Modified Gravity Forecasting with Large Scale Structure in the LISA era, including a Machine Learning analysis

UNIVERSIDAD DISTRITAL FRANCISCO JOSÉ DE CALDAS Acreditación Institucional de Alta Calidad

Alexander Bonilla Rivera

Doutor em Física , Departamento de Física, ICE-UFJF, Brasil. Magister en Astrofísica, UV, Valparaiso, Chile. Licenciado en Física, UPN, Bogotá, Colombia.

Cosmology/ Astrophysics WG's, Associete Member, PI-DepFis-UFJF / North American Nanohertz Observatory for Gravitational Waves (NANOGrav Collaboration)

Cosmology /Astrophysics & Fundamental Physics, PI-UN-UD/ Laser Interferometer Space Antena (LISA Cosnsortium)

Galaxies /Cosmology & Fundamental Physics SWG's / next generation Event Horizon Telescope (ngEHT)

LISA data analysis: from classical methods to machine learning

21–25 de noviembre de 2022 L2IT Toulouse

- 1. Introduction and Motivation
- 2. Theoretical framework
 - 2.1. Gravitational waves in modified gravity
 - 2.2. Methodology and results
- 3. Summary and conclusions

- 1. Introduction and Motivation
- 2. Theoretical framework
 - 2.1. Gravitational waves in modified gravity
 - 2.2. Methodology and results
- 3. Summary and conclusions

Outline

Some theoretical problems with the standard model of cosmology...!

- 1. COSMIC COINCIDENCE PROBLEM: ¿Why the density of matter and dark energy today are of the same order of magnitude?.
- 2. Fine-Tuning PROBLEM: ¿Why is the cosmological constant so small?
- 3. QUANTUM VACUUM ENERGY DENSITY: ¿Why the calculated value of the cosmological constant from quantum field theory is 120 orders of magnitude larger than the observed?

$$G_{\mu\nu} + g_{\mu\nu}\Lambda = \frac{8\pi G}{c^4} T_{\mu\nu}$$

- 1. Alternative models of dark Energy: wCDM ($w \neq -1$), Chevalier-Polarski-Linder (CPL), Interacting Dark Energy (IDE), Generalized Chapliygin Gas (GCG)..etc.
- 2. Modified Gravity: f(R), f(T), Massive Gravity, Tensor, Vector, Scalar (Horndeski).
- 3. Holographic Dark Energy: Tsallis' entropy, Kaniadakis statistics, Fluid/ Gravity Duality.

Observational Constraints on f(T) gravity from varying fundamental constants

Rafael C. Nunes,^{1,*} Alexander Bonilla,^{1,†} Supriya Pan,^{2,‡} and Emmanuel N. Saridakis^{3,4,5,§}

 ¹Departamento de Física, Universidade Federal de Juiz de Fora, 36036-330, Juiz de Fora, MG, Brazil
 ²Department of Physical Sciences, Indian Institute of Science Education and Research – Kolkata, Mohanpur – 741246, West Bengal, India
 ³Instituto de Física, Pontificia Universidad de Católica de Valparaíso, Casilla 4950, Valparaíso, Chile
 ⁴Physics Division, National Technical University of Athens, 15780 Zografou Campus, Athens, Greece
 ⁵CASPER, Physics Department, Baylor University, Waco, TX 76798-7310, USA

$$\frac{\Delta \alpha}{\alpha}(z) \approx \frac{\left[1 - b \left(\frac{1 - \Omega_{m0}}{2b - 1}\right)\right]}{\left\{1 - b \left(\frac{1 - \Omega_{m0}}{2b - 1}\right) \left[\frac{H^2(z)}{H_0^2}\right]^{(b-1)}\right\}} - 1,$$

$$G_{eff}(z) = \frac{G_N}{1 - b \left(\frac{1 - \Omega_{m0}}{2b - 1}\right) \left[\frac{H^2(z)}{H_0^2}\right]^{(b-1)}},$$

Cosmological variation of the fine structure constant and the universal constant of gravitation

Introduction and Motivation

Important equations of Universe evolution

Same equation, new nomenclature:

$$H = \dot{a}/a$$

$$H_0 = \dot{a}/a)_{\text{today}}$$

$$\rho_{cr} = 3H_0^2/8\pi G$$

$$\Omega_i = \rho_i/\rho_{cr}$$

and some numbers:

$$H_0 = 67.3 \pm 1.2 \,\mathrm{km/s/Mpc}$$

Hubble tensión

Introduction and Motivation

$$\frac{k^3}{2\pi^2}P(k,z) = \delta_H^2 \left(\frac{ck}{H_0}\right)^{3+n} T^2(k,z) D_1^2(z) / D_1^2(0).$$

$$\sigma_R = \left[\int_0^\infty \frac{dk}{k} \frac{k^3}{2\pi^2} P(k) \left| \tilde{W}_R(k) \right|^2 \right]^{1/2},$$

Power spectrum of matter

Mass fluctuación R= 8 Mpc

- 1. Introduction and Motivation
- 2. Theoretical framework
 - 2.1. Gravitational waves in modified gravity
 - 2.2. Methodology and results
- 3. Summary and conclusions

GravWaves in modified gravity

Propagation Equation of GW's in FLRW background

$$ilde{h}_A'' + 2 \mathcal{H} [1-\delta(\eta)] ilde{h}_A' + k^2 ilde{h}_A = 0$$

 k^2 term as they change the speed of GWs \mathscr{H} Hubble parapetar in conformal time $\delta(z)$ enter as a fricción term

luminosity distance for the GWs

$$d_L^{gw}(z) = d_L^{em}(z) \exp\left\{-\int_0^z \frac{dz'}{1+z'} \,\delta(z')\right\}$$

- 1. Introduction and Motivation
- 2. Theoretical framework
 - 2.1.Gravitational waves in modified gravity2.2.Methodology and results
- 3. Summary and conclusions

Methodology and results

GW strain signal

Simulation: 1000 data points

Methodology and results

GW strain signal

Simulation: 1000 data points

Parameter	Pop III	Pop III + CMB
$H_0 [{\rm km}{\rm s}^{-1}{\rm Mpc}^{-1}]$	66.71 ± 0.95	66.92 ± 0.56
Ω_m	0.31 ± 0.11	0.3160 ± 0.0070

Parameter	No Delay	No Delay + CMB
$H_0 [{\rm km}~{\rm s}^{-1}~{\rm Mpc}^{-1}]$	$66.87^{+0.92}_{-0.63}$	67.21 ± 0.47
Ω_m	0.238 ± 0.078	0.3133 ± 0.0062

Parameter	Delay	Delay + CMB
$H_0 \ [\mathrm{km} \ \mathrm{s}^{-1} \ \mathrm{Mpc}^{-1}]$ Ω_m	$70.8 \pm 4.5 \\ 0.456^{+0.049}_{-0.13}$	67.78 ± 0.91 0.3098 ± 0.0092

Figure 2. LISA standard sirens at all redshifts from the three population models we consider in this work.

ArXv: 2110.07634

Methodology and results

- 1. Introduction and Motivation
- 2. Theoretical framework
 - 2.1. Gravitational waves in modified gravity
 - 2.2. Methodology and results
- 3. Summary and conclusions

