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Objective
• Original objective: investigate how well we will be 

able to determine the individual masses of accreting 

binary white dwarfs (BWDs) using LISA’s 

measurements of  and 

• Along the way, we have effectively added studies on 

the measurability of a few other parameters

𝑓𝐺𝑊 �̇�𝐺𝑊
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Background

• Sky-averaged gravitational waveforms can be resolved into an amplitude, times the 

cosine of a time-varying phase, 

𝐴,  

𝜙(𝑡)

• General concept: the more that parts of the GW waveform depends on WD parameters (mass, 

radius, etc.), the better we will be able to measure these parameters

Measurable components of 
• GW frequency, 
• Luminosity distance, 

•
Chirp mass, 

𝑨:
𝑓𝐺𝑊

𝑑

ℳ𝑐 = (𝑚𝑑𝑚𝑎)3/5

(𝑚𝑑 + 𝑚𝑎)1/5

Measurable components of 
• GW frequency, 
• GW frequency derivative, 

𝜙(𝑡):
𝑓𝐺𝑊

�̇�𝐺𝑊



Expressing  and 𝑓𝐺𝑊 �̇�𝐺𝑊

• Roche lobe filling:   (semi-major axis)

• Kepler’s third law: 

𝑟𝑑~𝑎

𝑓𝐺𝑊 ~
𝑚𝑑+𝑚𝑎

𝑎3

𝑓𝐺𝑊 ~( 𝑚𝑑 +  𝑚𝑎

𝑟𝑑3 )
1/2

• Differentiating to get  introduces a new parameter, 𝑓𝐺𝑊  �̇�𝐺𝑊

𝜂𝑑 =
𝑑ln𝑟𝑑

𝑑ln𝑚𝑑

�̇�𝐺𝑊 ~(ℳ𝑐)5/3𝑓𝐺𝑊
11/3 ×

−3𝜂𝑑 + 1
5
6 + 1

2 𝜂𝑑 − 𝑚𝑑

𝑚𝑎
− 𝑟h1/2(1 + 𝑚𝑑

𝑚𝑎
)
1/2

�̇�𝐺𝑊 ~(ℳ𝑐)5/3𝑓𝐺𝑊
11/3 ×

𝐹𝑚𝑑

𝑀 − 3(𝜂𝑑 − 1
3 +

𝐹𝑚𝑑

3𝑀 )
5
6 + 1

2 𝜂𝑑 + (𝐹 − 1) 𝑚𝑑

𝑚𝑎
− 𝐹𝑚𝑑

3𝑀 − 𝑟h1/2(1 + 𝑚𝑑

𝑚𝑎
)
1/2

[Credit: Swinburne University of Technology] 



Including  as a 
parameter?

𝑑

[Breivik et al. arXiv:1710.08370]

𝐴~
ℳ𝑐

𝑑 (ℳ𝑐 𝑓(𝑚𝑑,  𝑚𝑎, 𝑟𝑑))2/3

or 

 

𝜃𝑖 = (𝜙0, 𝑚𝑑, 𝑚𝑎, 𝑟𝑑, 𝜂𝑑) 

𝜃𝑖 = (𝜙0, 𝑚𝑑, 𝑚𝑎, 𝑟𝑑, 𝜂𝑑, 𝑑)



Parameter estimation technique: 
Fisher analysis
• Sky-averaged gravitational waveform: 

• For some parameter set, , define the Fisher information matrix: 

h(𝑡) = 𝐴cos𝜙(𝑡)

𝜃𝑖

Γ𝑖𝑗 = ( 𝜕h
𝜕𝜃𝑖

𝜕h
𝜕𝜃𝑗 )
1-  measurement uncertainty: 𝜎 Δ𝜃𝑖 = (Γ−1)𝑖𝑖

• Separately consider two parameter sets:  and 𝜃𝑖 = (𝜙0, 𝑚𝑑, 𝑚𝑎, 𝑟𝑑, 𝜂𝑑)
𝜃𝑖 = (𝜙0, 𝑚𝑑, 𝑚𝑎, 𝑟𝑑, 𝜂𝑑, 𝑑)



GW strain magnitude vs. LISA’s noise

• Strain

• Plots assume  kpc

• Good chance of resolving 

GW strain for systems with 

larger donor WDs 

~
ℳ𝑐

5/3

𝑑
𝑓𝐺𝑊

2/3

𝑑 = 10

Curves start here



Parameter estimation results: 

 𝜃𝑖 = (𝜙0, 𝑚𝑑, 𝑚𝑎, 𝑟𝑑, 𝜂𝑑)



Assumptions

• Luminosity distance is independently measured to be 1 kpc
• LISA’s noise curve from Robson et al. [arXiv:1803.01944 ]
• 4-year observation period 
• Gaussian priors:  𝜎𝑚𝑑

