

Love and EMRIs in SPA*

Gabriel Andres Piovano, Andrea Maselli and Paolo Pani

Sapienza, University of Rome & INFN Rome & University College Dublin

LIDA: from classical methods to machine learning, Toulouse 21-25 November 2022

*Based on arXiv:2207.07452

Intro

- EMRIs: capture of stellar-mass objects by a supermassive BH
- Primary targets of future space-borne observatory (LISA)
- Binary properties can be measured with great accuracy
- Response to tidal field reveals structure of a body

Tidal deformability is zero for a BH...

... while it is tiny but non-zero for an exotic object

All tidal effects can be encoded in the Tidal Love Numbers kKey question:

can we measure k of a supermassive exotic object in EMRIs?

We performed a parameter estimation with Fisher matrix approach using the Stationary Phase Approximation (SPA) plus a few tricks

Modeling the inspiral

Parameter estimation with the SPA

③ Conclusions and future perspective

Modeling the inspiral

Gabriel Andres Piovano

Tidal response in the extreme-mass-ratio limits

For $q = \mu/M \ll 1$, the (dimensionless) tidal deformabilities are

$$\lambda_1 = \frac{2}{3}k_1$$
 primary $\lambda_2 = \frac{2}{3}q^5k_2$ secondary

 k_1 enters at adiabatic order in the gravitational wave phase¹ TLN binding energy at 6PN

$$E_{TLN} = \frac{1}{2} \left(\frac{6}{r^6} + \frac{88}{3} \frac{1}{r^7} \right) k_1$$

TLN flux at 6PN

$$\mathcal{F}_{TLN}(r) = rac{128}{5} \Big(rac{1}{r^{10}} - rac{22}{21} rac{1}{r^{11}} \Big) k_1$$

¹Pani and Maselli, 2019

Radiation reaction equations

We consider circular, equatorial orbits with spins aligned. Small corrections due secondary spin χ and TLN k_1

$$E = E^0 + \sigma E^1 + E_{TLN}$$
 $\Omega(r) = \Omega^0(r) + \sigma \Omega^1(r)$

with $\sigma := S/(\mu M) = \chi q$.

Gravitational wave fluxes

$$\mathcal{F}(r,\Omega) = \mathcal{F}^{0}(r,\Omega^{0}) + \mathcal{F}_{TLN}(r) + \sigma \mathcal{F}^{1}(r,\Omega^{0},\Omega^{1})$$

 \mathcal{F}^0 and \mathcal{F}^1 computed with Teukolsky formalism² Evolution equations (expanded in q)

$$\frac{\mathrm{d}r}{\mathrm{d}t} = -q\mathcal{F}(r,\Omega) \left(\frac{\mathrm{d}E}{\mathrm{d}r}\right)^{-1} \qquad \frac{\mathrm{d}\Phi_{\mathrm{GW}}}{\mathrm{d}t} = 2\Omega(r(t))$$

²Piovano+,2021

Parameter estimation with the SPA

Gabriel Andres Piovano

Error estimate with Fisher Information matrices

In the high SNR limit

$$\begin{split} \Sigma_{ij} &= (\Gamma^{-1})_{ij} & \text{covariance matrix} \\ \Gamma_{ij} &= \sum_{\alpha = I, II} \left(\frac{d\tilde{h}_{\alpha}}{dx^{i}} \middle| \frac{d\tilde{h}_{\alpha}}{dx^{j}} \right)_{\vec{x} = \vec{x}_{0}} & \text{Fisher matrix} \\ (p_{\alpha}|q_{\alpha}) &= 4 \text{Re} \int_{f_{\min}}^{f_{\max}} \frac{df}{S_{n}(f)} \tilde{p}_{\alpha}^{*}(f) \tilde{q}_{\alpha}(f) & \text{scalar product} \end{split}$$

12 parameters for circular equatorial orbits with spins (anti)aligned

- intrinsic: masses (ln μ , ln M), spins (a, χ), t_0 , k_1
- extrinsic: ϕ_0 , angles $(\vartheta_S, \varphi_S, \vartheta_K, \varphi_K)$, distance $\ln D$

 Γ_{ij} is ill-conditioned: small error in $\Gamma_{ij} \implies$ large error in Σ_{ij} Problem exacerbated by computing $d\tilde{h}_{\alpha}/dx^{i}$ with finite difference methods

Frequency domain waveform with the SPA

Applicable for strictly monotonic frequency $\Omega(t)$

$$\tilde{h}_{\alpha}(f) = \frac{\mu}{D} (\pi f M)^{2/3} \mathcal{A}_{\alpha}(\tilde{t}(f)) \sqrt{\frac{\pi}{|\dot{\Omega}(\tilde{t}(f))|}} e^{-i(\tilde{\Phi}_{\alpha}(\tilde{t}(f)) \pm \pi/4)}$$
$$\tilde{\Phi}_{\alpha}(\tilde{t}(f)) = 2\pi f(\tilde{t}(f) - t_0) - 2(\phi(\tilde{t}(f)) - \phi_0) - \phi^{\mathsf{Dop}}(\tilde{t}(f)) - \phi_{\alpha}^{\mathsf{sh}}(\tilde{t}(f))$$

