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Objective

* Original objective: investigate how well we will be
able to determine the individual masses of accreting

binary white dwarfs (BWDs) using LISA’s

measurements of foy-and £,

* Along the way, we have effectively added studies on

—

" Accretor
the measurablllty Of d feW Other parameters [Credit: Caltech/Zwicky Transient Facility]




Background

» Sky-averaged gravitational waveforms can be resolved into an amplitude, A, times the

cosine of a time-varying phase,

Measurable components of A:

. GW frequency, few Measurable components of ¢(?):
. Luminosity distance, d . GW f
(m - )3/5 requenc?/, f.GW .
. il s o dMq _ . GW frequency derivative, f.p,,
(md + ma)

* General concept: the more that parts of the GW waveform depends on WD parameters (mass,

radius, etc.), the better we will be able to measure these parameters



Expressing f.p-and fGW

» Roche lobe filling: ¥ ;~a (semi-major axis)

, - md+ m,

. Kepler's third law: fgp~ T
12 \ ,
for {77 )

« Differentiating fsy to get f .y, introduces a new parameter,
dlnrd [Credit: Swinb&rne University of Technology]
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[Breivik et al. arXiv:1710.08370]



Parameter estimation technique:
Fisher analysis

 Sky-averaged gravitational waveform: h(t) = Acosg(t)

« For some parameter set, ', define the Fisher information matrix:
oh | oh
ii=|—|—
g 00" | 06/

‘ 1-0 measurement uncertainty: Af; = (F_l) 3
11

. Separately consider two parameter sets: 0 = ((]50, m, My, , nd> and

9i = <¢0,md,ma,rd,7]d,d>




GW strain magnitude vs. LISA's noise

Strain and Noise vs. fy (T=4 yr)
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Parameter estimation results:

Hi = (¢Oa md’ ma? rda nd>



Assumptions

Luminosity distance Is independently measured to be | kpc
LISA’s noise curve from Robson et al. [arXiv:1803.01944 ]

4-year observation period

Gaussian priors:0,, = 0.1 Mg, o0, = 1.2 M

m



Error on m , m
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Erroronr 1,

Ard/rd with 9’ (¢0’ my, ma- Ny, rd)
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Summary: parameter estimation with ' = ((]50, m ,mg,ry, ﬂd>

o |f d is known, we have a fair chance of constraining the individual masses for relatively

higher-mass combinations when we impose the priors, 6, = 0.1 M and

o, =12 M,

a

« Under these conditions, there is also a fair chance of constraining r; and 7,



Parameter estimation results:

Hi = <¢()9 md’ maa rda nda d)



Assumptions

* Now, we make no assumptions for the value of
LISA’s noise curve from Robson et al. [arXiv:1803.01944 ]

4-year observation period

Gaussian priors: o, = 0.1 Mg, o, =12 Mg,

m



 When d is included as a parameter, the parameter

Error on the

estimation simply returns the priors

IMassSes

* We gain no additional constraints on the

iIndividual masses




Arglry with @'=(¢g, Mg, My, Ng, Iy, d) A7y with €'=(¢o, Mg, Mg, Ny, Iy, d)
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* We use a Fisher analysis to estimate the measurability of WD masses
and other parameters

> |[f we do not include the > If we do include d as a

Conclusion and

luminosity distance as a parameter, the measurability
Future Work parameter, we have a fair of g and #,; does not change

chance of constraining my, significantly, but we can no

m, r; and 5, when we longer constrain my and m,,

Impose priors on the

masses

 Consider the case of non-conservative mass transfer
o 1y=—(— F)ig, F>0




dlnr,

Interpreting ,, = o

lnmd

* 1, defines the response of the donor WD to mass loss

« Forthe very low-mass WDs we consider ( S 0.1 M ), , varies depending on the stage of evolution
(“early’” or“late™) as follows:

_

Early stage

o WD has a thick hydrogen envelope

Time of highest A

o Nondegenerate envelope, degenerate core eml'l'_'l'_ed GW strain =mains
o Radius decreases as mass decreases =— 1, > 0 e o csis i decreases = 1, <0
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[Breivik et al. arXiv:1710.08370]
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« MESA (Modules for Experiments in Stellar Astrophysics) outputs masses and radii of WDs with
helium cores and hydrogen envelopes

« We can interpolate this data for r vs. stripped mass

« However, we experience numerical difficulty in computing 7, vs. stripped mass



Determining the parameter set

L s Early stage

o n,and r; are unknown for a given my
(no analytic mass-radius formula, MESA
results are inconclusive)

O Because of the analytic mass-radius
formula, both r; and 1, are completely
determined by my

| —> At most,
i :
: At mOSt, 9 e <¢0, mda ma’ d) 91 — <¢O’ md, ma, rd, ;’ld, d)



