

LISA Data Analysis: from classical methods to machine learning November 22, 2022

Machine Learning for GW Parameter Estimation

Stephen Green
 (University of Nottingham)
 with Natalia Korsakova
 (APC)

Outline

* Intro to machine learning and deep learning
- Density estimation with normalising flows
* Gravitational wave inference

References

* Textbook: "Deep Learning" by Goodfellow, Bengio, and Courville
- Free online at https://www.deeplearningbook.org
- Lecture covers parts of Chapters 5, 6, 9, 20
* PyTorch
- Machine learning library used for tutorial
- Other tutorials at https: / / pytorch.org
* Paper references

- GW parameter estimation with deep learning: 2008.03312, $\underline{2106.12594,}$ $\underline{2210.05686 .}$

Machine learning

Introduction to machine learning

* Machine learning uses computers to learn patterns from data.
- Typically used to solve problems that are hard to program in conventional ways. Instead, train by example.
* Typically we have a dataset $\left\{\boldsymbol{x}^{(i)}\right\}$ consisting of many data points $\boldsymbol{x}^{(i)} \in \mathbb{R}^{n}$. The data points may or may not have associated labels $\boldsymbol{y}^{(i)} \in \mathbb{R}^{m}$.
- Unsupervised: learn $p(x)$
- Examples: density estimation, sampling
* Supervised: learn $p(y \mid x)$
- Examples: regression, classification

Supervised learning for GWs

* Classification: Learn a distribution over a discrete space

$$
p(y \mid \boldsymbol{x}) \quad \boldsymbol{x} \in \mathbb{R}^{n}, y \in\{1, \ldots, k\}
$$

- Detection: Is there a signal? Yes or no?
- Glitch classification: Assign observed glitches to classes.

Regression: Learn a distribution over continuous variables

$$
p(y \mid x) \quad x \in \mathbb{R}^{n}, y \in \mathbb{R}^{m}
$$

- Waveform modeling: Predict a signal given the source parameters
- Parameter estimation: Predict the source parameters given the data

Machine learning recipe

1. Build a dataset of training examples.

* $\left(\boldsymbol{x}^{(i)}, \boldsymbol{y}^{(i)}\right)$ pairs

2. Define a parametrised probabilistic model for the data.

$$
{ }^{*} p_{\text {model }}(\boldsymbol{y} \mid \boldsymbol{x} ; \boldsymbol{\theta})
$$

3. Choose a measure of performance for the model on the data.

* "loss function" - typically maximum likelihood

4. Fit the model to the data according to the performance metric.

* choose $\boldsymbol{\theta}$.

Maximum likelihood estimation

* Given a model, the loss function is determined by maximising the likelihood of the training data under the model.
- Unsupervised learning. Assume we have

1. N independent samples $\boldsymbol{x}^{(i)} \sim p_{\text {data }}(\boldsymbol{x})$
2. Parametrised model $p_{\text {model }}(\boldsymbol{x} ; \boldsymbol{\theta})$

* Maximum likelihood estimate $\boldsymbol{\theta}_{\mathrm{ML}}=\underset{\theta}{\arg \max } p_{\text {model }}(\boldsymbol{X} ; \boldsymbol{\theta})$

$$
\begin{aligned}
& =\underset{\theta}{\arg \max } \prod_{i=1}^{N} p_{\text {model }}\left(\boldsymbol{x}^{(i)} ; \boldsymbol{\theta}\right) \\
& =\underset{\theta}{\arg \max } \sum_{i=1}^{N} \log p_{\text {model }}\left(\boldsymbol{x}^{(i)} ; \boldsymbol{\theta}\right) \\
& =\underset{\theta}{\arg \max } \frac{\mathbb{E}_{p_{\text {data }}(\boldsymbol{x})} \log p_{\text {model }}(\boldsymbol{x} ; \boldsymbol{\theta})}{\text { negative log probability loss }}
\end{aligned}
$$