 $\alpha = I, II$ for the two LISA channels (in *long-wavelength approx*)

$$\begin{split} \phi_{\alpha}^{\mathsf{sh}}(t) &= \arctan\left(-\frac{A_{\alpha}^{\times}(t)}{A_{\alpha}^{+}(t)}\right) \qquad \mathcal{A}_{\alpha}(t) = \sqrt{(A_{\alpha}^{+}(t))^{2} + (A_{\alpha}^{\times}(t))^{2}}\\ A_{\alpha}^{+}(t) &= (1 + \cos^{2}\vartheta)F_{\alpha}^{+}(t) \qquad A_{\alpha}^{\times}(t) = -2\cos\vartheta F_{\alpha}^{\times}(t) \end{split}$$

 $\tilde{t}(f)$ is solution of

$$\Omega(t)=\pi f$$

Semi-analytic derivatives of waveforms with the SPA

Functions $\tilde{t}(f; \vec{x})$, $\phi(\tilde{t}(f; \vec{x}); \vec{x})$ and $r(\tilde{t}; \vec{x})$ depends implicitly on parameters $\vec{x} = (\ln M, \ln \mu, a, \chi, k_1)$ for SPA waveforms

By the theorem of the implicit functions

$$\left. rac{\partial ilde{t}(f;ec{x})}{\partial x^i} = \left. - rac{1}{\dot{\Omega}(t;ec{x})} rac{\partial \Omega(t;ec{x})}{\partial x^i}
ight|_{t = ilde{t}(f;ec{x})}$$

 $\phi(\tilde{t}(f;\vec{x});\vec{x})$ and $r(\tilde{t};\vec{x})$ are solutions of ODEs like

$$\frac{\mathrm{d}y}{\mathrm{d}t} = \mathscr{G}(t, y; \alpha) \qquad y(0) = y_0$$

then

$$\frac{\mathrm{d}}{\mathrm{d}t}\left(\frac{\partial y(t;\alpha)}{\partial \alpha}\right) = \frac{\partial \mathscr{G}(t,y,\alpha)}{\partial y}\frac{\partial y(t;\alpha)}{\partial \alpha} + \frac{\partial \mathscr{G}(t,y,\alpha)}{\partial \alpha} \qquad \frac{\partial y(0;\alpha)}{\partial \alpha} = 0$$

Testing the SPA waveforms

$$\mathscr{F}(h_{lpha}^{\mathrm{SPA}},h_{lpha}^{\mathrm{FFT}}) = \max_{t_{0},\phi_{0}} \frac{(h_{lpha}^{\mathrm{SPA}}|h_{lpha}^{\mathrm{FFT}})}{\sqrt{(h_{lpha}^{\mathrm{SPA}}|h_{lpha}^{\mathrm{SPA}})(h^{\mathrm{FFT}}|h^{\mathrm{FFT}})}}$$

â	channel	Ŧ
		0.9931
0.9	II	0.9970
0.99		0.9942
	II	0.9971

Table: Faithfulness \mathscr{F} between FFT $h_{\alpha}^{\rm FFT}$ and SPA $h_{\alpha}^{\rm SPA}$ waveforms

 ${\mathscr F}$ better than 0.993 for 1 year observation down to the Kerr ISCO³

 $(1-\sigma_{\rm SPA}/\sigma_{\rm FFT})$ of FFT and SPA standard deviations in the worst cases:

- no prior for χ : 15%
- prior for χ : 2%

³In agreement with Hughes+,2021

Fisher-matrix errors for the primary TLN

$M = 10^6 M_{\odot}, \mu =$	$10 M_{\odot}, \chi =$	$0, k_1 = 0.$	Sky	location f	fixed.
-----------------------------	------------------------	---------------	-----	------------	--------

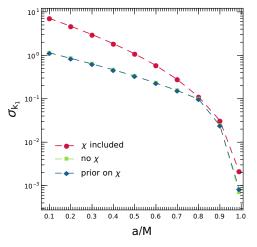
a/M	prior	In M	$\ln \mu$	a/M	χ	t_0/M	k_1	ϕ_0
0.9	no	-4.9	-4.1	-3.8	1.6	0.48	-1.5	0.74
	yes	-5.7	-4.2	-4.1	0.57	0.48	-1.6	0.74
0.99	no	-5.2	-4.6	-4.4	1.2	0.21	-2.7	0.74
	yes	-5.7	-4.8	-4.9	0.61	0.48 0.48 0.21 0.21	-3.1	0.74

Table: \log_{10} of the errors with and without imposing a prior on χ .

