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Towards a complete L0-L2 pipeline
Progress in simulation, processing and analysis
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• Activity requested by ESA & LISA Consortium
- FMT Task 4.5 started only a few months ago
- Preparation for mission adoption over summer 2023
- Deliverables are a demonstration pipeline and some figures of merits (Before june?)

• Participants
- University of Glasgow (Jean-Baptiste Bayle, Christian Chapman-Bird, Graham Wohan)
- SYRTE (Olaf Hartwig, Aurelien Hees, Marc Lilley, Peter Wolf)

Context
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• Build a pipeline with various processing blocks

• Assemble the blocks and builds performance metrics

Method
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• Processing blocks exist in multiple versions (various configurations)
- Start with simplified configurations
- Increase model faithfulness (and processing accordingly) and assess metric variations

• Short timeframe, so restrict the activity to
- Rather simple target configuration
‣ Well separated loud Galactic binary sources

‣ Current best simulation model of the instrument

‣ Processing derived from 10.1103/PhysRevD.105.122008

‣ Parameter estimation based on LDC

- Identify impactful effects (and try to mitigate them?)

Method
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https://link.aps.org/doi/10.1103/PhysRevD.105.122008
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• Global TCB time 
- Defined as time shown of a perfect clock sitting at Solar system barycenter
- Global timescale, used for orbits and GW strain

• One proper time  for each spacecraft  ( )

- Defined as time shown by a perfect clock sitting in spacecraft 

- Related to  (and each other) by General Relativity

- Used to describe physics inside one spacecraft

• One onboard clock time  for each spacecraft  ( )
- Defined as time shown by the actual clock sitting in spacecraft 

- Differs from  by instrumental imperfections

- Only timescales directly accessible by the satellites

t
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• Use ESA numerically optimized orbits

• Interpolate spacecraft state vectors and compute necessary quantities (e.g., light 
travel times and relativistic relationships between reference frames) with

Bayle, Jean-Baptiste, Hees, Aurélien, Lilley, Marc, & Le Poncin-Lafitte, Christophe. (2022).  
LISA Orbits (2.0). Zenodo. https://doi.org/10.5281/zenodo.6412992

Orbits
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https://doi.org/10.5281/zenodo.6412992


• Compute frequency shift due to gravitational waves measured on each optical bench 
(link responses) in the spacecraft proper time frames with

Bayle, Jean-Baptiste, Baghi, Quentin, Renzini, Arianna, & Le Jeune, Maude. (2022). 
LISA GW Response (1.1). Zenodo. https://doi.org/10.5281/zenodo.6423436

• Model fully described described in documentation
- Deformation induced on link 12 is

- Reception time  of a photon emitted at  is

- We substitute and differentiate to obtain the frequency shift

- Resample to proper times  using orbits

t1 t2

̂τ1(t)

GW Response
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• Simulation model available in a paper in prep. and the LISA Instrument Simulation Model 
document (available here for the consortium members)

Bayle, Jean-Baptiste, Hartwig, Olaf, & Staab, Martin. (2022). 
LISA Instrument (1.1.1). Zenodo. https://doi.org/10.5281/zenodo.7071251

• Instrumental simulation includes
Optics (modulation and propagation of laser beams, main interferometric measurements and 
auxiliary measurements)
Dynamics (motion of spacecraft and test masses) – currently limited
Onboard processing (digital sampling, filtering and downsampling)

• Two sampling rates
- Measurements telemetered at 4 Hz

- Physics simulated at 16 Hz (inputs upsampled during simulation)

Instrument Simulation
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Instrument Simulation
Constellation Overview
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Instrument Simulation
Optical Bench Overview

• 3 main interferometric signals 
recorded on each optical bench
- Inter-spacecraft interferometer (ISI)
- Reference interferometer (RFI)
- Testmass interferometer (TMI)

• Interferometer data sampled  
according to onboard clock

• Modulate laser beams using  
clock signal to correct for sampling  
errors during L0-L1 processing
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• Electromagnetic field 

• GW signals encoded in the oscillating part of the field

• Simulate total frequencies   – not just strain!

