

Introduction - current radio projects

Eigenfiltering - new technique to search for ultra-fast transients

10.1088/1361-6382/ab95e4

- binary pulsars

- quasars

<u>VAMPIRA</u> - provenance collection from a computationally intensive pipelines arXiv:2109.10759

(astronomy lead)

Kristen Lackeos

<u>MeerTime acceleration project</u> - imprint of source acceleration on random Gaussian light emission

Introduction - current GW+radio projects

EPTA collaboration

- pulsar timing

-absorption of GWs by the IGM 10.1088/1361-6382/ac5376

- emission of GWs by SMBH accretion disks

-Effelsberg observing

- check if new binaries discovered by MeerKAT are detectable by LISA (student project)

Introduction - current GW projects

<u>LISA</u>

- data analysis, parameter estimation

from MCMCs

- code development

https://github.com/tlittenberg/ldasoft

11	111111
1111	
	1
	111
11 00	000011
1110000	000000
00000	0000000
00000	0000000
00000	0000000
0000	000000
00	0000
= GBMCMC	Versio
f5ba624	059e5f5
	11 1111 1111 11 000 1110000 00000 00000 00000 00000 00000 00000

<u>10.1103/PhysRevD.101.123021</u>

- using ML to sort MCMC chain data into a catalog

LISA Data Challenge

The Global Fit problem

- 1. Number of detectable sources is an unknown—and is LARGE.
- 2. Sources are overlapping in time and frequency.
- 3. Individual overlaps between pairs are small. But see 1 above.

Massive black hole binaries

Galactic binaries

Extreme mass ratio inspirals

Stochastic GW background (cosmological and astrophysical origin) https://indico.in2p3.fr/event/27706/contributions/116314/attachments/74022/106498/lejeune_intro_lisada_.pdf

...with parameters: X

...with parameters: X

... the posterior probability density for the parameters is:

$$p(x \mid d, M) = \frac{p(d \mid x, M)p(x \mid M)}{p(d \mid M)}$$

Kristen Lackeos

Likelihood = "Goodness of Fit" for parameters Prior = Previously known values for parameters Marginalized Likelihood = "Goodness of Fit" for model

... with parameters: X

... the posterior probability density for the parameters is:

$$p(x \mid d, M) = \frac{p(d \mid x, f)}{p(d \mid x, f)}$$

MCMC produces independent samples from $p(x \mid d, M)$

Kristen Lackeos

 $M)p(x \mid M)$

Likelihood = "Goodness of Fit" for parameters Prior = Previously known values for parameters Marginalized Likelihood = "Goodness of Fit" for model

$p(x \mid d, M) = \frac{p(d \mid x, M)p(x \mid M)}{p(x \mid M)}$ $p(d \mid$

Kristen Lackeos

I.Stochastically sample large and complicated parameter spaces

II. Always converges, usually faster than grid-based approaches when parameter space is LARGE.

 \mathbf{M}

III. Detection, characterization, and quantifying confidence

IV. Stochastically sample between models with RJMCMC

Kristen Lackeos

Why MCMC?

Why MCMC?

Kristen Lackeos

I.Stochastically sample large and complicated parameter spaces

II. Always converges, usually faster than grid-based approaches when parameter space is LARGE.

III. Detection, characterization, and quantifying confidence

IV. Stochastically sample between models with **RJMCMC**

Observation time (months)	GBMCMC Catalog detections
1.5	1998
3.0	2758
6.0	6196
12.0	10027

	Observation	time	sky localisation	$\dot{f} > 0$	$\dot{f} < 0$	eclipsing	eclipsing with $\dot{f} > 0$	eclips
			10 sq. deg.					and well-l
	1.5		2	279	5	91	16	0
	3.0		3	553	1	372	48	0
ſ	6.0		25	1950	10	1027	275	4
	12.0		441	4239	20	1873	735	58

Kristen Lackeos

			-
Observation time	percent	percent	per
	unambiguous	confused	false
1.5	84	16	0.
3.0	88	12	
6.0	89	11	0.
12.0	88	12	0.

Catalog dection vs observing time

Kristen Lackeos

LDC00521646740

UCB Use Case Gallery

lisacattools

Below are examples using UCB catalogs. Catalog data products are formatted as pandas data frames and stored in HDF5 files. Top level catalog files have the list of all candidate detections, point estimates, etc. In addition, posterior samples for each candidate are stored as separate data frames and grouped together by frequency segments. There are different catalog products for different LISA observing times.

Lownload all examples in Python source code: examples_ucb_python.zip

Lownload all examples in Jupyter notebooks: examples_ucb_jupyter.zip

For the MCMC code see https://github.com/tlittenberg/ldasoft.git

Building catalogs with ML L2 -> L3

- **2** _ 🭠 👧 - 💏 LIJLLLLL

23

Parametrisation of the problem

Kristen Lackeos

Parameterization of Galactic binary signal

Parameter	Notation	units
θ	EclipticLatitude	Radian
φ	EclipticLongitude	Radian
\mathcal{A}	Amplitude	strain
f_0	Frequency	Hz
\dot{f}_0	FrequencyDerivative	Hz^2
l	Inclination	Radian
ψ	Polarization	Radian
ϕ_0	InitialPhase	Radian
T_{obs}	ObservationDuration	Seconds
Δt	Cadence	Seconds

LDC - Challenge 1: *Radler* Raw samples

Catalog production

LDC - Challenge 1: *Radler* Raw samples

Catalog detections

Kristen Lackeos

Kristen Lackeos

Kristen Lackeos

Kristen Lackeos

Kristen Lackeos

BLOCKED GIBBS SAMPLING

II. Hold Block B fixed and sample over A.

II. Hold Block B fixed and sample over A.

III.Repeat

II. Hold Block B fixed and sample over A.

III.Repeat

IV. Keep repeating...

II. Hold Block B fixed and sample over A.

III.Repeat

IV. Keep repeating...

V. Converges miserably for correlated blocks

Why Gibbs Sampling? SMBH

UCB

I. Correlations between different source types are small.

II. "Blocks" are developed independently w/ common API.

III. With clever scheduling is nicely parallelized.

IV. Blocks can be inserted/removed without disrupting the workflow.

Global Fit Design