a/M	prior	In D	$\Delta\Omega_S$	ΔΩκ
0.9	no	-0.069	$6.2 imes10^{-4}$	7.5
	yes	-0.069	5.9×10^{-4}	7.5
0.99	no	-0.071	$2.7 imes10^{-4}$	6.7
	yes	-0.071	$2.7 imes10^{-4}$	6.7

Table: errors on $\ln D$ and sky location of source ($\Delta\Omega_5$) and primary spin ($\Delta\Omega_K$). TLN of the primary is measurable

Probing corrections at the horizon scale



Error on TLN k_1 for primary spins $a = 0.1, 0.2 \dots 0.9, 0.99$ distance δ of exotic compact object surface from its Schwarzschild radius $^{\rm 1}$

$$\delta \sim 2Me^{-1/k_1}$$

Valid for e.g. a wormhole or a gravastar

For $M \sim 10^6 M_{\odot}$ and $k \sim 5 \times 10^{-3}$ $\implies \delta \sim \ell_{\mathsf{Planck}}$

Potentially achievable with a = 0.99!

¹Maselli+,2018 and 2019

Conclusions and future perspective

Gabriel Andres Piovano

Conclusions

We estimated the error on the TLN k_1 of a supermassive object in EMRIs with a Fisher matrix approach and kludge waveforms

Summary:

- k_1 can be measured with great accuracy
- Potential to distinguish supermassive BH from a class of ECOs
- Probe Planck correction at the horizon for fast spinning primaries?

But there are some caveats:

- Focused on circular, equatorial orbits with spins aligned
- Neglected important self-force effects
- Assumed the PN terms of the TLN are still valid in strong regime
- \bullet How general is relation between the TLN and $\delta?^4$

⁴Datta, 2022

Future work

- Consider general orbits (eccentric and inclined)
- Include post-adiabatic corrections
- Test quadrupole deviations together with TLN⁵
- ${\mbox{\circ}}$ Use our approach for Fisher matrices to do parameter estimation with second order SF waveform 6

Most importantly

- Learn how to use FEW O^7 and play with it
- Speed-up everything in my life with GPUs and ML!

⁵Barack and Cutler,2006
 ⁶Wardell+,2021
 ⁷Katz+,2021

Final notes and acknowledgments

- code and data will be soon available at the GitHub repository https://web.uniroma1.it/gmunu/resources
- this work makes use of the BHPToolkit https://bhptoolkit.org/
- Feel free to contact me at gabriel.piovano@ucd.ie

Thank you for you attention!

Backup slides

Gabriel Andres Piovano

Gaussian prior

In the high SNR limit, the posterior distribution is approximated by a Gaussian distribution

$$\log p(\vec{\theta}|s) \propto \log p_0(\vec{\theta}) - \frac{1}{2} (\vec{\theta} - \vec{\theta}_{\mathsf{true}})^t \Gamma(\vec{\theta} - \vec{\theta}_{\mathsf{true}}) \equiv f(\vec{\theta})$$

Gaussian prior on χ , with $\sigma_{0,\chi} = 1$ and centered in $\chi = 0$

$$\log p_0(ec{ heta}) = -rac{1}{2}\chi^2\delta_{\chi i}$$
 with $\delta_{\chi i}$ delta Kronecker

We can then rewrite $f(\vec{\theta})$ as single quadratic form plus a constant term

$$f(\vec{\theta}) = -\frac{1}{2} \left(\vec{\theta} - \Gamma_{\text{pos}}^{-1} \vec{b} \right)^t \Gamma_{\text{pos}} (\vec{\theta} - \Gamma_{\text{pos}}^{-1} \vec{b}) + R$$

where

$$\Gamma_{\rm pos} = \Gamma + \delta_{\chi i} \qquad \vec{b} = \vec{\theta}_{\rm true} \Gamma \qquad R = \frac{1}{2} \Big(\vec{b}^t \Gamma_{\rm pos}^{-1} \vec{b} - \vec{\theta}_{\rm true} \Gamma \vec{\theta}_{\rm true} \Big)$$

Radiation reaction effects and balance laws

GW fluxes and waveforms computed with the Teukolsky formalism

$$\sigma \coloneqq rac{S}{\mu M} = rac{S}{\mu^2} q = \chi q$$
 with $q \ll \sigma \ll 1$ in EMRIs

At first order in the secondary spin⁸

$$\left(\frac{\mathrm{d}E}{\mathrm{d}t}\right)_{\mathrm{GW}} = -\frac{\mathrm{d}E}{\mathrm{d}t} \qquad \left(\frac{\mathrm{d}J_z}{\mathrm{d}t}\right)_{\mathrm{GW}} = -\frac{\mathrm{d}J_z}{\mathrm{d}t}$$

Technical assumptions:

- no radiation reaction on $S^{\mu
 u}$ and assumed S=cost
- orbits remain circular and equatorial

We employed the numerical routines of the BHPToolkitO ⁹

⁸Akcay+, 2019

⁹Black Hole Perturbation Toolkit https://bhptoolkit.org