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Signal unmixing problem

Lisa Data Challenge - LDC2a

Simulated LISA data - 1 year - mixed GBs and MBHBs
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Unmixing problem : getting back to separate sources
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State of the Art
Problem formulation and proposed solutions Our method : Interpolatory AutoEncoder

Results

Unmixing problem : exploiting an adapted representation
State of the art

m Parametric methods : MCMC
Physical relevance, parameter space exploration,
uncertainty quantification
— Costly, require efficient signal generative model,
sensitive to initialization

m Match filtering
Efficient, smooth extracted signal
— Need for big template basis, bias

m Dimension reduction : wavelet transform, PCA
Fast, don’t rely on generative model
— Linear models w.r.t. input signal

Our approach : Learn low-dimension non-linear representation
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Low dimension representations

Work well for :
m high dimension signal described by few parameters
m tackling multiple problems (e.g. detection, extraction, ...)

m Galactic Binaries signal analysis !

AutoEncoders
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1. Blelly, A., Moutarde, H., & Bobin, J. (2020). Sparsity-based recovery of Galactic-binary
gravitational waves.
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Interpolatory AutoEncoder : Direct space & manifold

Direct space

——
Xin i
a; b4 P aY ,.-'-“_;"'H [ ‘\ﬂ.x

a;

' WWWW&!M ‘

]

Direct space : R
Anchor points : (a;)1<i<m with m < N
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Interpolatory AutoEncoder : Latent space & interpolation

Direct space Latent space
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Fast interpolation Barycentric span projection
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Interpolatory AutoEncoder? : Learning & output

Direct space Latent space
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Unsupervised learning
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2. Bobin, J., Gertosio, R., Bobin, C., & Thiam, C. (2021). Non-linear interpolation learning
for example-based inverse problem regularization. github.com/jbobin/IAE
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Problem formulation and proposed solutions

State of the Art

Results

Our method : Interpolatory AutoEncoder

Results : Signal extraction

Fast Interpolation
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Results : Signal detection

Hypothesis testing
m Generate MBHB+noise and noise-only signals
m Run both through IAE and compute a metric on X,

m For a fixed false positive rate measure false negative rate

Fast Interpolatlon
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Conclusions and perspectives

Adaptative STF'T to capture inspiral

m Remark : loud MBHB can leak into residual during inspiral

m Not possible to extend [AE to arbitrary lengths
m Developed a hybrid method combining

m JAE to capture coalescence
m An adaptive Time-Frequency decomposition to adapt )
window size to instantaneous frequency and its derivative f
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Conclusions and perspectives

Take home message and outlooks

Non parametric methods are efficient tools for problems ahead
of parametric sampling such as detection and signal extraction

MBHB analysis :
m Tested a model of convolutive Interpolatory AutoEncoder
m Now finalizing benchmarking and comparisons

m Article in writing on this representation method for MBHB

Thank you!
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