LISA Data Analysis A Deep Learning Approach

^{1,2}F. C. Pîslan, ^{1,2}V. A. Bâsceanu, ¹A. Caramete, ¹L. I. Caramete, ^{1,2}M. C. Ișfan, ¹D. Tonoiu

¹ Institute of Space Science, Romania ² Faculty of Physics, University of Bucharest, Romania

ISS-Science Group (ISS-Sci)

- Data analysis using NNs implemented on different hardware platforms
- > Estimating the merging rate of BHs
- > Waveform generation
- ➤ Building of GW source catalogues
- Multi messenger analysis of astrophysical sources
- Deep learning based low-latency alert pipeline for the detection and characterisation of GW from LISA data

Develop and test different types of neural network models, configurations and pre-processing approaches.

Multilayer Perceptron (MLP)

Convolutional (CNN)

Develop and test different types of neural network models, configurations and pre-processing approaches.

• Generate simplified data set

- Develop and test different types of neural network models, configurations and pre-processing approaches.
 - Generate simplified data set.
- ➤Test the models with the simplified data set.

out of which:

800.000 (40%): train

1.160.959 (60%): inference

 $5 ext{ x Classes of}$ adjecent mass ratios: A (q = 1 - 300) B (q = 301 - 749) C (q = 750 - 1200) D (q = 1201 - 1501)N (Noise)

Min-Max Feature Standardization: $X = \frac{features - min}{max - min}$

Multilayer Perceptron (MLP)

Epochs

SS

- Develop and test different types of neural network models, configurations and pre-processing approaches.
 - Generate simplified data set.
- ➤Test the models with the simplified data set.
- Perform a benchmarking on different platforms (assuming the same configuration).

		Multilayer Perceptron (MLP)		Convolutional (CNN)			Credits: \	/.A. Bâsceanu
Models	Platform	Memory	Cores	FP32	Lib	Training Time	Inference Time	Inference Accuracy
DL-LL CNN	Nvidia RTX 3050 Ti	GDDR6/ 4Gb	RT 20/ Tensor 80	5.299 TFLOPS	Keras/ Tensorflow	87 min 10.15 sec	2 min 45.92 sec	96.16 %
DL-LL CNN	Nvidia Tesla T4	GDDR6/ 16Gb	RT 40/ Tensor 320	8.141 TFLOPS	Keras/ Tensorflow	*379 min 15 sec	1 min 29.4 sec	96.40 %
DL-LL CNN	Apple M1 Neural Engine	LPDDR4X/ 16Gb	Neural Engine 16 Cores	2.6 TFLOPS	Keras/ Tensorflow	1099 min 10.20 sec	2 min 55.15 sec	95.27 %
DL-LL CNN	AMD EPYC 7551P	DDR4/ 128Gb	32 Cores/ 64 Threads		Keras/ Tensorflow	680 min 20.40 sec	1 min 51.2 sec	95.61 %
DL-LL MLP	Nvidia RTX 3050 Ti	GDDR6/ 4Gb	RT 20/ Tensor 80	5.299 TFLOPS	Keras/ Tensorflow	57 min 29.51 sec	2 min 25.77 sec	83.76%
DL-LL MLP	Nvidia Tesla T4	GDDR6/ 16Gb	RT 40/ Tensor 320	8.141 TFLOPS	Keras/ Tensorflow	*369 min 45.03 sec	42.03 sec	84.27 %
DL-LL MLP	Apple M1 Neural Engine	LPDDR4X/ 16Gb	Neural Engine 16 Cores	2.6 TFLOPS	Keras/ Tensorflow	239 min 49.85 sec	1 min 31.34 sec	84.61 %
DL-LL MLP	AMD EPYC 7551P	DDR4/ 128Gb	32 Cores/ 64 Threads		Keras/ Tensorflow	381 min 21.59 sec	2 min 34.22 sec	82.54 %

- Develop and test different types of neural network models, configurations and pre-processing approaches.
 - Generate simplified data set.
- ➤Test the models with the simplified data set.
- Perform a benchmarking on different platforms (assuming the same configuration).

