
LISA Data Analysis  
A Deep Learning Approach

1,2F. C. Pîslan, 1,2V. A. Bâsceanu, 1A. Caramete, 1L. I. Caramete, 1,2M. C. Ișfan, 1D. Tonoiu


1 Institute of Space Science, Romania

2 Faculty of Physics, University of Bucharest, Romania



ISS-Science Group (ISS-Sci)
➢ Data analysis using NNs implemented on 

different hardware platforms


➢ Estimating the merging rate of BHs


➢ Waveform generation


➢ Building of GW source catalogues


➢ Multi messenger analysis of astrophysical 
sources


➢ Deep learning based low-latency alert pipeline 
for the detection and characterisation of GW 
from LISA data



OUR APPROACH (so far):


➢Develop and test different types of 
neural network models, 
configurations and pre-processing 
approaches.
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OUR APPROACH (so far):


➢Develop and test different types of 
neural network models, 
configurations and pre-processing 
approaches.

• Generate simplified data set
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➢ Additive Gaussian Random Noise

➢ Quadrupole approximation

➢ Non-spinning point-masses

➢ Circular orbits

Convolutional

(CNN)

https://
www.mathworks.com/
matlabcentral/fileexchange/
116105-quick-gravitational-
wave-data-generation



OUR APPROACH (so far):


➢Develop and test different types of 
neural network models, 
configurations and pre-processing 
approaches.
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➢Test  the models with the 
simplified data set.
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The GW Dataset

1.960.959 total 

samples 


out of which:


800.000 (40%): train


1.160.959 (60%):   
inference 


  5 x Classes of 

   adjecent mass ratios:

  A (q = 1 – 300)	 

  B (q = 301 – 749) 	 

  C (q = 750 – 1200)	 

  D (q = 1201 – 1501) 

  N (Noise)

Min-Max Feature Standardization:


𝑿 =
𝒇𝒆𝒂𝒕𝒖𝒓𝒆𝒔  − 𝒎𝒊𝒏

𝒎𝒂𝒙  − 𝒎𝒊𝒏
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OUR APPROACH (so far):


➢Develop and test different types of 
neural network models, 
configurations and pre-processing 
approaches.

• Generate simplified data set.


➢Test  the models with the 
simplified data set.


➢Perform a benchmarking on 
different platforms (assuming the 
same configuration).




Models Platform Memory Cores FP32 Lib Training 
Time

Inference 
Time

Inference 
Accuracy

DL-LL CNN Nvidia RTX 
3050 Ti

GDDR6/

4Gb

RT 20/

Tensor 80

5.299 TFLOPS Keras/ 
Tensorflow

87 min 

10.15 sec

2 min 

45.92 sec

96.16 %


DL-LL CNN Nvidia

Tesla T4

GDDR6/

16Gb

RT 40/

Tensor 320

8.141 TFLOPS Keras/ 
Tensorflow

*379 min 

15 sec

1 min 

29.4 sec

96.40 %


DL-LL CNN Apple M1 
Neural Engine

LPDDR4X/

16Gb

Neural Engine

16 Cores

2.6 TFLOPS Keras/ 
Tensorflow

1099 min 

10.20 sec

2 min 

55.15 sec

95.27 %

DL-LL CNN AMD EPYC 
7551P

DDR4/

128Gb

32 Cores/

64 Threads

--- Keras/ 
Tensorflow

680 min 

20.40 sec

1 min 

51.2 sec

95.61 %

DL-LL MLP Nvidia RTX 
3050 Ti

GDDR6/

4Gb

RT 20/

Tensor 80

5.299 TFLOPS Keras/ 
Tensorflow

57 min 

29.51 sec

2 min 

25.77 sec

83.76%


DL-LL MLP Nvidia 

Tesla T4

GDDR6/

16Gb

RT 40/

Tensor 320

8.141 TFLOPS Keras/ 
Tensorflow

*369 min 

45.03 sec

42.03 sec 84.27 %


DL-LL MLP Apple M1 
Neural Engine

LPDDR4X/

16Gb

Neural Engine

16 Cores

2.6 TFLOPS Keras/ 
Tensorflow

239 min 

49.85 sec

1 min 

31.34 sec

84.61 %


DL-LL MLP AMD EPYC 
7551P

DDR4/

128Gb

32 Cores/

64 Threads

--- Keras/ 
Tensorflow

381 min 

21.59 sec

2 min 

34.22 sec

82.54 %


Credits: V.A. Bâsceanu
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OUR APPROACH (so far):


➢Develop and test different types of 
neural network models, 
configurations and pre-processing 
approaches.

• Generate simplified data set.


➢Test  the models with the 
simplified data set.


➢Perform a benchmarking on 
different platforms (assuming the 
same configuration).


