

# Detecting gravitational waves from extreme mass ratio inspirals using convolutional neural networks

Xue-Ting Zhang<sup>1</sup>, Chris Messenger<sup>2</sup>, Natalia Korsakova<sup>3</sup>, Man Leong Chan<sup>4</sup>, Yi-Ming Hu<sup>1</sup>, Jian-dong Zhang<sup>1</sup>

1 TianQin Research Center for Gravitational Physics & School of Physics and Astronomy, Sun Yat-sen University
2 SUPA, School of Physics and Astronomy, University of Glasgow
3 Artemis, Observatoire de la Côte d'Azur, Boulevard de l'Observatoire
4 Department of Applied Physics, Fukuoka University

Phys. Rev. D 105, 123027(2022)
LISA Data Analysis & Machine Learning Workshop, 2022.

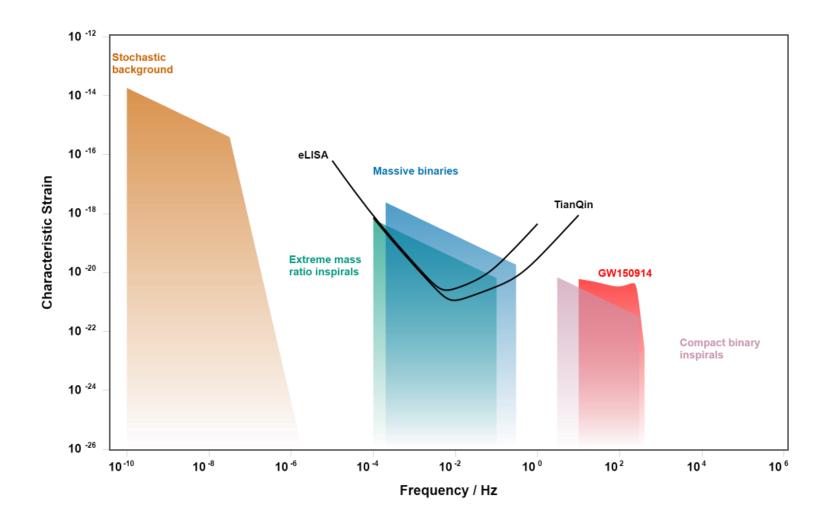


# **Outline**

- 1. Background
- 2. Methods & Results
- 3. Conclusion



## **□ GW** sources and Space-borne detectors

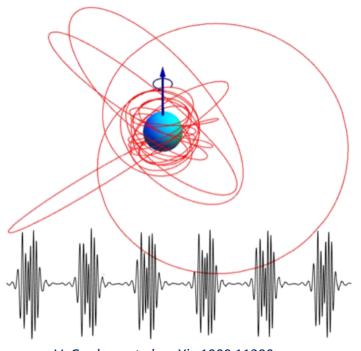




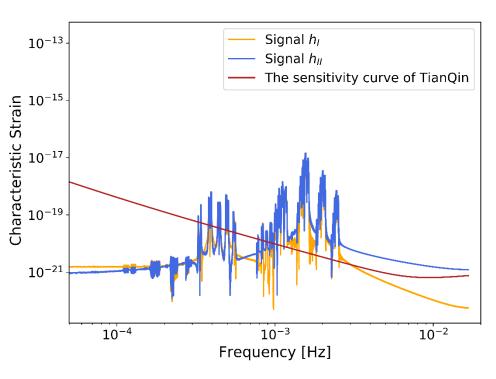
# **Extreme Mass Ratio Inspiral (EMRI)**

## □ CO-MBH system<sup>[1]</sup>

- > TianQin can observe O(1)-O(100) GW events [2].
- > ideal laboratories to study gravity in a strong regime.



V. Cardoso et al., arXiv:1908.11390



Responded signals from TianQin, 3 months long

<sup>[1]</sup> Amaro-Seoane, P. LRR. 2018, 21, 4.