➤Test on (much) more realistic data

SANGRIA DATA CHALLENGE

https://lisa-ldc.lal.in2p3.fr/challenge2a

SANGRIA TRAIN DATA

We use overlapping moving window to generate multiple sequences.

Time (s)

Recurrent (RNN)

Input feature DF split into train (68%) and test datasets (32%)

Loss function: Binary Crossentropy

Optimizer: ADAM

Layers: LSTM, BiLSTM, GRU, SimpleRNN

	MODEL 1	MODEL 2	MODEL 3
Hidden Cells	10	30	10
No. of feature dimensions	10	10	10
Learning rate	10-4	10 -5	10-4
Layers	1xLSTM + 1xDense	2xLSTM + GlobalMaxPo oling1D + 1xDense	1xLSTM + 1xDense

Results:

- ✓ All peaks are detected if the threshold is above 0.8 (80%)
- ✓ We proved that the development of a low latency pipeline which can detect MBHB events is feasible
- \checkmark We intend to further develop our tools, to increase our models detection accuracy
- ✓ Prediction time on Sangria blind: seconds
- ✓ Training time: 12-24h depending on model architecture and hardware (PC) resources

- Develop and test different types of neural network models, configurations and pre-processing approaches.
 - Generate simplified data set.

➤Test the models with the simplified data set.

- Perform a benchmarking on different platforms (assuming the same configuration).
- ➤Test on (much) more realistic data

≻Take the quantum leap

Quantum Neural Networks For The LISA Space Mission

Motivation

INSTITUTE OF

SPACE SCIENCE www.spacescience.ro

- The large amount of information which can be manipulated and the ٠ low computational costs of quantum computers allow us to process and analyze fastly a great quantity of space mission data.
- Complex data space requires a quantum leap in data analysis ٠

1e7

http://www.rrp.infim.ro/IP/AP653.pdf

Our first results

- We successfully adapted two quantum neural network tutorials for binary classification of simulated noiseless gravitational waveforms, with respect to source mass ratio
- A quantum neural network can extract meaningful information and perform classification of a dataset with less parameters
- Adding a quantum layer to an underperforming classical neural network leads to dramatic accuracy improvements

1 quantum layer with one 1 qubit: R_y gate parameterized by θ = out features

Compute the gradient with respect to θ and optimize the linear layers weights to find the loss function's minimum value

Measure and compute the expectation value of Sigma Z observable to classify data

Conclusions and Future Work

- ➤ We implemented several NN models, both on simple "in-house" generated GW data and on LISA-like data;
- > We tested the NN models on different hardware configurations, including QC;
- > We successfully detected the peaks in the Sangria blind data set;
- ➤ We intend to further develop our tools in order to increase the detection accuracy of our models and to decrease the training time;
- > We plan on training our MLP and CNN models with a different feature set;
- > We plan on correctly identifying the rest of the GW sources' parameters;
- > We plan on also implementing our quantum neural networks on LISA-like data .

Thank you!

Multilayer Perceptron (MLP)

Convolutional (CNN)

Nvidia RTX 3050 Ti

Technology = 8 nm

RT Cores = 20

Tensor Cores = 80

Core Clock = 1035 MHz

VRAM = GDDR6

VRAM size = 4 Gb

Bandwidth = 192 Gb/s

Mem. Clock = 1500 MHz

FP32 = 5.299 TFLOPS

Nvidia Tesla T4 Technology = 12 nm RT Cores = 40 Tensor Cores = 320 Core Clock = 1590 MHz VRAM = GDDR6 VRAM Size = 16 Gb Bandwidth = 320 Gb/s Mem. Clock = 1250 Mhz FP32 = 8.141 TFLOPS Apple M1 Neural Engine Technology = 5 nm CPU Cores = 8 GPU Cores = 8 GPU Clock = 1278 MHz CPU Clock = 3200 MHz Neural Engine = 16 Cores Unified Memory = 16 Gb Memory = LPDDR4X FP32 = 2.6 TFLOPS AMD EPYC 7551P Technology = 14 nm Cores = 32 Threads = 64 Core Clock = 2000 MHz Boost Clock = 3000 MHz RAM = DDR4 RAM Size = 128 Gb RAM Clock = 2666 Mhz