= 0.1 𝑀⊙, 𝜎𝑚𝑎
= 1.2 𝑀⊙

Priors:  𝜎𝑚𝑑
= 0.08 𝑀⊙,

𝜎𝑚𝑎
= 1.2 𝑀⊙



Error on  , 𝑚𝑑 𝑚𝑎



Error on  𝑟𝑑, 𝜂𝑑



Summary: parameter estimation with 𝜃𝑖 = (𝜙0, 𝑚𝑑, 𝑚𝑎, 𝑟𝑑, 𝜂𝑑)

• If  is known, we have a fair chance of constraining the individual masses for relatively 

higher-mass combinations when we impose the priors,  and 

• Under these conditions, there is also a fair chance of constraining  and  

𝑑

𝜎𝑚𝑑
= 0.1 𝑀⊙

𝜎𝑚𝑎
= 1.2 𝑀⊙

𝑟𝑑 𝜂𝑑



Parameter estimation results: 

 𝜃𝑖 = (𝜙0, 𝑚𝑑, 𝑚𝑎, 𝑟𝑑, 𝜂𝑑,  𝑑)



Assumptions
• Now, we make no assumptions for the value of 
• LISA’s noise curve from Robson et al. [arXiv:1803.01944 ]
• 4-year observation period 
• Gaussian priors:  

𝑑

𝜎𝑚𝑑
= 0.1 𝑀⊙, 𝜎𝑚𝑎

= 1.2 𝑀⊙



Error on the 
masses

• When  is included as a parameter, the parameter 

estimation simply returns the priors

• We gain no additional constraints on the 

individual masses

𝑑



Error on , 𝑟𝑑 𝜂𝑑

Compare with 
results for the 
five-parameter 
set



Conclusion and 
Future Work

• We use a Fisher analysis to estimate the measurability of WD masses 
and other parameters 

➢ If we do not include the 
luminosity distance as a 
parameter, we have a fair 
chance of constraining  

,  and  when we 
impose pr ior s on the 
masses

𝑚𝑑,
𝑚𝑎 𝑟𝑑 𝜂𝑑

➢ If we do include  as a 
parameter, the measurability 
of  and  does not change 
significantly, but we can no 
longer constrain  and 

𝑑

𝑟𝑑 𝜂𝑑

𝑚𝑑 𝑚𝑎

• Consider the case of non-conservative mass transfer
o  �̇�𝑎 = − (1 − 𝐹 )�̇�𝑑,  𝐹 > 0



Interpreting 𝜂𝑑 =
𝑑ln𝑟𝑑

𝑑ln𝑚𝑑

• defines the response of the donor WD to mass loss
• For the very low-mass WDs we consider ( ),  varies depending on the stage of evolution 

(“early” or “late”) as follows: 

𝜂𝑑 
≲ 0.1𝑀⊙ 𝜂𝑑

Early stage
o WD has a thick hydrogen envelope
o Nondegenerate envelope, degenerate core
o Radius decreases as mass decreases  > 0⟹  𝜂𝑑

Late stage
o No hydrogen envelope
o Only a degenerate core remains
o Radius increases as mass decreases  < 0⟹  𝜂𝑑

Time of highest 
emitted GW strain



Late stage of evolution
• Analytic mass-radius relation given by P.P. Eggleton [Verbunt 

and Rappaport ApJ 332 193 (1988)] 

•

•  is determined by just   [Breivik et al. 
arXiv:1710.08370]

𝜂𝑑 =
𝑑 ln𝑟𝑑

𝑑 ln𝑚𝑑
=

𝑚𝑑

𝑟𝑑
×

𝑑𝑟𝑑

𝑑𝑚𝑑

𝑓𝐺𝑊 𝑚𝑑

𝑓𝐺𝑊 ~( 𝑚𝑑+ 𝑚𝑎

𝑟𝑑3 )
1/2

[Breivik et al. arXiv:1710.08370]



Early stage of evolution
• No analytic mass-radius formula

• MESA (Modules for Experiments in Stellar Astrophysics) outputs masses and radii of WDs with 
helium cores and hydrogen envelopes

• We can interpolate this data for  vs. stripped mass

• However, we experience numerical difficulty in computing  vs. stripped mass

𝑟𝑑

𝜂𝑑

Noise (unphysical)



Determining the parameter set

Early stage

o  and  are unknown for a given  
(no analytic mass-radius formula, MESA 
results are inconclusive)

At most, 

𝜂𝑑 𝑟𝑑 𝑚𝑑

  ⟹  
𝜃𝑖 = (𝜙0, 𝑚𝑑, 𝑚𝑎, 𝑟𝑑, 𝜂𝑑, 𝑑)

Late stage

o Because of the analytic mass-radius 
formula, both  and  are completely 
determined by 

At most, 

𝑟𝑑 𝜂𝑑
𝑚𝑑

     ⟹   𝜃𝑖 = (𝜙0, 𝑚𝑑, 𝑚𝑎, 𝑑)