# Challenges to EMRI signal detection

## Waveform modeling

requirement: accurate, efficient, extensive

| waveform           | paper                                                                                                                                                                                                                                                                                                                                         | difficulties                                                                                       |  |
|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|--|
| Kludge<br>waveform | AK: Leor Barack and Curt Cutler. PRD 69.8,; NK: [2] Stanislav Babak et al. PRD 75, 024005; AAK: Alvin J K Chua et al. CQG 32(2015) 232002;                                                                                                                                                                                                    | Most of the widely used waveform models are expected to quickly dephase from the physical waveform |  |
| Self-force         | [1] Poisson, E. LRR. (2004) 7: 6 [2] A. Pound, et al arxiv:1908.07419 [3] L. Steve Drasco et al. PRD 73, 024027; [4] L. Barack, CQG 26, 213001 (2009). [5] M. Van De Meent, PRD 97, 104033 (2018). [6] J. Miller, et al. PRD 103, 064048 (2021) [7] S. A. Hughes, et al. PRD 103, 104014 (2021) [8] J. McCart, et al. PRD 104, 084050 (2021), |                                                                                                    |  |
| others             | PW: [1] Yan Wang, et al. PRD, 2012, 86: 104050.<br>FEW: [2] Michael L. Katz, et al PRD 104, 064047                                                                                                                                                                                                                                            |                                                                                                    |  |

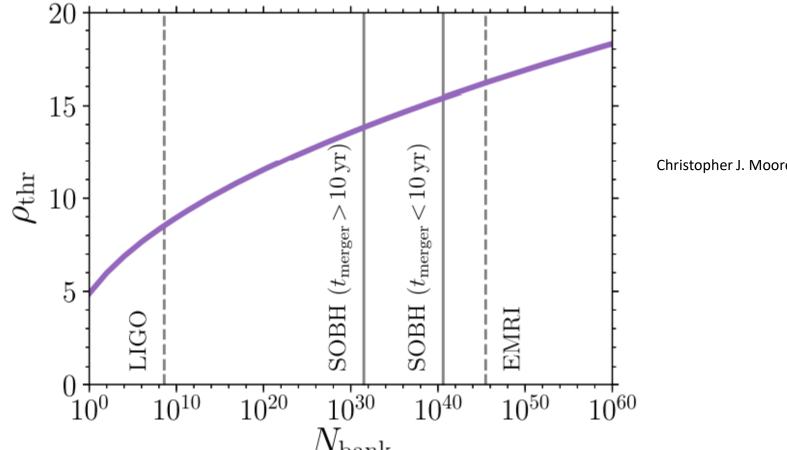
An ideal EMRI search method should be versatile enough, so that even though it was tuned under kludge waveforms, it can still be effective for a real signal.



# Challenges to EMRI signal detection

## **Signal Detection – matched filtering**

The template bank is huge. Both template-based algorithms and template-free methods have been proposed to detect the EMRI signals.



Christopher J. Moore, 2019



# **CNNs detect GW signals**

| paper                                          | content                                                                                      |  |
|------------------------------------------------|----------------------------------------------------------------------------------------------|--|
| George (2018)                                  | Using CNN to detect real BBH signals                                                         |  |
| Gabbard<br>(2018)                              | Using simulated BBH signals, they compare the performance between matched-filtering and CNN. |  |
| Schäfer (2020),<br>Chan(2020),<br>Bayley(2020) | Using CNN to detects more complex and long-lived GW signals, like BNS, continuous GW.        |  |



# Can we detect a EMRI signal by CNN-like machine learning algorithms?



## □ Detecting one EMRI signal buried on noise by using a CNN

| Decomposition       | Contents                                                                                      |
|---------------------|-----------------------------------------------------------------------------------------------|
| 1.Data preparation  | <ul><li>(1) Noise simulation</li><li>(2) Signal simulation</li><li>(3) Input sample</li></ul> |
| 2. Signal Detection | (1) Training a CNN by given training data (2) Testing a trained CNN by different testing data |

