

Detecting gravitational waves from extreme mass ratio inspirals using convolutional neural networks

Xue-Ting Zhang¹, Chris Messenger², Natalia Korsakova³, Man Leong Chan⁴, Yi-Ming Hu¹, Jian-dong Zhang¹

1 TianQin Research Center for Gravitational Physics & School of Physics and Astronomy, Sun Yat-sen University

2 SUPA, School of Physics and Astronomy, University of Glasgow

3 Artemis, Observatoire de la Côte d'Azur, Boulevard de l'Observatoire

4 Department of Applied Physics, Fukuoka University

Phys. Rev. D 105, 123027(2022)

LISA Data Analysis & Machine Learning Workshop, 2022.

Outline

Background
 Methods & Results
 Conclusion

□ GW sources and Space-borne detectors

Extreme Mass Ratio Inspiral (EMRI)

CO-MBH system^[1]

- > TianQin can observe O(1)-O(100) GW events^[2]。
- ideal laboratories to study gravity in a strong regime.

[2] Hui-Min Fan et al. PRD. 2020, 102: 063016.

Challenges to EMRI signal detection

Waveform modeling

requirement: accurate, efficient, extensive

waveform	paper	difficulties	
Kludge waveform	AK: Leor Barack and Curt Cutler. PRD 69.8,; NK: [2] Stanislav Babak et al. PRD 75, 024005; AAK: Alvin J K Chua et al. CQG 32(2015) 232002;	Most of the widely used waveform models are expected to quickly dephase from the physical waveform	
Self-force	 [1] Poisson, E. LRR. (2004) 7: 6 [2] A. Pound, et al arxiv:1908.07419 [3] L. Steve Drasco et al. PRD 73, 024027; [4] L. Barack, CQG 26, 213001 (2009). [5] M. Van De Meent, PRD 97, 104033 (2018). [6] J. Miller, et al. PRD 103, 064048 (2021) [7] S. A. Hughes, et al. PRD 103, 104014 (2021) [8] J. McCart, et al. PRD 104, 084050 (2021), 		
others	PW: [1] Yan Wang, et al. PRD, 2012, 86: 104050. FEW: [2] Michael L. Katz, et al PRD 104, 064047		

An ideal EMRI search method should be versatile enough, so that even though it was tuned under kludge waveforms, it can still be effective for a real signal.

Challenges to EMRI signal detection

Signal Detection – matched filtering

The template bank is huge. Both template-based algorithms and template-free methods have been proposed to detect the EMRI signals.

paper	content	
George (2018)	Using CNN to detect real BBH signals	
Gabbard (2018)	Using simulated BBH signals, they compare the performance between matched-filtering and CNN.	
Schäfer (2020), Chan(2020), Bayley(2020)	Using CNN to detects more complex and long-lived GW signals, like BNS, continuous GW.	

Can we detect a EMRI signal by CNNlike machine learning algorithms?

□ Detecting one EMRI signal buried on noise by using a CNN

Decomposition	Contents
1.Data preparation	(1) Noise simulation(2) Signal simulation(3) Input sample
2. Signal Detection	(1) Training a CNN by given training data (2) Testing a trained CNN by different testing data

Outline

Background
 Methods & Results
 Conclusion

Oetector Configuration

Geocentric orbit, orientated to J0806.3+1527 Mission lifetime: 5 years Arm length: $\sim 10^5$ km Sensitive curve:

$$S_n(f) = \frac{1}{L_{arm}^2} \left[\frac{4S_a}{(2\pi f)^4} (\frac{1+10^{-4}}{f}) + S_x \right] \left[1 + 0.6 \left(\frac{f}{f_*} \right)^2 \right]. \quad \langle \tilde{\mathbf{n}}^*(f) * \tilde{\mathbf{n}}(f') \rangle = \frac{1}{2} S_n(f) * \delta(f - f')$$

[1] Jun Luo et al 2016 Class. Quantum Grav. 33 035010

Kernel Simulation

□ lower frequency approximation response

- > analytic kludge(AK) Waveform^[1]: $(M, \mu, \alpha, e_{lso}, \phi_0, \alpha_0, \lambda, \gamma_0, \nu_{lso}, \theta_S, \phi_S, \theta_K, \phi_K, t_c, D_L)$
- > Responded signals[2]: $h_{I,II}(t) = F_{I,II}^+ h_+(t) + F_{I,II}^\times h_\times(t)$

