Inference for LISA with Normalising flows and data representation through source separation

Natalia Korsakova

Laboratoire AstroParticule & Cosmologie

LIDA workshop 2022 Toulouse

 Mergers of the two black holes of the mass $\sim 10^{4} - 10^{7} M_{sun}$

image: <u>gwplotter.com</u>

 Mergers of the two black holes of the mass $\sim 10^{4} - 10^{7} M_{sun}$

> Typical **MBHB** Signal

LISA Sensitivity

Natalia Korsakova, LIDA workshop, Toulouse, November 2022

image: <u>gwplotter.com</u>

Electromagnetic counterparts

- Electromagnetic counterparts
- During merger

- Electromagnetic counterparts
- During merger

2

or even during inspiral

- Electromagnetic counterparts
- During merger
- or even during inspiral
- EM counterparts can occur due to presence of
 - matter
 - magnetic fields

$p(\theta|x) = \frac{p(x|\theta)p(\theta)}{p(x)}$

$p(\theta|x) = \frac{p(x|\theta)p(\theta)}{p(x)}$

« waveform template»

Natalia Korsakova, LIDA workshop, Toulouse, November 2022

• data model:

 $x = h(\theta) + n$

$p(\theta|x) = \frac{p(x|\theta)p(\theta)}{p(x)}$

« waveform template»

Natalia Korsakova, LIDA workshop, Toulouse, November 2022

• data model:

 $x = h(\theta) + n$ nplate» physical parameters

$p(\theta|x) = \frac{p(x|\theta)p(\theta)}{p(x)}$

« waveform template»

Natalia Korsakova, LIDA workshop, Toulouse, November 2022

data model:

 $x = h(\theta) + n$

measurement noise physical parameters

$p(\theta|x) = \frac{p(x|\theta)p(\theta)}{p(x)}$

Natalia Korsakova, LIDA workshop, Toulouse, November 2022

problem: marginal likelihood has no exact solution

 $p(x) = \int p(x|\theta)p(\theta)d\theta$

$p(\theta|x) = \frac{p(x|\theta)p(\theta)}{p(x)}$

Natalia Korsakova, LIDA workshop, Toulouse, November 2022

ATION solutions:

approximate inference:

 MCMC/Nested sampling
 requires likelihood evaluation
 we can do it, but it is slow

$p(\theta|x) = \frac{p(x|\theta)p(\theta)}{p(x)}$

Natalia Korsakova, LIDA workshop, Toulouse, November 2022

solutions:

 approximate inference: - MCMC/Nested sampling requires likelihood evaluation we can do it, but it is slow

- Variational inference approximate the posterior distribution with a tractable distribution

$p(heta|x) = rac{p(x| heta)p(heta)}{p(x)}$

Natalia Korsakova, LIDA workshop, Toulouse, November 2022

ATION solutions:

- simplification to the model:
 - Gaussian mixture models too simple

$p(\theta|x) = rac{p(x| heta)p(heta)}{p(x)}$

Natalia Korsakova, LIDA workshop, Toulouse, November 2022

ATION solutions:

- simplification to the model:
 - Gaussian mixture models too simple
 - Invertible models
 will talk about them today

INVERTABLE TRANSFORM

If x is a random variable with the CDF f(x),

Natalia Korsakova, LIDA workshop, Toulouse, November 2022

then the random variable y = f(x) has a uniform distribution on [0,1].

INVERTABLE TRANSFORM

Change of variables for probability density function

$$f_Y(y) = \frac{d}{dy}F_Y(y) = \frac{d}{dy}F_Y($$

Apply chain rule

4

 $= f_Z(g^{-1}(y)) \left| \frac{d}{dy} g^{-1}(y) \right|$ ay

 $F_Z(g^{-1}(y))$

NORMALISING FLOWS

1. We have simple random generator

$q(z) = \mathcal{N}(0, 1)$

NORMALISING FLOWS

1. We have simple random generator 2. We want to sample from a more complex distribution

 $q(z) = \mathcal{N}(0, 1)$

NORMALISING FLOWS

- 1. We have simple random generator
- 2. We want to sample from a more complex distribution
- 3. We can estimate a bijective transformation which will allow us to do that