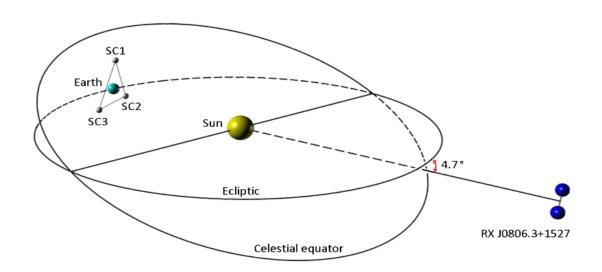


# **Outline**

- 1. Background
- 2. Methods & Results
- 3. Conclusion



# **Detector Configuration**



**Geocentric orbit, orientated to J0806.3+1527** 

Mission lifetime: 5 years

**Arm length:**  $\sim 10^5 \text{ km}$ 

**Sensitive curve:** 

$$S_n(f) = \frac{1}{L_{arm}^2} \left[ \frac{4S_a}{(2\pi f)^4} \left( \frac{1+10^{-4}}{f} \right) + S_x \right] \left[ 1 + 0.6 \left( \frac{f}{f_*} \right)^2 \right]. \quad \langle \widetilde{\mathbf{n}}^*(f) * \widetilde{\mathbf{n}}(f') \rangle = \frac{1}{2} S_{\mathbf{n}}(f) * \delta(f - f')$$



## **□** lower frequency approximation response

- > analytic kludge(AK) Waveform<sup>[1]</sup>:  $(M, \mu, \alpha, e_{lso}, \phi_0, \alpha_0, \lambda, \gamma_0, \nu_{lso}, \theta_S, \phi_S, \theta_K, \phi_K, t_c, D_L)$
- > Responded signals[2]:  $h_{I,II}(t) = F_{I,II}^+ h_+(t) + F_{I,II}^\times h_\times(t)$

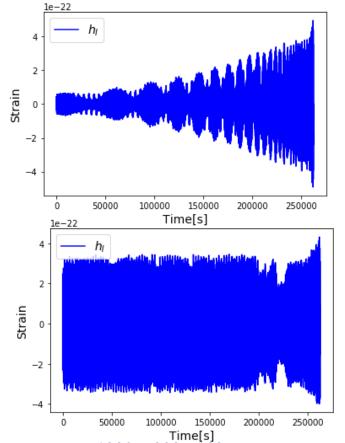
#### **Antenna Pattern functions:**

$$F_{I}^{+} = \frac{1}{2} (\mathbf{1} + \cos^{2} \theta) \cos 2\phi \cos 2\psi - \cos \theta \sin 2\phi \sin 2\psi$$

$$F_{I}^{\times} = \frac{1}{2} (\mathbf{1} + \cos^{2} \theta) \cos 2\phi \sin 2\psi + \cos \theta \sin 2\phi \cos 2\psi$$

$$F_{II}^{+} = \frac{1}{2} (\mathbf{1} + \cos^{2} \theta) \sin 2\phi \cos 2\psi - \cos \theta \sin 2\phi \sin 2\psi$$

$$F_{II}^{2} = \frac{1}{2} (\mathbf{1} + \cos^{2} \theta) \sin 2\phi \sin 2\psi + \cos \theta \sin 2\phi \cos 2\psi$$



[1] L. Barack and C. Cutler, Phys. Rev. D 69, 082005 (2004) [2] Curt Cutler, Phys. Rev. D57 (1998) 7089-7102

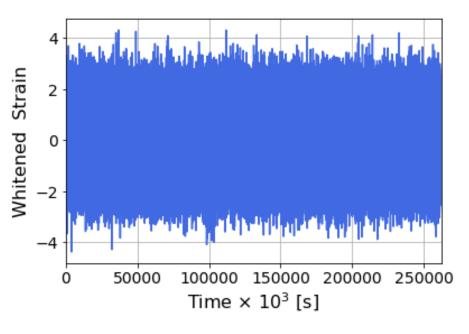


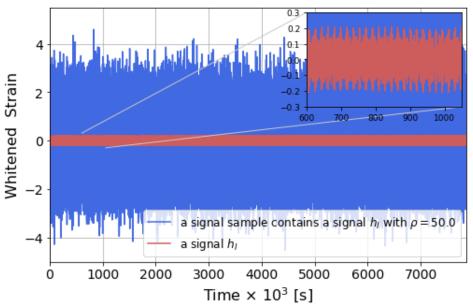
## □ noise-only sample and signal-plus-noise sample

