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MASSIVE BLACK HOLE BINARIES
• Mergers of the two black holes 
  of the mass ~10^4 — 10^7 Msun 
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MASSIVE BLACK HOLE BINARIES
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• Electromagnetic counterparts 
• During merger 
• or even during inspiral 

• EM counterparts can occur  
  due to presence of  
         - matter 
         - magnetic fields 
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• data model:  

 « waveform template»   

physical parameters 

measurement  
noise 
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 problem: 
  marginal likelihood 
  has no exact solution 
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Natalia Korsakova, LIDA workshop, Toulouse, November 2022 



3

 solutions: 

• approximate inference: 
   - MCMC/Nested sampling 
      requires likelihood evaluation 
      we can do it, but it is slow 
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• approximate inference: 
   - MCMC/Nested sampling 
      requires likelihood evaluation 
      we can do it, but it is slow 

  - Variational inference 
      approximate the posterior distribution  
      with a tractable distribution 
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• simplification to the model: 
   - Gaussian mixture models 
      too simple 
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• simplification to the model: 
   - Gaussian mixture models 
      too simple 

  - Invertible models 
      will talk about them today 
 
 

 solutions: 

PARAMETER ESTIMATION
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INVERTABLE TRANSFORM
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If x is a random variable with the CDF f(x),  
then the random variable y = f(x) has a uniform distribution on [0,1].  
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INVERTABLE TRANSFORM
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Change of variables for probability density function 

Apply chain rule 
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NORMALISING FLOWS
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1. We have simple random generator 
2. We want to sample from a more complex distribution 
3. We can estimate a bijective transformation which will allow us to do that
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CHANGE OF VARIABLE EQUATION
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•       has to be a bijection 

•        and             have to be differentiable  

•   Jacobian determinant has to be tractably invertable 
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JACOBIAN
• The calculation of determinant Jacobian will take O(N^3) 
• We need to speed it up 
• For example, make Jacobian triangular matrix
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JACOBIAN
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JACOBIAN
Determinant of triangular matrix is a product of the elements on the diagonal
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AFFINE TRANSFORM
 Location-scale transformation

log-Jacobian becomes
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COUPLING TRANSFORM

In each simple bijection,  
part of the input vector  
is updated using a function  
which is simple to invert, 
but which depends on the  
remainder of the input vector  
in a complex way. 
The other part is left unchanged.
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REAL NVP
Coupling transformation combined with affine 
transformation and its invention 

but which depends on the remainder of the input vector in a complex way

What is t and s? 
but which depends on the remainder of the input vector in a complex way

https://arxiv.org/abs/1605.08803 
but which depends on the remainder of the input vector in a complex way
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FUNCTION APPROXIMATION
can be parameterised by any NN: 

- Fully connected 
- Residual 
- CNN 
- …
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NEURAL SPLINE FLOWS
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• Coupling transform
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NEURAL SPLINE FLOWS
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• Coupling transform

image: Duncan C. et al, Neural Spline Flows

• Monotonic rational-quadratic  
  spline transform 
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CONDITIONING
• Do not have access to samples from posterior 
• Have access to samples from prior +  
• Can generated simulated data 

Condition map 
on simulated data

Therefore have access to the joint sample:
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CONDITIONING
• Do not have access to samples from posterior 
• Have access to samples from prior +  
• Can generated simulated data 

Condition inverted map 
on real data
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COMPOSING FLOW
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OPTIMISATION

• The flow is trained to maximise the total log likelihood of the data 
  with respect to the parameters of the transform. 
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WAVEFORM EMBEDDING
16

• Low frequency sensitivity -> long waveforms 
• Construct reduced orthogonal basis 
• Use coefficients of the waveform projection on a new basis
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WAVEFORM EMBEDDING
Decompose a matrix constructed of the set of waveforms
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WAVEFORM EMBEDDING
Decompose a matrix constructed of the set of waveforms
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Project sample simulated data on this basis
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LATENT VARIABLE AND SOURCE SEPARATION
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LATENT VARIABLE AND SOURCE SEPARATION
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LATENT VARIABLE AND SOURCE SEPARATION
• We will observe tens of thousands GBs 
• 10 to 100 MBHBs per year 
• 1 to 10000 EMRIs per year
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• Have to find a way to analyse them together or disentangle 
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COCKTAIL PARTY PROBLEM
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Traditional way to solve this  
problem was to find  
independent  components  
in the data. 

ill be
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INDEPENDENT COMPONENT ANALYSIS
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Traditional way — find independent components by maximising non-
Gaussianity. 

ill be
This is a linear problem. 

ill be
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PRINCIPLE COMPONENT ANALYSIS
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x1

x2
PCA maps original data  
into a new coordinate 
system which maximises 
variance of the data
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PRINCIPLE COMPONENT ANALYSIS

x1

x2
The mapping to the new 
basis can be expressed 
using the eigenvectors of 
the Covariance matrix

Eigenvalue decomposition 
will be
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PRINCIPLE COMPONENT ANALYSIS

y1
y2 y1

y2
The vector of principle 
components 

will be
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PRINCIPLE COMPONENT ANALYSIS
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y1
y2 y1

y2
It has been shown that it is possible to formulate PCA in 
terms of Neural Networks
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PRINCIPLE COMPONENT ANALYSIS
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y1
y2 y1

y2

Natalia Korsakova, LIDA workshop, Toulouse, November 2022 



AUTOENCODER
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AUTOENCODER
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y1
y2 y1

y2
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DENOISING AUTOENCODER
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TRAINING THE NETWORK
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NETWORK PERFORMANCE
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CONCLUSIONS
• Make probabilistic inference of the parameters using Normalising flow 
• Use AE to embed the data. For example, can project the data 
  in such a way that we only sensitive to one type o signals. 
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