Conditional distributions

- Supervised learning: Estimate a conditional probability $p_{\text {model }}(\boldsymbol{y} \mid \boldsymbol{x} ; \boldsymbol{\theta})$
- Generalise the maximum likelihood estimator:

$$
\begin{aligned}
\boldsymbol{\theta}_{\mathrm{ML}} & =\underset{\theta}{\arg \max } \sum_{i=1}^{N} \log p_{\text {model }}\left(\boldsymbol{y}^{(i)} \mid \boldsymbol{x}^{(i)} ; \boldsymbol{\theta}\right) \\
& =\underset{\theta}{\arg \max } \mathbb{E}_{p_{\text {data }}(\boldsymbol{x}, \boldsymbol{y})} \log p_{\text {model }}(\boldsymbol{y} \mid \boldsymbol{x} ; \boldsymbol{\theta})
\end{aligned}
$$

Example: Linear regression

- Suppose we have labelled data $\left(\boldsymbol{x}^{(i)}, y^{(i)}\right)$.
* Let $p_{\text {model }}(y \mid \boldsymbol{x})=\mathcal{N}\left(\mu(\boldsymbol{x}), \sigma^{2}\right)(y)$ where $\mu(\boldsymbol{x})=\boldsymbol{\theta} \cdot \boldsymbol{x} ; \sigma$ fixed.
* Using the PDF $p(y \mid \boldsymbol{x} ; \boldsymbol{\theta})=\frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left(-\frac{(y-\mu(\boldsymbol{x}))^{2}}{2 \sigma^{2}}\right)$ we obtain the loss function

$$
\begin{aligned}
J(\theta) & =-\sum_{i=1}^{N} \log p\left(y^{(i)} \mid \boldsymbol{x}^{(i)} ; \boldsymbol{\theta}\right) \\
& =\frac{N}{2} \log 2 \pi \sigma^{2}+\sum_{i=1}^{N} \frac{\left(y^{(i)}-\mu\left(\boldsymbol{x}^{(i)}\right)\right)^{2}}{2 \sigma^{2}}
\end{aligned}
$$

* Can solve exactly $\nabla_{\boldsymbol{\theta}} J=0 \quad \Longrightarrow \quad \boldsymbol{\theta}_{\mathrm{ML}}=\left(\boldsymbol{X}^{\top} \boldsymbol{X}\right)^{-1} \boldsymbol{X}^{\top} \boldsymbol{y}$

More general regression

* More generally $\mu(\boldsymbol{x})$ does not have to be linear. We can increase the representational capacity of the model by using more complicated functions.
- E.g., polynomial $\mu(x)=b+\sum_{i=1}^{k} w_{i} x^{i} \quad$ (can still solve in closed form)
- E.g. nonparametric regression
nearest neighbour: For any \boldsymbol{x}, find the nearest $\boldsymbol{x}^{(i)}$ in the training set and return $y^{(i)}$.
- E.g., neural network
* Not all models can be optimised in closed form.

Stochastic gradient descent

* In the case where a closed-form minimum is not available, gradient descent can be used to optimize the loss, i.e., to tune $\boldsymbol{\theta}$ to approach the minimum.
* Starting from a point $\boldsymbol{\theta}_{0}$ we can move to a new point by following the gradient

$$
\boldsymbol{\theta}_{1}=\boldsymbol{\theta}_{0}-\left.\epsilon \nabla_{\boldsymbol{\theta}} J\right|_{\boldsymbol{\theta}_{0}}
$$

* For ML loss, gradient reduces to the sum of per-example gradients, so break into minibatches - stochastic GD.

Goodfellow et al (2016)

* Two advantages: (1) faster to compute each update, and (2) introduces stochasticity, which helps avoid local minima.

Risk of overfitting

Summary so far...

* A machine learning algorithm requires the following:

1. dataset - for supervised learning $\left\{\boldsymbol{x}^{(i)}, y^{(i)}\right\}$ pairs
2. model - E.g., linear regression $p_{\text {model }}(y \mid \boldsymbol{x})=\mathscr{N}\left(\boldsymbol{\theta}^{\top} \boldsymbol{x}, 1\right)(y)$
3. loss function - E.g., $J(\theta)=-\mathbb{E}_{p_{\text {data }}(\boldsymbol{x})} \log p_{\text {model }}(\boldsymbol{x})$
4. optimization algorithm - E.g., stochastic gradient descent

Deep learning

Introduction to deep learning

* In many cases, to use a machine learning algorithm, one must first reduce the raw data to a small number of high-level features \boldsymbol{x}, which are provided as input to the algorithm.
* This representation is often specified by hand, but it can also be learned from lower-level features, or raw data.
* Deep learning seeks to learn higher level representations in terms of lower level ones by composing functions.