Antenna Pattern functions:

$$F_{I}^{+} = \frac{1}{2} (1 + \cos^{2} \theta) \cos 2\phi \cos 2\psi - \cos \theta \sin 2\phi \sin 2\psi$$

$$F_{I}^{\times} = \frac{1}{2} (1 + \cos^{2} \theta) \cos 2\phi \sin 2\psi + \cos \theta \sin 2\phi \cos 2\psi$$

$$F_{II}^{+} = \frac{1}{2} (1 + \cos^{2} \theta) \sin 2\phi \cos 2\psi - \cos \theta \sin 2\phi \sin 2\psi$$

$$F_{II}^{2} = \frac{1}{2} (1 + \cos^{2} \theta) \sin 2\phi \sin 2\psi + \cos \theta \sin 2\phi \cos 2\psi$$

[1] L. Barack and C. Cutler, Phys. Rev. D 69, 082005 (2004) [2] Curt Cutler, Phys. Rev. D57 (1998) 7089-7102
 [3] K A Arnaud et al 2007 CQG 24 S551
 [4]Cornish N J and Rubbo L J 2003 PRD 67 022001

Input samples

□ noise-only sample and signal-plus-noise sample

- Duration: 7864320 seconds
- > Sample rate: 1/30 Hz
- A input sample shape: (2, 262144)

Oetection method

convolutional neural network (CNN)

- a highly nonlinear function that maps the input space of the data to the output space: y = f_w(d)
- Binary classifier:

 $y = P(H_1|d) = CNN(d), \qquad y^0 = P(H_0|d) = 1 - y$

□ Training phase

- > Training data contains signals with SNR U[50, 120] by rescaling the D_L
- ► Loss function: $L_{OSS} = \frac{1}{N} \sum_i [\hat{y}_i \log(y_i(Wd)) + (1 \hat{y}_i)\log(1 y_i(Wd))].$

- Ntrain=500 000, Nval= 50 000, Nepoch=300, Nbatch=56
- Trained time : 10.5 days (GPU).

Oetection method

□ final CNN architecture

> The number of trained parameters of CNN: 2 803 618

	Layers	kernel	kernel size	Activation
		number		function
1	Input		matrix(size: 2×262144)	•••
2	Convolution	32	$matrix(size:1 \times 34)$	relu
3	Pooling	16	$matrix(size:1 \times 8)$	relu
4	Convolution	16	matrix(size: 1×8)	relu
5	Pooling	16	matrix(size: 1×6)	relu
6	Convolution	16	matrix(size: 1×6)	relu
7	Pooling	16	matrix(size: 1×4)	relu
8	Flatten			
9	Dense		vector(size: 128)	relu
10	Dense		vector(size: 32)	relu
11	Output		vector(size: 2)	softmax

□ Testing phase

> 7 groups signal setups $h(\theta)$ used as testing data

number	waveform model	physical parameters distribution		signal samples number
1	AK	$\rho \in \text{uniform} [50, 120]$		500
2	AK	$\rho > 50$, astrophysical model M12		500
3	AAK	$\rho \in \text{uniform} [50, 120]$		500
4	AK	ρ enumerates 10, 20,, 130		1000×13
5	AK	M enumerates $10^4, 10^{4.5},, 10^7 M_{\odot}, a = 0.98$	z = 0.1 z = 0.2 z = 0.3	$1000\ \times 7\times 3$
6	AK	$M = 10^6 M_{\odot}, a$ enumerates $0.0, 0.2, 0.4, 0.6, 0.8, 0.98$	z = 0.1 z = 0.2 z = 0.3	$1000\ \times 6\times 3$
7	AK	$\begin{split} M &= 10^{5.5} M_{\odot}, a = 0.98, z \text{ enumerates } 0.1, 0.2\\ M &= 10^6 M_{\odot}, a = 0.0, z \text{ enumerates } 0.1, 0.2,\\ M &= 10^6 M_{\odot}, a = 0.98, z \text{ enumerates } 0.1, 0.2, \end{split}$, 0.3 0.3 0.3	$1000 \times 3 \times 3$

□ receiver operator characteristics (ROC) curve: group 1-3

- > Blue: expected effectiveness, identical distribution to the training data
- Red: waveform model from AK to AAK waveform.
- > Purple: parameters distribution is drawn from an astrophysical model.

□ Efficiency Curve: group 4

consistent with the expectation that the CNN exhibits higher sensitivity toward stronger signal, and for SNR of higher than about 100

D Efficiency Curve: group 5-6

Changes in other parameters can also lead to a different performance in TAP, but such differences can be mostly explained by the different SNRs

- We demonstrate a proof-of-principle application of a CNN on the EMRIs signals detections, covering a wide range of astrophysical parameters and giving FAP and TAP analysis.
- CNN shows a good generalization ability against a change of waveform models. [AK &AAK test]
- We recognize that there are still lots of challenges to implement a reliable CNN to detect EMRI signals. For example, one needs to push the SNR threshold to the values lower than 50.

