

$$\langle \zeta_{k_L} \zeta_{k_S} \zeta_{k_S} \rangle \sim \left(\frac{k_L}{k_S}\right)^{3/2} \cos\left[\frac{m}{H}\log\left(\frac{k_L}{k_S}\right)\right] \mathbb{P}_S(\cos\theta)$$

..COLLIDER PHYSICS: mass & spin from specific limits of the three point function

Chen, Wang '09 Baumann, Green '11 Arkani-Hamed, Maldacena '15 Baumann, Lee, Piementel ''16

PROBING THE HIGHEST POSSIBLE ENERGY SCALES

2) DEPARTURE FROM SCALE INVARIANCE

LARGE SCALE FEATURES: CMB & LSS

DEVIATION FROM SCALE INVARIANCE AT SMALL SCALES

... an all industry motivared by dark matter in the form of PBH

PRIMORDIAL FEATURES AT SMALL SCALES

... an all industry motivared by dark matter in the form of PBH

PRIMORDIAL FEATURES AT SMALL SCALES

... Waiting for an HICCUPS IN THE WOMB ...

SMALL SCALE FEATURES in the SGWB

FEATURES IN THE PRIMORDIAL FLUCTUATIONS IMPRINT UNIQUE OSCILLATORY PATTERNS TO THE SGWB

After first proposal 2012.02761 EXPLICIT MODELS LEADING TO FEATURES PROLIFERATE

Dalianis, G.P. Kodaxis, I.D. Stamou, N. Tetradis and A. Tsigkas-Kouvelis '21 Battacharya, Zavala '22 ..

Addazzi, Capoziello, Gan '22 N. Mavromotos, V. Spanos, I. Stamou '22 ..

JF, S. Renaux-Petel, L. T. Witkowski, JCAP 2012.02761

L. T. Witkowski, G. Domenech, JF, S. Renaux-Petel JCAP 2110.09480

SEARCHING FOR FEATURES in LISA (HOMEMADE)

JF, S. Renaux-Petel, M. Pieroni, L. Witkowski JCAP 2112.09480

FISHER ANALYSIS: oscillations reconstructed at 10% if $h^2 \Omega_{\rm GW} \gtrsim 10^{-12} - 10^{-11}$

+ PCA reconstruction algorithm for a few benchmarks M.Pieroni, E. Barausse '20

within a wider project: <u>"Inflation parameter estimation working package"</u> GOALS:

- 1. Build a template bank for sgwb signals from inflation
- 2. Agnostic search with Binner algorithm Caprini et al. 1906.09244
- 3. Fisher forecast scan of the template parameter space
- 4. Montecarlo sampling to reconstruct signals from a few benchmark points

within a wider project: <u>"Inflation parameter estimation working package"</u> GOALS:

- 1. <u>Build a template bank for sgwb signals from inflation</u>
- 2. <u>Agnostic search with Binner algorithm</u> Caprini et al. 1906.09244
- 3. Fisher forecast scan of the template parameter space
- 4. Montecarlo sampling to reconstruct signals from a few benchmark points

- 3. Fisher forecast scan of the template parameter space
- 4. Montecarlo sampling to reconstruct signals from a few benchmark points

<u>PEAK IN SPECTRUM</u>

- 3. Fisher forecast scan of the template parameter space
- 4. Montecarlo sampling to reconstruct signals from a few benchmark points

SHARP FEATURE

CONCLUSIONS

FACT:

• Stochastic background new window to probe inflation at small scales and to search for primordial features

Huge amount of information hidden behind a possible discovery

PROSPECTS:

• Detectability with LISA and other GWS observatories under investigation

Many assumptions: noise, foreground etc.

To what extend we can reconstruct 10% oscillations?

• Building consistent theoretical frameworks

SPECULATION:

• Way to differentiate cosmological and astrophysical background? induced anistotropies?

PRIMORDIAL FEATURES

• SHARP FEATURE - Localized Event (Step in the potential / 2-stage / turn in field-space etc.,)

$$\mathcal{P}_{\zeta}(k) = \overline{\mathcal{P}}(k) \Big(1 + A_{ ext{lin}} \cos \left(\omega_{ ext{lin}} k + \phi_{ ext{lin}}
ight) \Big)$$

K periodic and a preferred scale selected $2/k_f$

 RESONANT FEATURE – Oscillations of BkG (Ex. Monodromy inflation / double turn / in-out horizon

$$\mathcal{P}_{\zeta}(k) = \overline{\mathcal{P}}(k) \Big(1 + A_{\log} \cos \left(\omega_{\log} \log(k/k_{\mathrm{ref}}) + \phi_{\log} \right) \Big)$$

$$\downarrow$$

$$\textit{Log-K Periodic } M/H$$