CHANGE OF VARIABLE EQUATION

$p(y) = q(f(y)) |\det(J_f(y))|$

Natalia Korsakova, LIDA workshop, Toulouse, November 2022

6

CHANGE OF VARIABLE EQUATION

$p(y) = q(f(y)) |\det(J_f(y))|$

• f has to be a bijection

CHANGE OF VARIABLE EQUATION

$p(y) = q(f(y)) |\det(J_f(y))|$

- f has to be a bijection
- f and f^{-1} have to be differentiable

Jacobian determinant has to be tractably invertable

JACOBIAN

- The calculation of determinant Jacobian will take O(N^3)
- We need to speed it up
- For example, make Jacobian triangular matrix

JACOBIAN

7

JACOBIAN

Natalia Korsakova, LIDA workshop, Toulouse, November 2022

Determinant of triangular matrix is a product of the elements on the diagonal

AFFINE TRANSFORM

Location-scale transformation

$$\tau(z_i) = \alpha_i z_i + \beta_i$$

log-Jacobian becomes

 $\log |\det J_{g^{-1}}(z)| = \sum \log |\alpha_i|$

COUPLING TRANSFORM

Natalia Korsakova, LIDA workshop, Toulouse, November 2022

9

In each simple bijection, part of the input vector is updated using a function which is simple to invert, but which depends on the remainder of the input vector in a complex way. The other part is left unchanged.

REAL NVP

Coupling transformation combined with affine transformation and its invention

$$\begin{cases} y_{1:d} = x_{1:d} \\ y_{d+1:D} = x_{d+1:D} \odot \exp(s(x_{1:d})) + t(x_{1:d}) \\ \Leftrightarrow \begin{cases} x_{1:d} = y_{1:d} \\ x_{d+1:D} = (y_{d+1:D} - t(y_{1:d})) \odot \exp(-s(y_{1:d})), \end{cases}$$

What is **t** and **s**?

Natalia Korsakova, LIDA workshop, Toulouse, November 2022

https://arxiv.org/abs/1605.08803

FUNCTION APPROXIMATION

Natalia Korsakova, LIDA workshop, Toulouse, November 2022

11

can be parameterised by any NN:

- Fully connected
- Residual
- CNN

NEURAL SPLINE FLOWS

Coupling transform

NEURAL SPLINE FLOWS

Coupling transform

Natalia Korsakova, LIDA workshop, Toulouse, November 2022

Monotonic rational-quadratic spline transform

image: Duncan C. et al, Neural Spline Flows

Do not have access to samples from posterior

Do not have access to samples from posterior
Have access to samples from prior +

from posterior ior + f(y)

 $p(\theta)$

- Do not have access to samples from posterior
- Have access to samples from prior +
- Can generated simulated data $\ x = h(heta) + n$

- Do not have access to samples from posterior
- Have access to samples from prior +
- Can generated simulated data $x = h(\theta) + n$

$q(z) = \mathcal{N}(0,1)$ Therefore have access to the joint sample:

Natalia Korsakova, LIDA workshop, Toulouse, November 2022

Condition map on simulated data

- Do not have access to samples from posterior
- Have access to samples from prior +
- Can generated simulated data $\ x = h(heta) + n$

$q(z) = \mathcal{N}(0, 1)$

 \hat{x}

Condition inverted map on real data

COMPOSING FLOW

OPTIMISATION

• The flow is trained to maximise the total log likelihood of the data with respect to the parameters of the transform.