E(τ) = E0(τ)cos(2πΦ(τ))

ν(τ) = ·Φ(τ)/2π

Instrument Simulation
Laser Beams

total instantaneous frequency

central frequency

frequency fluctuations

constant 281.6 THz frequency offsets
freq. plan, Dopplers, etc.

≈ 10 MHz

Noises, GW, etc.

≈ 100 Hz + 100 nHz
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• Onboard clocks used to sample data, therefore contribute to phase errors

• Phase modulation used to measure the in-band part of this clock noise

• Modeled as “independent”  
sideband beams (expansion with  
Bessel functions)

Instrument Simulation
Beam Modulation
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Instrument Simulation
Beam Propagation
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Instrument Simulation
Tilt to Length (TTL)

• Tilt to length couples beam tilts and optical 
element misalignment to pathlength changes

• Linear model with a set of 24 coefficients relating 
tilt angles to pathlength changes

• DWS allows to measure angular tilts of 2 beams by 
combining outputs of a quadrant photodiode
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• Phase is a frame invariant quantity, so total phase is equal at reception and emission

• Signals propagated between spacecraft using proper pseudoranges (PPRs), which 
include light travel times and conversion factor between spacecraft proper times

• In addition,

- GWs cause a tiny ( ) additional modulation of the PPR

- Additional Doppler shifts with frequency data
≈ 10−20 s

Instrument Simulation
Inter-spacecraft Propagation

νij←ji(τ) =
d
dτ

Φji(τ − dij(τ) − Hij(τ)) = (1 − ·dij(τ) − ·Hij(t))νji(τ − dij(τ))
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Instrument Simulation
Interferometry & Readout

• LISA uses heterodyne interferometry and GW is encoded as μ-cycle phase fluctuation 
in MHz beatnotes (in frequency)

• Beatnotes recorded according to local clock 
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Phasemeter

ν2 ≈ 280 THz

ν1 ≈ 280 THz

νBN = ν1 − ν2

≈ 5…25 MHz

80 MHz



Instrument Simulation
Laser Locking & Frequency Plan

• All beatnotes should fall into the phasemeter validity 
frequency range (5 to 25 MHz)
- Doppler shifts frequencies by 10s of MHz
- Solution: lock lasers (many configurations possible) 

with an optimized precomputed frequency plan

• Frequency plan optimized numerically by G. Heinzel

• As a consequence, noises are distributed over 
different beatnotes
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Instrument Simulation
Laser Locking & Frequency Plan
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Instrument Simulation
Onboard Processing

• In reality
- Phasemeter runs at 80 MHz

- Filtered and downsampled in several 
steps to final 4 Hz telemetry

• In simulation
- Physics and phasemeter at 16 Hz

- Single filter and decimation step to 4 Hz
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• Measured pseudoranges (MPRs)
- Correlate signals from two distant clocks
- Include photon light travel time and transformation  

between clock times  (and any 
correlation errors)

• Ground tracking provides estimates of
- Spacecraft positions with 2-50 km accuracy (direction 

dependent) and spacecraft velocities with 10 cm/s accuracy
- Time correlations between clocks and a global time frame 

(here UTC) better than ms accuracy

ΔT = ̂τi − ̂τj

MPR & Ground Tracking

24
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• Science data
- 3 interferometer data (carrier and sideband) on the 6 optical benches
- Measured pseudoranges (MPRs)
- Differential waveform sensor (DWS) measurements
- Other quantities not simulated currently (GRS, etc).