Duration: 7864320 seconds

> Sample rate: 1/30 Hz

A input sample shape: (2, 262144)





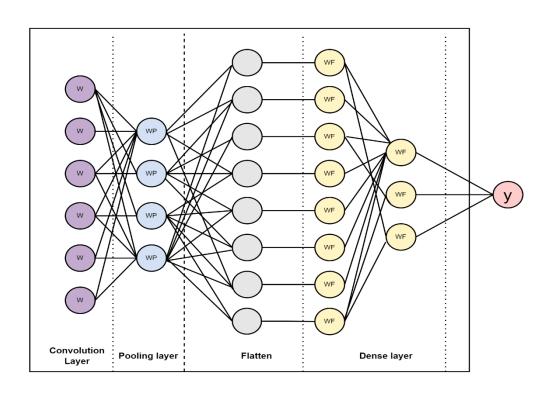


# Detection method

## □ convolutional neural network (CNN)

- a highly nonlinear function that maps the input space of the data to the output space:  $y = f_w(d)$
- **Binary classifier:**

$$y = P(H_1|d) = CNN(d), y^0 = P(H_0|d) = 1 - y$$

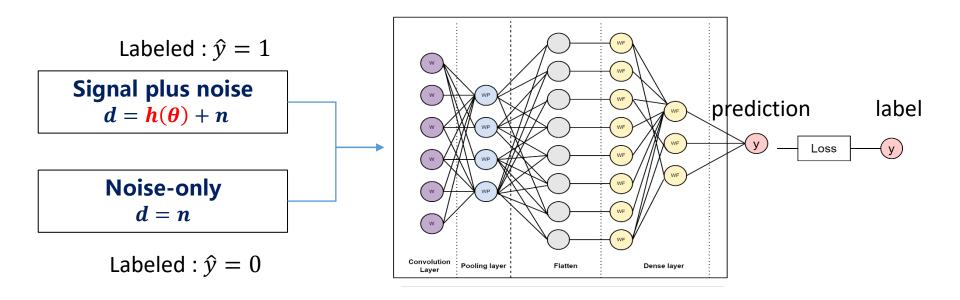




# Detection method

## □ Training phase

- $\succ$  Training data contains signals with SNR U[50, 120] by rescaling the  $D_L$
- > Loss function:  $\operatorname{Loss} = \frac{1}{N} \sum_{i} [\widehat{y}_{i} \log(y_{i}(Wd)) + (1 \widehat{y}_{i}) \log(1 y_{i}(Wd))].$



- Ntrain=500 000, Nval= 50 000, Nepoch=300, Nbatch=56
- Trained time: 10.5 days (GPU).



## **□** final CNN architecture

> The number of trained parameters of CNN: 2 803 618

|    | Layers      | kernel<br>number | kernel size                     | Activation function   |
|----|-------------|------------------|---------------------------------|-----------------------|
| 1  | Input       |                  | $matrix(size: 2 \times 262144)$ | • • •                 |
| 2  | Convolution | 32               | $matrix(size:1 \times 34)$      | $\operatorname{relu}$ |
| 3  | Pooling     | 16               | $matrix(size:1 \times 8)$       | relu                  |
| 4  | Convolution | 16               | $matrix(size: 1 \times 8)$      | relu                  |
| 5  | Pooling     | 16               | $matrix(size: 1 \times 6)$      | $\operatorname{relu}$ |
| 6  | Convolution | 16               | $matrix(size: 1 \times 6)$      | $\operatorname{relu}$ |
| 7  | Pooling     | 16               | $matrix(size: 1 \times 4)$      | $\operatorname{relu}$ |
| 8  | Flatten     |                  | •••                             |                       |
| 9  | Dense       |                  | vector(size: 128)               | $\operatorname{relu}$ |
| 10 | Dense       |                  | vector(size: 32)                | $\operatorname{relu}$ |
| 11 | Output      |                  | vector(size: 2)                 | softmax               |



