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Towards a LISA DA pipeline
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Bayesian inference
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Posterior

Likelihood log 𝑝 𝐝 𝜽 = 

𝑛= 𝐴,𝐸,𝑇

2 𝐡 𝜽 𝐝 𝑛 − 𝐡 𝜽 𝐡 𝜽 𝑛

forward simulations!
integrals!

Prior

Evidence

𝑝 𝐝 = න𝑝 𝐝 𝜽 𝑑𝜽

even harder integrals!



Density estimation

▪ In practice, “classical” methods usually sample 𝑝 𝜽 𝐱obs with e.g. MCMC.

▪ Use 𝑝 𝜽 𝐱obs ∝ 𝑝 𝐱obs 𝜽 𝑝 𝜽 to get posterior samples.

▪ Sampling the likelihood can be tricky and take a long time…

▪ We’ll try avoid computing 𝑝 𝐱 𝜽 at all using Machine Learning.
Options:

1. Estimate 𝑝(𝐱, 𝜽), then substitute 𝐱obs to find 𝑝 𝜽 𝐱obs
2. Estimate 𝑝 𝜽 𝐱 directly, then substitute 𝐱obs
3. Estimate 𝑝 𝐱 𝜽 and use Bayes to find 𝑝 𝜽 𝐱obs
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Normalising Flows
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Consider a complicated “target distribution” 𝑞 𝑥 .

Can we find an invertible transformation 𝑥 = 𝑓(𝑧) such 

that, starting from a simple “base distribution” 𝑝 𝑧 , we 

recover 𝑞 𝑥 via change of variable?

න𝑞 𝑥 𝑑𝑥 = න𝑝 𝑧 𝑑𝑧 = 1

For multivariate distributions,

𝑞 𝐱 = 𝑝 𝐳 det 𝐉 𝑓−1 𝑥

In practice, this determinant 

is generally expensive to 

compute!

To create complex transformations, use 

compositions of simpler ones → a flow of 

transformations:

𝑓 𝐳 = 𝑓𝑘 ∘ 𝑓𝑘−1 ∘ ⋯∘ 𝑓2 ∘ 𝑓1 (𝐳)

𝑞 𝑥 = 𝑝 𝑧
𝑑𝑧

𝑑𝑥
= 𝑝 𝑓−1 𝑥

𝑑𝑓−1 𝑥

𝑑𝑥

Image: Janosh Riebesell @ github

https://github.com/janosh/awesome-normalizing-flows


MaskedAutoregressive Flows (MAF)

|  6

In summary: we will be chaining some transformation 𝑓𝑖(𝐳), 
which needs to be:

• Invertible

• Differentiable

• Easy-to-compute det 𝐉 (e.g., triangular 𝐉)
• Expressive!

Several exist in the literature.

We choose: 𝑥𝑗 𝐳 = 𝜇𝑗 + 𝑧𝑗 𝜎𝑗

This is equivalent to modeling

𝒩 𝑥𝑗 𝜇𝑗 𝑥1,…,𝑗−1 , 𝜎𝑗
2 𝑥1,…,𝑗−1

This is our loss 

function!

(Papamakarios et. al., arXiv: 1705.07057)



Masked Autoencoder for Distribution 
Estimation (MADE)
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(Germain et. al., arXiv: 1502.03509)



MADE in practice: Masks
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It is computationally easier to 

introduce masks 𝐌 so that:

𝐡𝒍 𝐡𝑙−1 = 𝒈( (𝐖𝒍 ⊙𝐌𝐖𝑙
)𝐡𝑙−1 + 𝐛𝑙 +𝐖𝜃

𝑙𝛉)

𝐌𝑘′,𝑘
𝐖𝑙

= ቊ
1 if 𝑚𝑙 𝑘′ ≥ 𝑚𝑙−1(𝑘)

0 otherwise.

For hidden layers:

For the output layer:

𝐌𝑘′,𝑘
𝐖𝐿

= ቊ
1 if 𝑚𝐿 𝑘′ > 𝑚𝐿−1(𝑘)
0 otherwise.

𝐌𝐖1
=

0 1 0
0 1 1
0 1 1
0 1 0

𝐌𝐖2
=

1 1 1 1
1 1 1 1
1 0 0 1
1 1 1 1

𝐌𝐖3
=

1 1 1 1
1 1 1 1
0 0 0 0
0 0 0 0
0 0 1 0
0 0 1 0

Stack several of these, 

with randomized ordering!
MAF

(Germain et. al., arXiv: 1502.03509)



MAF training

Towards a LISA DA pipeline
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Data generation
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20k(+2k) sources,

sampled from 𝑝(𝜽)

1 day around

merger

Downsample 

to Δ𝑡 = 15 s

3x7k datapoints

per source



▪ Define

▪ One can decompose

▪ Approximately, one can decompose

▪ Then, for new 𝐝 → 𝐱 = ෩U𝑇𝐝 is a data summary!

Principal Component Analysis (PCA)
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X = U Σ V𝑇

(m
row

s)

(𝑚 ≥ 𝑛)

(m, n) (m, m)
unitary

(m, n)
diag.

(n, n)
unitary

X ≈ ෩X𝑟 = ෩U ෨Σ ෩V𝑇
(m, n) (m, r) (r, r) (r, n)

(n columns)

(𝑟 < 𝑛)

𝐝𝑗 = U Σ V𝑗
𝑇

(m) (r) (r, m) (m)

Singular Value Decomposition (SVD)



Principal Component Analysis (PCA)
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Some results
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Validation



Some results
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Spritz



Some results
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"Spritz-like"



Conclusions

▪ We were able to successfully model the log-likelihood as a MAF

▪ Applications:

▪ Very fast evaluation of the likelihood

▪ GPU-accelerated MCMC, with gradients!

▪ Fast waveform emulators, possibly?

▪ Caveats:

▪ Tuned to narrow prior (but should be generalizable with enough compute power)

▪ Issues with actual LDC data

▪ Plenty of fine-tuning avenues
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