• Ground-tracking
- Reconstructed orbits
- Time correlations (clock times as a function of a global reference frame)

• Housekeeping and calibration stuff (lots of ’em)

L0 Data Overview

25



L0-L1 Processing



LISA Data Analysis Pipeline
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L0 Data Overview
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Here, L0-L1 pipeline for total frequency
Phase data will also be available, TBD if we gain anything in PE from using it…

1. Accurate estimation of the pseudoranges
- Merge ground-tracking, MPRs and sidebands to provide accurate and low-noise estimates 
- Compute light travel times for response function

2. Construct test-mass-to-test-mass measurements to reduce spacecraft motion
3. Reduce tilt-to-length using DWS measurements
4. Correct for laser and clock noise using TDI
5. Synchronize TDI variable to a global reference frame using time correlations
6. Compute AET channels (if actually useful for PE)

One Recipe (Amongst Others)

29



• We want to monitor the TM-to-TM measurement

• 3 Interferometers on each optical bench
- Inter-spacecraft interferometer (ISI)
- Test-mass interferometer (TMI)
- Reference(interferometer (RFI)

• Combined in early processing step to synthesize direct 
TM-to-TM measurement, with 1 laser per spacecraft

• Then subtract TTL via DWS measurements
- Coupling coefficients are estimated using dedicated  

calibration experiments (under investigation)

Single-Link Corrections
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Simplified LISA Link

η12 = D12Φ2 − Φ1

η21 = D21Φ1 − Φ2

Φ1

Φ2
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Φ1(te) ≡ D21Φ1(tr)
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Time-Delay Interferometry
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For more information on this 
 geometric interpretation of TDI, see  

arXiv:gr-qc/0504145 and arXiv:2001.11221
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Laser Noise Residual
… Assuming Realistic Orbits
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SΦ,TDI ≈ (2πf )2 δt2 SΦ

Average light travel times with ESA orbits:

33



TDI with desynchronized clocks
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Geometric TDI with Clock Times

35

1

2 3

t

⃗x

tc1tc2

Φt
1(tc1

) −Φt
1(tc2

)

≈ (tc1
− tc2

) ·Φt
1(tc1

)

Measurements 
in TCB:

tata

η13 −η12

tb1tb2

+D13η31 −D12η21

{Light travel time in TCB, 
Computed from S/C position 

estimates



36

1

2 3

t

⃗x

ta

tb1

tc1

ta

tb2

tc2

Φt
1(tc1

)

1

2 3

t

⃗x

−Φt
1(tc2

)

≈ (tc1
− tc2

) ·Φt
1(tc1

)

̂τ1(tc1
)

̂τ1(tc2
)

Φ ̂τ1
1 ( ̂τ1(tc2

)) −Φ ̂τ1
1 ( ̂τ1(tc1

))
≈ ( ̂τ1(tc1

) − ̂τ1(tc2
)) ·Φ ̂τ1

1 ( ̂τ1(tc1
))

Measurements 
in TCB:

Measurements 
in clock time:

̂τ1(ta)̂τ1(ta)

η ̂τ1
13 −η ̂τ1

12

̂τ3(tb1
)̂τ2(tb2

)

+D ̂τ1
13η

̂τ3
31 −D ̂τ1

12η
̂τ2

21

{Pseudorange, 
measurable on S/C

Geometric TDI with Clock Times



Clock Noise
… with Perfect Pseudoranges

• We can show that we get

• The mean value of  varies 
between , with a  
period of 2/year

• This is 10 orders of magnitude 
below the previous coupling to  
10 MHz beatnotes!

• Remark: noise-free variables still 
need to be sync. to TCB

• Remark 2: large drift can be 
subtracted — should we?

·Xt(τ)
±1 mHz
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X ̂τ1(τ) = Xt(τ − δ ̂τ1(τ)) ≈ Xt(τ) − ·Xt(τ)δ ̂τ1(τ)



• 25 MHz beatnotes require 40 fs/sqHz timing precision for μcycle signals: clocks not good enough!

