MERGER-RINGDOWN TEST

Based on work in <u>arXiv:2101.07817</u> Work done with: <u>Costantino Pacilio</u>

> Swetha Bhagwat STFC-EPSRC Hawking Fellow, University of Birmingham, UK

OVERVIEW OF THE TALK

Introduction to binary black hole ringdowns

Traditional tests of gravity using ringdowns

New test of GR using amplitude and phase information in ringdowns – Merger-ringdown test

PROBING DIFFERENT REGIMES OF GRAVITY WITH BBH SIGNALS

RINGDOWN MORPHOLOGY

Superposition of damped sinusoids - Quasinormal modes

$$h_{+} + i h_{\times} = A_{220} \sum_{lmn} \left(e^{-i \frac{m}{2} \phi_{220}} A_{lmn}^{R} e^{i \delta \phi_{lmn}} S_{lmn}(\iota, \varphi) \right)$$

$$\times e^{i 2\pi f_{lmn} t} e^{-t/\tau_{lmn}}$$

$$Amplitude \ ratio$$

$$Dominant \ mode \ Amp$$

$$Amplitude \ ratio$$

$$DOMINANT \ QNM: \ (2,2,0)$$

$$Most \ PROMISING \ SUB-DOMINANT \ QNM: \ (3,3,0), \ (2,1,0) \ OR \ (4,4,0).$$

Horizon Scale

Strong Field Non-linear

RINGDOWN

Horizon Scale St Field

TRADITIONAL TESTS OF GR WITH RINGDOWN

BLACK HOLE SPECTROSCOPY - THE TRADITIONAL TEST

BLACK HOLE SPECTROSCOPY CONSTITUTES MEASURING THE FREQUENCIES AND DAMPING TIME OF MULTIPLE MODES

$$h_{+} + i h_{\times} = A_{220} \sum_{lmn} \left(e^{-i\frac{m}{2}\phi_{220}} A_{lmn}^{R} e^{i\delta\phi_{lmn}} S_{lmn}(\iota,\varphi) \right)$$
$$\times e^{i2\pi f_{lmn}t} e^{-t/\tau_{lmn}} \right)$$

Validate the nature of the final remnant formed...

- no hair theorem test,
- area theorem test etc...

BUT... WHY NOT DO CHECKS USING RINGDOWN AMPLITUDES AND PHASES?

RINGDOWN WAVEFORM - AMPLITUDES AND PHASE

-linear superposition of quasi-normal modes

$$\begin{aligned} h_{+} + i \, h_{\times} &= A_{220} \sum_{lmn} \left(e^{-i \frac{m}{2} \phi_{220}} A_{lmn}^{R} e^{i \delta \phi_{lmn}} S_{lmn}(\iota, \varphi) \right. \\ &\times \left. e^{i 2 \pi f_{lmn} t} e^{-t/\tau_{lmn}} \right) \end{aligned}$$
Post-merger Pre-merger

Ringdown has 2 distinct information -

- a) Amplitude and phase : Pre-merger dynamics
- b) Frequency and damping time : Post-merger dynamics

IMPORTANCE OF USING AMPLITUDE AND PHASE INFORMATION

AMPLITUDES AND PHASES <------> PERTURBATION CONDITIONS <-----> BBH PROPERTIES

MERGER DYNAMICS PROBES THE NON-LINEAR STRONG FIELD DYNAMICS

MERGER-RINGDOWN CONSISTENCY TEST

THE CONCEPT OF MERGER-RINGDOWN TEST

$$h_{+} + i h_{\times} = A_{220} \sum_{lmn} \left(e^{-i\frac{m}{2}\phi_{220}} \overline{A_{lmn}^R} e^{i\delta\phi_{lmn}} S_{lmn}(\iota,\varphi) \right)$$
$$\times e^{i2\pi f_{lmn}t} e^{-t/\tau_{lmn}}$$

Step 1: parameterize ringdown as a function of {M, X_f, q} $h_+(t) = h_+(t;M,\chi_f,q)$, $h_ imes(t) = h_ imes(t;M,\chi_f,q)$

Step 2: estimate {M, Xf, q} from the ringdown data

MERGER-RINGDOWN TEST - CONSISTENCY BETWEEN MEASURED AND INFERRED SPINS

 $h_{+}(t) = h_{+}(t; M, \chi_{f}, q), \quad h_{\times}(t) = h_{\times}(t; M, \chi_{f}, q)$

Method 1 – Direct measurement of the set of parameters $\{M, \chi_f, q\}$ for each of the n events detected using PE.

Method 2 - Use GR relationship to related spin of the final BH and the mass ratio of the initial binary BH system.

$$\chi_f = 2\sqrt{3}\eta - 3.871\eta^2 + 4.028\eta^3 + \mathcal{O}(\eta^3)$$

where,

$$\eta = q/(1+q)^2$$

TECHNICAL DETAILS OF OUR PE SETUP

Parameter Estimation using Deep Learning

* We use a deep learning framework.

 Neural Network Architecture: Conditional Variational Autoencoder (CVAE)

A brief outline of the setup

- We generate a dataset of 10^5 simulated ringdown waveforms
- * The GW waveforms are embedded in simulated noise segments
- 90% dataset is used for training and 10% dataset used for validation.
- * Our training takes 84 minutes on a single GPU.
- Then, we generate 10^3 simulated ringdowns to conduct our proof-ofconcept study of merger-ringdown consistency test.
- * PE with our network after training takes 40 ms per waveform
- * We check the statistical accuracy of out PE setup using a P-P test.

RESULTS OF MERGER-RINGDOWN TEST ON 1000 RINGDOWNS

Parameter	Symbol	Range
Final BH mass	M	$[25,100]~M_{\odot}$
Final BH spin	χ_{f}	[0, 0.9]
Binary mass ratio	q	[1,8]
Phase of the $(2,2)$ mode	ϕ_{22}	$[0,2\pi]$ rad
Signal-to-noise ratio	SNR	[40, 80]

$$\chi_f^{\text{meas}} = a + b \, \chi_F^{\text{infer}}$$

Ringdown & Pre-merger

Ideally, for GR a=0 ; b=1

Result: $a \in [-0.014, 0.014] \text{ and } b \in [0.963, 1.013]$

EFFICIENCY OF THE TEST WITH NUMBER OF OBSERVATIONS

$$\chi_f^{\text{meas}} = a + b \, \chi_F^{\text{infer}}$$

Ringdown & Pre-merger

Ideally, for GR a=0 ; b=1

$$\sigma_a(n) = \frac{0.21}{\sqrt{n}}, \qquad \sigma_b(n) = \frac{0.41}{\sqrt{n}}$$

OK, SO THE NULL TEST WORKS!

BUT DOES THE TEST FAIL FOR NON-GR AMPLITUDE-PHASE??

MERGER-RINGDOWN TEST ON NON-GR RINGDOWNS

CONCLUSION

CONCLUSION AND TAKE AWAY POINT

AMPLITUDES AND PHASES IN RINDOWN CONTAIN A VITAL INFORMATION – THEY CAN TELL US IT THE DYNAMICS IN THE STRONG NON-LINEAR GRAVITY REGIME IS CONSISTENT WITH GR PREDICTIONS!

THESE TESTS ARE "COMPLIMENTARY" TO BLACK HOLE SPECTROSCOPY

QUESTION/COMMENTS?