Introduction to deep learning

Feedforward neural networks

* Feedforward neural networks or multilayer perceptrons (MLPs) are the classic deep learning model.
* Defines a mapping $\boldsymbol{y}=f(\boldsymbol{x} ; \boldsymbol{\theta})$ as a composition of simpler mappings:

second (hidden) layer
* "Feed-forward" because there is no feedback of later layers on earlier ones.

Feedforward neural networks

$$
f=f^{(d)} \circ f^{(d-1)} \circ \cdots \circ f^{(2)} \circ f^{(1)}
$$

* Each layer is of the form

activation function

linear mapping $z_{j}=\boldsymbol{W}_{j}^{\top} \boldsymbol{h}+\boldsymbol{b}_{j}$
- often nonlinear
- Weights and biases are the parameters defining the model $\boldsymbol{\theta} \equiv\left\{\boldsymbol{W}_{j}, \boldsymbol{b}_{j}\right\}_{j=1}^{d}$. These are tuned during training.

Feedforward neural networks

$$
\begin{gathered}
f=f^{(d)} \circ f^{(d-1)} \circ \cdots \circ f^{(2)} \circ f^{(1)} \\
f^{(j)}(\boldsymbol{h})=\sigma_{j}\left(\boldsymbol{W}_{j}^{\top} \boldsymbol{h}+\boldsymbol{b}_{j}\right)
\end{gathered}
$$

* The MLP is therefore defined by
- depth (number of layers)
- widths (dimensions of hidden layers)
- choice of activation functions
* Training uses stochastic gradient descent with gradients calculated using backpropagation (the chain rule).

Output layer

* The activation function for the output layer is determined by the nature of the output and the distribution we are modeling.
* Example: For regression, typically take the output to be the mean of a Gaussian distribution

$$
p_{\text {model }}(\boldsymbol{y} \mid \boldsymbol{x})=\mathcal{N}(\boldsymbol{f}(\boldsymbol{x}), \boldsymbol{I})(\boldsymbol{y})
$$

- Since the mean is unconstrained, use a linear output layer

$$
\sigma_{\text {linear }}(z)=z
$$

- Maximum likelihood gives the mean squared error loss (as before).

Back-propagation

* To train the network using some form of gradient descent, it is necessary to be able to efficiently compute gradients with respect to all of the network parameters (weights and biases).
* This is accomplished using a form of automatic differentiation call backpropagation.
* Relies on compositional nature of neural networks

$$
f=f^{(d)} \circ f^{(d-1)} \circ \cdots \circ f^{(2)} \circ f^{(1)}
$$

plus the chain rule of calculus and differentiability of all operations.

Back-propagation

* It is important to organize the calculation in an efficient way, and not carry out the same calculation multiple times.

$$
\begin{aligned}
& \begin{aligned}
\frac{\partial z}{\partial w} & =\frac{\partial z}{\partial y} \frac{\partial y}{\partial x} \frac{\partial x}{\partial w} \\
& =f^{\prime}(y) f^{\prime}(x) f^{\prime}(z) \\
& =f^{\prime}(f(f(w))) f^{\prime}(f(w)) f^{\prime}(w)
\end{aligned} \\
& \text { Efficient implementations in every } \\
& \text { deep-learning framework } \\
& \text { (PyTorch, TensorFlow, JAX, ...) }
\end{aligned}
$$

Goodfellow et al (2016)

Beyond point estimates

* Neural networks can parametrize more complicated distributions, including uncertainty estimates (as needed for GW parameter estimation).
* Example: Normal distribution where we also fit for the covariance matrix

$$
p_{\text {model }}(\boldsymbol{y} \mid \boldsymbol{x})=\mathcal{N}(\boldsymbol{\mu}(\boldsymbol{x}), \boldsymbol{\Sigma}(\boldsymbol{x}))
$$

- For diagonal covariance, better to use the precision matrix, and enforce positivity using, e.g., softplus activation.
* Example: Mixture density networks
* Sum of normal distributions weighted by categorical (multinouilli) output

$$
p_{\text {model }}(\boldsymbol{y} \mid \boldsymbol{x})=\sum_{k} p_{k}(\boldsymbol{x}) \mathcal{N}\left(\boldsymbol{\mu}_{k}(\boldsymbol{x}), \boldsymbol{\Sigma}_{k}(\boldsymbol{x})\right)
$$

* Example: Normalizing flow can model much more complicated distributions.
* In all cases, maximum likelihood loss gives an appropriate loss function.

