Massive Black Hole Binary parameter estimation using MaskedAutoregressive Flows

Ivan Martin Vilchez

LISA Data Analysis:from Classical Methods to Machine Learning
L2IT Toulouse, November 2I-25 2022

Towards a LISA DA pipeline

LISA LI

data

Posterior
$p(\boldsymbol{\theta} \mid \mathbf{d})$

Bayesian inference

Density estimation

- In practice,"classical" methods usually sample $p\left(\boldsymbol{\theta} \mid \mathbf{x}_{\text {obs }}\right)$ with e.g. MCMC.
- Use $p\left(\boldsymbol{\theta} \mid \mathbf{x}_{\text {obs }}\right) \propto p\left(\mathbf{x}_{\text {obs }} \mid \boldsymbol{\theta}\right) p(\boldsymbol{\theta})$ to get posterior samples.
- Sampling the likelihood can be tricky and take a long time...
- We'll try avoid computing $p(\mathbf{x} \mid \boldsymbol{\theta})$ at all using Machine Learning. Options:
I. Estimate $p(\mathbf{x}, \boldsymbol{\theta})$, then substitute $\mathbf{x}_{\text {obs }}$ to find $p\left(\boldsymbol{\theta} \mid \mathbf{x}_{\text {obs }}\right)$

2. Estimate $p(\boldsymbol{\theta} \mid \mathbf{x})$ directly, then substitute $\mathbf{x}_{\mathrm{obs}}$
3. Estimate $p(\mathbf{x} \mid \boldsymbol{\theta})$ and use Bayes to find $p\left(\boldsymbol{\theta} \mid \mathbf{x}_{\mathrm{obs}}\right)$

Normalising Flows

Consider a complicated "target distribution" $q(x)$.
Can we find an invertible transformation $x=f(z)$ such that, starting from a simple "base distribution" $p(z)$, we recover $q(x)$ via change of variable?

$$
\begin{gathered}
\int q(x) d x=\int p(z) d z=1 \\
q(x)=p(z)\left|\frac{d z}{d x}\right|=p\left(f^{-1}(x)\right)\left|\frac{d f^{-1}(x)}{d x}\right|
\end{gathered}
$$

For multivariate distributions,

$$
q(\mathbf{x})=p(\mathbf{z}) \mid \operatorname{det}]\left[f^{-1}(x)\right] \mid
$$

To create complex transformations, use compositions of simpler ones \rightarrow a flow of transformations:

$$
\begin{aligned}
& f(\mathbf{z})=\left[f_{k} \circ f_{k-1} \circ \cdots \circ f_{2} \circ f_{1}\right](\mathbf{z}) \\
&\left.q(\mathbf{x})=p(\mathbf{z}) \prod_{i=1}^{k} \mid \operatorname{det}\right]\left.\left[f_{i}\left(\mathbf{z}_{i-1}\right)\right]\right|^{-1}
\end{aligned}
$$

Masked Autoregressive Flows (MAF)

In summary: we will be chaining some transformation $f_{i}(\mathbf{z})$,
which needs to be:

- Invertible
- Differentiable
- Easy-to-compute det J (e.g., triangular J)
- Expressive!

Several exist in the literature.
We choose: $\quad x_{j}(\mathbf{z})=\mu_{j}+z_{j} \sigma_{j}\left\{\begin{array}{c}\mu_{j}=f_{\mu_{j}}\left(\mathbf{x}_{1, \ldots, j-1}\right), \\ \sigma_{j}=f_{\sigma_{j}}\left(\mathbf{x}_{1, \ldots, j-1}\right)\end{array}\right.$
This is equivalent to modeling

$$
q(\mathbf{x})=\prod_{j=1}^{D} p\left(x_{j} \mid \mathbf{x}_{1, \ldots, j-1}\right)=p\left(x_{1}\right) p\left(x_{2} \mid x_{1}\right) p\left(x_{3} \mid x_{2}, x_{1}\right) \ldots \rightarrow \begin{aligned}
& \text { This is our loss } \\
& \text { function! }
\end{aligned}
$$

Masked Autoencoder for Distribution Estimation (MADE)

MADE in practice: Masks

It is computationally easier to introduce masks M so that:
$\mathbf{h}^{l}\left(\mathbf{h}^{l-1}\right)=\boldsymbol{g}\left(\left(\mathbf{W}^{l} \odot \mathbf{M}^{\mathbf{w}^{l}}\right) \mathbf{h}^{l-1}+\mathbf{b}^{l}+\mathbf{W}_{\boldsymbol{\theta}}^{l} \boldsymbol{\theta}\right)$

For hidden layers:

$$
\mathbf{M}_{k^{\prime}, k}^{\mathbf{W}^{l}}=\left\{\begin{array}{lr}
1 & \text { if } m^{l}\left(k^{\prime}\right) \geq m^{l-1}(k) \\
0 & \text { otherwise }
\end{array}\right.
$$

For the output layer:

$$
\mathbf{M}_{k^{\prime}, k}^{\mathbf{W}^{L}}=\left\{\begin{array}{lr}
1 & \text { if } m^{L}\left(k^{\prime}\right)>m^{L-1}(k) \\
0 & \text { otherwise }
\end{array}\right.
$$

Stack several of these, with randomized ordering!

MAF
MAF

Towards a LISA DA pipeline

Posterior

```
MAF training
```


Data generation

Principal Component Analysis (PCA)

- Define
 Singular Value Decomposition (SVD)
- Approximately, one can decompose

$$
\mathrm{X} \approx \widetilde{\mathrm{X}}_{\boldsymbol{\sim}} r=\widetilde{\mathrm{U}} \tilde{\tilde{L}} \widetilde{\mathrm{~V}}^{T} \quad(r<n)
$$

- Then, for new $\underset{(\omega)}{\mathbf{d}} \rightarrow \underset{\omega}{\mathbf{x}}=\widetilde{\mathrm{C}}^{T} \mathbf{d}$ (is a data summary!

Principal Component Analysis (PCA)

Some results

Some results

Spritz

Some results

Conclusions

- We were able to successfully model the log-likelihood as a MAF
- Applications:
- Very fast evaluation of the likelihood
- GPU-accelerated MCMC, with gradients!
- Fast waveform emulators, possibly?
- Caveats:
- Tuned to narrow prior (but should be generalizable with enough compute power)
- Issues with actual LDC data
- Plenty of fine-tuning avenues