# **Detection method**

## **□** Testing phase

 $\triangleright$  7 groups signal setups  $h(\theta)$  used as testing data

| number | $egin{array}{c} 	ext{waveform} \ 	ext{model} \end{array}$ | physical parameters distribution $\rho \in \text{uniform } [50,120]$                                                                                                         |                               | signal samples<br>number |  |
|--------|-----------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|--------------------------|--|
| 1      | AK                                                        |                                                                                                                                                                              |                               | 500                      |  |
| 2      | AK                                                        | $\rho > 50$ , astrophysical model M12                                                                                                                                        |                               | 500                      |  |
| 3      | AAK                                                       | $\rho \in \text{uniform } [50,120]$                                                                                                                                          |                               | 500                      |  |
| 4      | AK                                                        | $\rho$ enumerates 10, 20,, 130                                                                                                                                               |                               | 1000 ×13                 |  |
| 5      | AK                                                        | $M \text{ enumerates } 10^4, 10^{4.5},, 10^7 M_{\odot},  a = 0.98$                                                                                                           | z = 0.1 $z = 0.2$ $z = 0.3$   | $1000 \times 7 \times 3$ |  |
| 6      | AK                                                        | $M = 10^6 M_{\odot},  a \text{ enumerates } 0.0, 0.2, 0.4, 0.6, 0.8, 0.98$                                                                                                   | z = 0.1<br>z = 0.2<br>z = 0.3 | $1000 \times 6 \times 3$ |  |
| 7      | AK                                                        | $M = 10^{5.5} M_{\odot}, a = 0.98, z$ enumerates 0.1, 0.2<br>$M = 10^6 M_{\odot}, a = 0.0, z$ enumerates 0.1, 0.2,<br>$M = 10^6 M_{\odot}, a = 0.98, z$ enumerates 0.1, 0.2, | 0.3                           | $1000 \times 3 \times 3$ |  |

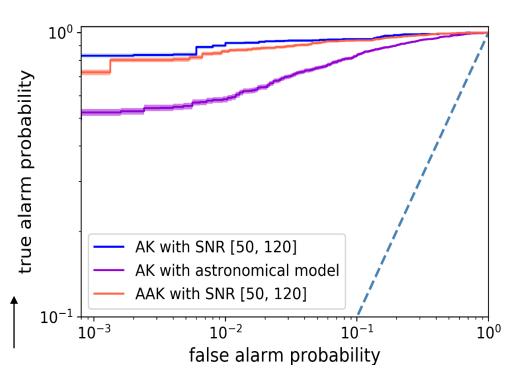


## □ receiver operator characteristics (ROC) curve: group 1-3

- > Blue: expected effectiveness, identical distribution to the training data
- > Red: waveform model from AK to AAK waveform.
- > Purple: parameters distribution is drawn from an astrophysical model.

| $y > y^*$ |        | prediction |       |
|-----------|--------|------------|-------|
|           |        | Signal     | noise |
| actual    | signal | ТР         | FN    |
|           | noise  | FP         | TN    |

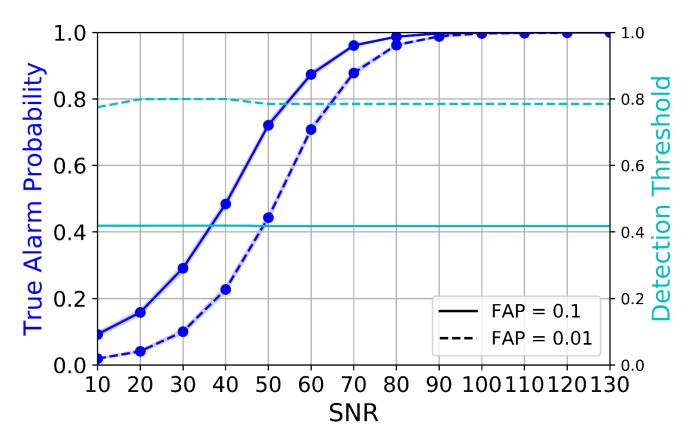
$$FAP = \frac{FP}{TN + FP}, \downarrow TAP = \frac{TP}{TP + FN}$$