➢Test on (much) more realistic data




SANGRIA DATA CHALLENGE
https://lisa-ldc.lal.in2p3.fr/challenge2a



SANGRIA TRAIN DATA

Difficulties: 


1.The noise


2.Too few data for training (15 peaks)

We use 
overlapping 

moving window to 
generate multiple 

sequences.
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FAILED
10 features into the input 
layer:


X, Y, Z, A, E projections + 
spectral entropies of those 
above

Labels: 0 or 1. Each data point 
is “manually” labeled in the 
beginning.
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Recurrent

(RNN)

Input feature DF split into train 
(68%) and test datasets (32%)


 

Loss function: Binary Crossentropy

Optimizer: ADAM

Layers: LSTM, BiLSTM, GRU, 
SimpleRNN

MODEL 1 MODEL 2 MODEL 3

Hidden Cells 10 30 10

No. of feature 
dimensions 10 10 10

Learning rate 10-4 10-5 10-4

Layers 1xLSTM + 
1xDense 

2xLSTM + 
GlobalMaxPo

oling1D + 
1xDense 

1xLSTM + 
1xDense 



Time (s)
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Results:
✓ All peaks are detected if the threshold is above 0.8 (80%)


✓ We proved that the development of a low latency pipeline which can detect 
MBHB events is feasible 


✓We intend to further develop our tools, to increase our models detection accuracy


✓ Prediction time on Sangria blind: seconds


✓ Training time: 12-24h depending on model architecture and hardware (PC) 
resources



OUR APPROACH (so far):


➢Develop and test different types of 
neural network models, 
configurations and pre-processing 
approaches.

• Generate simplified data set.


➢Test  the models with the 
simplified data set.


➢Perform a benchmarking on 
different platforms (assuming the 
same configuration).


➢Test on (much) more realistic data


➢Take the quantum leap






Motivation

• The large amount of information which can be manipulated and the 

low computational costs of quantum computers allow us to process 
and analyze fastly a great quantity of space mission data. 


• Complex data space requires a quantum leap in data analysis 

Quantum Neural Networks For 
The LISA Space Mission

http://www.rrp.infim.ro/IP/AP653.pdf

http://www.rrp.infim.ro/IP/AP653.pdf



Our first results

• We successfully adapted two quantum neural network 

tutorials for binary classification of simulated noiseless 
gravitational waveforms, with respect to source mass ratio


• A quantum neural network can extract meaningful 
information and perform classification of a dataset with less 
parameters


• Adding a quantum layer to an underperforming classical 
neural network leads to dramatic accuracy improvements

data

2 linear classical layers:

First one: in features = 9, out features = 16


Second one: in features = 16, out features = 1

1 quantum layer with one 1 qubit:

Ry gate parameterized by θ = out features

Compute the gradient with respect to θ and optimize the linear 
layers weights to find the loss function’s minimum value

Measure and compute the expectation value of Sigma Z observable to 
classify data

Waveform

features

Input: 

4 of the waveform 

features

QNN

with 2 qubits

Output: 
predictions

State preparation:

RY rotations 

parameterized by the 
input and C-NOTs

Layers:

General rotations 
parameterized by 

weights

Measurements Optimization

Name of the 
quantum 
computer

Testing 
accuracy

ibm_nairobi 53,5%

ibm_oslo 70,3%

ibmq_belem 31,7%

ibmq_manila 49,5%

ibmq_quito 71,3%

ibmq_lima 48,5%

ibmq_armonk 67,3%

http://www.rrp.infim.ro/IP/AP653.pdf



Conclusions and Future Work
➢ We implemented several NN models, both on simple “in-house” generated GW data and on 

LISA-like data;


➢ We tested the NN models on different  hardware configurations, including QC;

 

➢ We successfully detected the peaks in the Sangria blind data set;


➢ We intend to further develop our tools in order to increase the detection accuracy of our 
models and to decrease the training time;


➢ We plan on training our MLP and CNN models with a different feature set;


➢ We plan on correctly identifying the rest of the GW sources’ parameters;


➢ We plan on also implementing our quantum neural networks on LISA-like data .



Thank you!
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Nvidia RTX 3050 Ti

Technology = 8 nm


RT Cores = 20

Tensor Cores = 80


Core Clock = 1035 MHz

VRAM = GDDR6

VRAM size = 4 Gb


Bandwidth = 192 Gb/s

Mem. Clock = 1500 MHz


FP32 = 5.299 TFLOPS

Nvidia Tesla T4


Technology = 12 nm


RT Cores = 40


Tensor Cores = 320


Core Clock = 1590 MHz


VRAM = GDDR6


VRAM Size = 16 Gb


Bandwidth = 320 Gb/s


Mem. Clock = 1250 Mhz


FP32 = 8.141 TFLOPS 

Apple M1 Neural Engine


Technology = 5 nm


CPU Cores = 8


GPU Cores = 8


GPU Clock = 1278 MHz


CPU Clock = 3200 MHz


Neural Engine = 16 Cores


Unified Memory = 16 Gb


Memory = LPDDR4X


FP32 = 2.6 TFLOPS

AMD EPYC 7551P


Technology = 14 nm


Cores = 32


Threads = 64


Core Clock = 2000 MHz


Boost Clock = 3000 MHz


RAM = DDR4


RAM Size = 128 Gb


RAM Clock = 2666 Mhz



