LISA data analysis in the presence of environmental effects

Laura Sberna (Max Planck Institute for Gravitational Physics, Potsdam)

with Toubiana, Caputo, Speri, Antonelli, Marsat, Babak, Cusin, Barausse, Pani, Tamanini, Caprini, Sesana, Dal Canton, Katz

arXiv:2001.03620, arXiv:2010.06056, arXiv:2205.08550, arXiv: 2207.10086

LIDA workshop, Toulouse 2022

LISA'S SPECIAL POWER: ENVIRONMENTAL EFFECTS

ENVIRONMENTAL EFFECTS: WHY CARE?

Blessing: Astrophysical insights!

- 1. Black hole formation scenarios
- 2. Galactic nuclei
- 3. Accretion disk phenomena
- 4. Multimessenger astronomy...

Laura Sberna (MPI for Gravitational Physics, Potsdam)

A **blessing** and a **curse**.

Blessing:

Isolated \bigcirc • ٠ [Stevenson+2016]

1. Understand the origin of LIGO binaries.

Laura Sberna (MPI for Gravitational Physics, Potsdam)

AGN

Figure 3. Schematic diagram illustrating the mechanisms affecting the BH population and driving binary formation and evolution. See Section 2 and Figure 2 for an overview and Section 3 for numerical details. [Tagawa+2020]

VS

Blessing:

1) Kinematic of stars and gas

[Thater+ 2019]

Laura Sberna (MPI for Gravitational Physics, Potsdam)

2. Study supermassive BHs. (...in yet another way, with LISA)

Laura Sberna (Max Planck Institute for Gravitational Physics, Potsdam)

Blessing:

3. Study accretion disks and Active Galactic Nuclei.

ENVIRONMENTAL EFFECTS: WHY CARE?

A **blessing** and a **curse**.

Curse 1 : Distinguish matter effects and modified gravity. [Barausse, Pani, Cardoso 2014]

$$h \sim h_{\rm GR} e^{i\delta(f)}$$

Varying G (and constant-rate accretion)

 $\delta = c (\pi \mathcal{M} f)^{-13/3}$

Curse 2: Models are still far from being realistic.

Curse 3: Data analysis/detection challenges.

Laura Sberna (Max Planck Institute for Gravitational Physics, Potsdam)

VS

A (BIASED) SELECTION:

1. STELLAR MASS BINARIES IN ACCRETION DISKS/NUCLEAR REGIONS

OUR MODEL SOURCE: GW190521

[Graham et al. 2020]

LIGO/Caltech/MIT/R. Hurt (IPAC).

+ Optical flare detected by the Zwicky Transient Facility

STELLAR-MASS BINARIES IN ACTIVE GALACTIC NUCLEI

$$a_{\bullet} \sim 700 \, M_{\bullet} \sim 10^{-3} \, \mathrm{pc} \, \left(\frac{M_{\bullet}}{10^8 M_{\odot}} \right)$$

STELLAR-MASS BINARIES IN ACTIVE GALACTIC NUCLEI

Detectability of accretion, friction, constant peculiar acceleration

0.4

0.6

Laura Sberna (MPI for Gravitational Physics, Potsdam)

$$\tilde{\phi}_{\text{accretion}} \sim -f_{\text{Edd}} \left[\pi f \mathcal{M}(1+z)\right]^{-13/3}$$

$$\tilde{\phi}_{\text{acceleration}} \sim \epsilon \left[\pi f \mathcal{M} (1+z) \right]^{-13/3}$$

$$\tilde{\phi}_{\rm dyn\,fr} \sim \rho \left[\pi f \mathcal{M}(1+z)\right]^{-16/3}$$

Easily captured by (negative) parametrised PN, small SNR loss in detection

GW190521-LIKE BINARIES SEEN BY LISA

Doppler (and Shapiro) effect

Laura Sberna (MPI for Gravitational Physics, Potsdam)

The problem: $T = 2 \operatorname{yr} \left(\frac{a}{700 M} \right)^{3/2} \left(\frac{M}{M} \right)^{1/2}$ 700 M. $10^8 M_{\odot}$

$$s(t) = h(t + d^{\parallel}(t) + d^{S}(t))$$

[LS et al. 2205.08550]

GW190521–LIKE BINARIES SEEN BY LISA

Laura Sberna (MPI for Gravitational Physics, Potsdam)

Doppler + Shapiro parameter estimation

5 % central BH mass

3% orbit radius

GW190521–LIKE BINARIES SEEN BY LISA

				•	-
					_
	_				_
					_
	1				
					-
					_
					_
_					_
					_
					-
5.	0	85	5	0	1

A (BIASED) SELECTION:

2. EXTREME MASS RATIO INSPIRALS IN ACCRETION DISKS

Laura Sberna (Max Planck Institute for Gravitational Physics, Potsdam)

(Unknown) fraction of all EMRIs detectable by LISA

[Dittmann, Miller 2019, Pan+ 2021]

Main effect: planetary-like migration

[Goodman, Rafikov 2001; GWs: Kocsis+ 2011, Yunes+ 2011,]

Previous estimates: detectable

[Yunes+ 2011, Kocsis+ 2011, Barausse+ 2014, Derdzinski+ 2020]

Our waveform model:

FastEMRIWaveforms (FEW)

[GPU accelerated by M. Katz! See <u>https://bhptoolkit.org</u> and L. Speri's talk (Friday morning)]

Laura Sberna (MPI for Gravitational Physics, Potsdam)

[Speri, LS et al. 2207.10086]

Laura Sberna (MPI for Gravitational Physics, Potsdam)

$$\frac{\dot{L}_{\text{environment}}}{\dot{L}_{\text{GW}}} = A r^{n_r}$$

Not captured by parametrised PN, captured by our generalised waveform model

[Speri, LS et al. 2207.10086]

Laura Sberna (MPI for Gravitational Physics, Potsdam)

a - 0.9

[Speri, LS et al. 2207.10086]

OTHER EXAMPLES

EMRIs and exotic matter: dark matter "spikes" [Cole+ 2022, Becker, Sagunski 2022, ...] bosonic clouds [Baumann+ 2021, Cole+ 2022, ...]

Lensing by local lens [D'Orazio, Loeb 2019, Toubiana, LS et al. 2020]

Adding eccentricity

[see talk by M. Garg or D'Orazio, Duffell 2021]

CONCLUSIONS: MACHINE LEARNING IN TOULOUSE

S DALL-E History Collections

Edit the detailed description

A duck orbiting around a supermassive black hole. Around the supermassive black hole there is an accretion disk and the rest of the galaxy.

Thank you!

LIDA workshop, Toulouse 2022