## □ Efficiency Curve: group 4

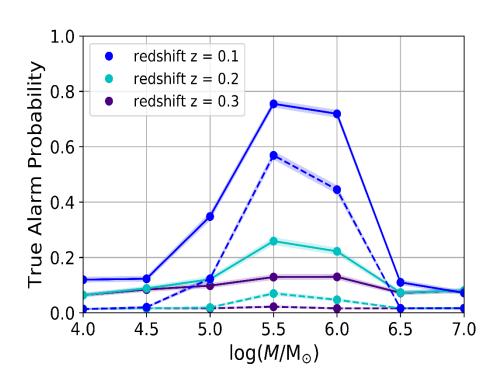
consistent with the expectation that the CNN exhibits higher sensitivity toward stronger signal, and for SNR of higher than about 100

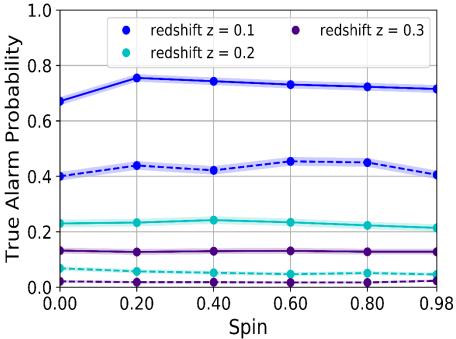




# □ Efficiency Curve: group 5-6

> Changes in other parameters can also lead to a different performance in TAP, but such differences can be mostly explained by the different SNRs

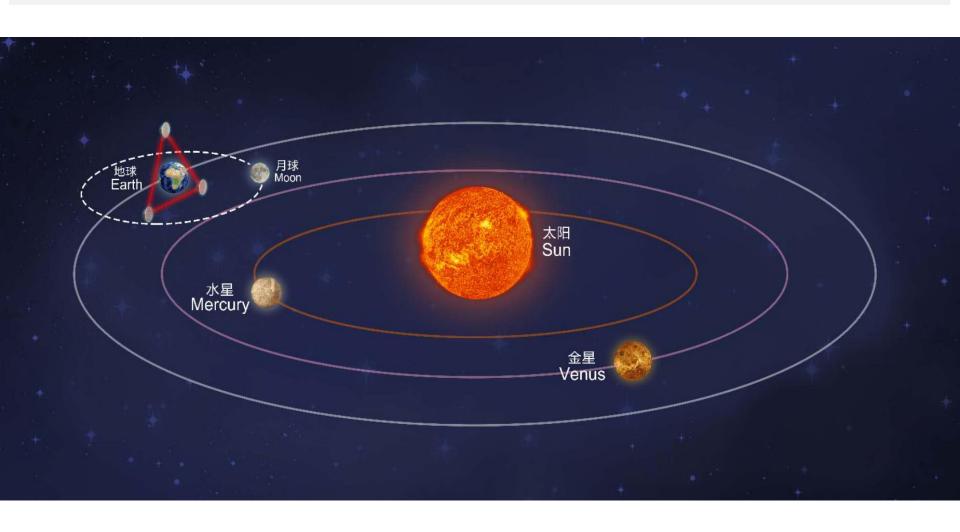




# **Conclusion**

- ➤ We demonstrate a proof-of-principle application of a CNN on the EMRIs signals detections, covering a wide range of astrophysical parameters and giving FAP and TAP analysis.
- CNN shows a good generalization ability against a change of waveform models. [AK &AAK test]
- ➤ We recognize that there are still lots of challenges to implement a reliable CNN to detect EMRI signals. For example, one needs to push the SNR threshold to the values lower than 50.





# Thank you!