WAVEFORM EMBEDDING

- Low frequency sensitivity -> long waveforms
- Construct reduced orthogonal basis
- Use coefficients of the waveform projection on a new basis

WAVEFORM EMBEDDING

Decompose a matrix constructed of the set of waveforms

$\mathbf{H} = \mathbf{V} \mathbf{\Sigma} \mathbf{U}^{\mathbf{T}}$

WAVEFORM EMBEDDING

Decompose a matrix constructed of the set of waveforms

$\mathbf{H} = \mathbf{V} \mathbf{\Sigma} \mathbf{U}^{\mathbf{T}}$

Project sample simulated data on this basis

 $\sigma_{\mu} = 1$

 $h_{\alpha j} u_{\mu j}$

17

RESULTS

RESULTS

$m1 = 2596719.62^{+3224.15}_{-3313.12}$ $m2 = 1244019.12^{+2510}_{-2366.91}^{+550}_{-236}^{+550}_{-2366.91}^{+550}_{-2366.91}^{+550}_{-250}^{$ 2200 2235 $a1 = 0.75\substack{+0.00\\-0.00}$ d.it 0,10 al 0.75 0[,]/* $a2 = 0.63\substack{+0.01 \\ -0.02}$ 0,00 e. S $n^{56} n^{57} n^{57} n^{56} n^{56} + \tau^{27} +$ $\mathbf{m1}$ al a2

LATENT VARIABLE AND SOURCE SEPARATION

Supermassive **Black Hole Binaries**

Compact Object Captures

Gravity is talking. LISA will listen.

LATENT VARIABLE AND SOURCE SEPARATION

Natalia Korsakova, LIDA workshop, Toulouse, November 2022

Image: LISA white paper

LATENT VARIABLE AND SOURCE SEPARATION

- We will observe tens of thousands GBs
- 10 to 100 MBHBs per year
- 1 to 10000 EMRIs per year

• Have to find a way to analyse them together or disentangle

COCKTAIL PARTY PROBLEM

 $x_1(t) = a_{11}s_1(t) + a_{12}s_2(t)$ $x_2(t) = a_{21}s_1(t) + a_{22}s_2(t)$

$x(t) = \mathbf{D}(\hat{n}, f) : \mathbf{h}(f, \xi)$

Traditional way to solve this problem was to find independent components in the data.

INDEPENDENT COMPONENT ANALYSIS

Traditional way — find independent components by maximising non-Gaussianity.

This is a linear problem.

Natalia Korsakova, LIDA workshop, Toulouse, November 2022

23

PCA maps original data into a new coordinate system which maximises variance of the data

$$y_1 = \sum_{k=1}^n w_{k1} x_k$$

Natalia Korsakova, LIDA workshop, Toulouse, November 2022

23

The mapping to the new basis can be expressed using the eigenvectors of the Covariance matrix

$$C = E\{\mathbf{x}\mathbf{x}^T\}$$

Eigenvalue decomposition

$\mathbf{C} = \mathbf{U}\mathbf{D}\mathbf{U}^T$

Natalia Korsakova, LIDA workshop, Toulouse, November 2022

23

The vector of principle components

$\mathbf{y} = \mathbf{U}^T \mathbf{x}$

It has been shown that it is possible to formulate PCA in terms of Neural Networks

$$\hat{\mathbf{x}} = \mathbf{W}\mathbf{W}^T\mathbf{x}$$

$$J_{MSE} = \frac{1}{T} \sum_{j=1}^{T} || \hat{\mathbf{x}}(\mathbf{x})|$$

Natalia Korsakova, LIDA workshop, Toulouse, November 2022

 $(j) - \mathbf{W}\mathbf{W}^T\mathbf{x}(j)||^2$

Natalia Korsakova, LIDA workshop, Toulouse, November 2022

25

$\mathbf{h} = \sigma(\mathbf{W}_1\mathbf{x} + \mathbf{b}_1)$ $\mathbf{y} = \mathbf{W}_2\mathbf{h} + \mathbf{b}_2$

 $\hat{\mathbf{x}}$

AUTOENCODER

Natalia Korsakova, LIDA workshop, Toulouse, November 2022//towardsdatascience.com/intuitively-understanding-variational-autoencoders-1bfe67eb5daf

AUTOENCODER

DENOISING AUTOENCODER

Encoder

-

TRAINING THE NETWORK

Natalia Korsakova, LIDA workshop, Toulouse, November 2022

29

Backpropagation

NETWORK PERFORMANCE

30

CONCLUSIONS

- Make probabilistic inference of the parameters using Normalising flow
- Use AE to embed the data. For example, can project the data in such a way that we only sensitive to one type o signals.