Architectural choices

* We have described the most basic of neural network architectures, the fully-connected feed-forward network.
* Possible modifications:
- Sparse connectivity (sparse weight matrices)
- Shared weights (e.g., convolutional networks)
- Connections between non-adjacent layers (residual networks)
- Recursive or recurrent connections
* Usage will depend on characteristics of the data, amount of computer resources, symmetry properties, etc.

Gravitational-wave parameter estimation

GW parameter estimation

* Goal is to obtain the posterior distribution $p(\theta \mid d)$
- θ - source parameters (masses, spins, sky position and orientation)
- d - observed strain data
* For stationary Gaussian noise, the likelihood is tractable, and given by

$$
p(d \mid \theta) \propto \exp \left(-\frac{1}{2}(d-h(\theta) \mid d-h(\theta))_{S_{n}}\right)
$$

so MCMC can be used to sample from the posterior.

* ML approaches enable:

1. Speed improvements (amortized inference);
2. Inference with real noise.

GW parameter estimation

* Approaches
* Neural posterior estimation (NPE) - learn $p(\theta \mid d)$
* Complicated distribution requires flexible density estimator, e.g., normalising flows.
* Neural likelihood estimation (NLE) - learn $p(d \mid \theta)$
- Not typically used due to high dimensionality of d.
* Neural ratio estimation (NRE)
- Train a classifier to distinguish samples from $p(\theta, d)$ and $p(\theta) p(d)$. This gives likelihood : evidence ratio.
* Approaches to speed up classical methods
* Normalising flows to speed up dynesty sampler (nessai).

Normalising flows

* For the GW posterior we require very flexible model distributions.
* A normalising flow is an architecture well suited for this task. This represents a complex distribution in terms of a mapping from a much simpler one

$$
p_{\text {model }}(\theta \mid d)=\mathcal{N}(0,1)^{D}\left(f_{d}^{-1}(\theta)\right)\left|\operatorname{det} J_{f_{d}}^{-1}\right|
$$

Normalising flow

$$
p_{\text {model }}(\theta \mid d)=\mathscr{N}(0,1)^{D}\left(f_{d}^{-1}(\theta)\right)\left|\operatorname{det} J_{f_{d}}^{-1}\right|
$$

* Requirements:

1. Invertible
2. Simple Jacobian determinant

- Parametrise f_{d} using neural network.

Fast to evaluate and sample from $p_{\text {model }}(\theta \mid d)$ needed to evaluate loss

Normalizing flow

- Requirements:

1. Invertible
2. Simple Jacobian determinant

$$
\sqrt[\operatorname{det}]{ } J_{f_{d}}=\prod_{i=\frac{D}{2}+1}^{D} c_{i}^{\prime}\left(u_{i} ; u_{1: \frac{D}{2}}, d\right)
$$

* Use a sequence of "coupling transforms":
$c_{d, i}(u)=\left\{\begin{array}{lll}u_{i} & \text { if } i \leq D / 2 \\ c_{i}\left(u_{i} ; u_{1: \frac{D}{2}}, d\right) & \text { if } i>D / 2\end{array} \quad \begin{array}{l}\text { Hold fixed half of the components } \\ \text { Transform remaining components element-wise, } \\ \text { conditional on other half and } s .\end{array}\right.$
* c_{i} should be differentiable and have analytic inverse with respect to u_{i}.