• Correct clock noise alongside laser noise by properly time-shifting each individual sample 

• Any time shift applied in TDI inherits same timing requirement, if applied to total phase/frequency

38
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Clock comparison performance
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Sideband & PRN Modulation

2.4 GHZ + PRN

2.401 GHZ + PRN

S/C 1 S/C 2

≈
40



• PRN and sidebands allow 
measurement of 
pseudorange at 

 level

• Absolute value of 
pseudorange accurate to 

• Clock synchronisation to 
globale frame accurate  
to

40 fs Hz−0.5

≈ 3 ns (1 m)

≈ 0.1 ms (30 km)

Clock Compared Performance
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• Perform simulation with
- Realistic orbits
- Realistic laser, clock, 

sideband, PRN noises
- Ultimately limiting 

secondary noises

• Performance is unaffected 
by large clock drifts and 
offsets

• Noise due to clock 
correction depends on the 
beatnote frequency and is 
nonstationary

TDI Performance
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Time delay interferometry without clock synchronisation, 
O. Hartwig, J.-B. Bayle, M. Staab, A. Hees, M. Lilley, P. Wolf. 

arXiv:2202.01124
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• As first step, we 
consider a single 
verification binary

• Amplitude is boosted 
to give 4 year SNR in 
just 3 days

• Signal is clearly 
visible in TDI data

Current Outputs
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• After noise reduction, still need to synchronize resulting TDI channels to a global time 
frame at about 1ms accuracy
- Use directly clock information from ground tracking

• For the parameter estimation, we need estimates of the orbits and light travel times to 
compute the response function
- First try: directly feed-forward reconstructed orbits provided by MOC

- Also compute LTTs directly from MOC orbits (  accuracy )

• Impact of these procedures is one output of this study

≈ 1 ms

Time Synchronisation & Orbit Calculation
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• Once synchronized, we can combine multiple channels to construct quasi-orthogonal 
channels. For example, 
 
 
 

• Warning: these are not orthogonal in realistic scenarios!
- Arm lengths and individual noise levels not equal

• Impact under investigation…

• Could use other base channels, better orthogonalization, or skip AET and use the full 
covariance matrix

Orthogonal Channels
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Analytical Michelson
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• Assume realistic (but static) arm length mismatches

• Assume noise levels drawn from normal distribution with σ = 0.2



• Some processing steps envisioned as 
part of L0-L1 will require to fit some 
parameters to the data

• TTL coefficients are not known 
sufficiently well a-priori
- Fit DWS measurement coupling factors 

by minimizing the noise

• Pseudorange measurements might 
contain additional unmodeled biases
- Fit ranging bias by minimizing noise in 

TDI combinations

A Word on TTL & TDIR
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$
L1-L2 Parameter Estimation

Thanks Christian Chapman-Bird!



• Single galactic binary with optimal SNR of 100 
for a 4-year dataset
- For ease of testing, reduce to 3 days of 

data and rescale amplitude
- Sky position fixed: "verification binary"
- Equal-armlength orbits and aforementioned  

primary/secondary noise sources enabled 

• Parameters are recovered well (except phase, 
likely an error with epochs somewhere!)

• We see good agreement between working in  
2nd-generation AE(T) or XYZ, but for more  
realistic orbits we expect biases to emerge  
if diagonal covariance matrix is assumed

Current Progress 
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• Adapt the FastGB waveform model to incorporate
- More realistic orbits, including unequal and time- 

varying armlengths
- Use of orbital information obtained from ground  

tracking, instead of evolving a dynamical model
- Eventually, merge these changes with existing  

GBGPU waveform model
• Extend simulation duration to 4 years and enable  

further noise sources
- Verify that sky localisation and frequency derivative inference are performed successfully

• Experiment with various noise sources to probe the resulting impact on parameter estimation
- Explore under which scenarios parameter estimation will incur biases

Next Steps
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%
Conclusion & Outlook



• Many analysis methods to extract source parameters under development
• These methods often rely on simplifying assumptions, not necessarily 

reflecting the full complexity of the LISA data
• We work on checking (some of) these assumptions by building a (more) 

realistic simulation-processing-analysis pipeline
• We go from simple configurations (close to current LDC) and slowly add 

realistic features and processing elements to check that they do not break 
anything

• Activity started by defining the target configuration and run the pipeline with 
a simple configuration – PE works (mostly) as expected!

Conclusion & Outlook
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