Normalising flow

* Spline flow (Durkan et al, 2019)

Normalising flow

* Sequence of flows can give very complicated distribution

Training

- Train using $\left(\theta^{(i)}, d^{(i)}\right)$ pairs

1. Draw parameters from prior: $\theta^{(i)} \sim p(\theta)$
2. Simulate data: $d^{(i)}=h\left(\theta^{(i)}\right)+n^{(i)}$
waveform model
noise realisation, e.g., $n^{(i)} \sim p_{S_{\mathrm{n}}}(n)$

* We are free to choose any data representation (e.g., frequency domain, time domain, PCA). This will impact how well the network learns.
* For NPE, minimise cross-entropy loss $J=\mathbb{E}_{p_{\text {data }}(\theta, d)}\left[-\log p_{\text {model }}(\theta \mid d)\right]$
* Key point: Even though we learn the posterior, our training data consist only of simulated data (not posterior samples).

Simulation-based inference

* Maximum likelihood estimation loss can also be derived by minimising the Kullbeck-Liebler (KL) divergence between the model and the true posterior,

$$
\begin{aligned}
L & =\mathbb{E}_{p_{\text {data }}(d)} D_{\mathrm{KL}}\left[p_{\text {data }}(\theta \mid d) \| p_{\text {model }}(\theta \mid d)\right] \\
& =\int d d p_{\text {data }}(d) \int d \theta p_{\text {data }}(\theta \mid d) \log \frac{p_{\text {data }}(\theta \mid d)}{p_{\text {model }}(\theta \mid d)} \\
& \simeq \int d \theta p_{\text {data }}(\theta) \int d d p_{\text {data }}(d \mid \theta)\left[-\log p_{\text {model }}(\theta \mid d)\right] \\
& \approx \sum_{\substack{\theta^{(i)} \sim p_{\text {data }}(\theta) \\
d^{(i)} \sim p_{\text {data }}\left(d \mid \theta^{(i)}\right)}}-\log p_{\text {model }}\left(\theta^{(i)} \mid d^{(i)}\right)
\end{aligned}
$$

Data augmentation

* Large networks (involving $O\left(10^{8}\right)$ free parameters) are required for accurate inference. This runs the risk of overfitting unless the training dataset is very large.
* For LVK inference, we use 5×10^{6} training waveforms. However, we augment these with inexpensive transformations during training:
* Each epoch, draw new noise realisations and extrinsic parameters.
* If waveform models were fast enough (e.g., galactic binaries for LISA using Michael's code) could generate them on the fly as well.

Adapting to changing detectors

* LVK detector noise is mostly stationary Gaussian, but it does vary from event to event.
* For classical methods, estimate the PSD and use it in the noise-weighted inner product.
* For SBI, augment the training data with PSD fluctuations. This can involve an empirical PSD distribution, e.g., example PSDs estimated throughout an observing run.
* Include as additional context for the model,

$$
p_{\text {model }}\left(\theta \mid d, S_{\mathrm{n}}\right)
$$

Validating results

* Standard GW parameter estimation tests can be used to validate results
* P-P plots
* Simulated data
* "within-distribution"
* Comparisons against other samplers
* Real data
* "out-of-distribution"

Validating results

* Since we have access to the GW likelihood and the NPE density, we can use importance sampling to compare.

* Effective number of samples $n_{\text {eff }}=\frac{\left(\sum_{i} w_{i}\right)^{2}}{\sum_{i} w_{i}^{2}}$ as measure of performance. * Evidence $p(d) \approx \frac{1}{n} \sum_{i=1}^{n} w_{i}$

Importance sampling

LISA challenges

* Overlapping events
* Build into simulator + expand parameter space to include multiple events. Challenge is dimensionality of new parameter space.
* Realistic noise
* Naturally treat effects like data gaps or nonstationary noise without having to evaluate likelihoods with complicated off-diagonal covariance, or artificial techniques like in-painting.
* No need to infer glitch parameters. Instead, automatically marginalise them.
* High signal to noise

Conclusions

* To specify a machine learning algorithm, require (1) training data, (2) a model, (3) a loss function, and (4) an optimization algorithm.
* For GW parameter estimation,

1. Training data: Parameters $\theta^{(i)}$ and simulated data sets $d^{(i)}$
2. Model: Normalising flow

* Simulation-based inference is especially useful when likelihoods are intractable. Can naturally treat LISA challenges such as overlapping events and non-stationary Gaussian noise.
* Tomorrow: Tutorial!

