
LISA Data Analysis: from classical methods to machine learning

November 22, 2022

Machine Learning for 
GW Parameter Estimation

Stephen Green 
(University of Nottingham)
 
with Natalia Korsakova
(APC)

1

Outline

❖ Intro to machine learning and deep learning

❖ Density estimation with normalising flows

❖ Gravitational wave inference

2

References
❖ Textbook: “Deep Learning” by Goodfellow, Bengio, and Courville

• Free online at https://www.deeplearningbook.org

• Lecture covers parts of Chapters 5, 6, 9, 20

❖ PyTorch

• Machine learning library used for tutorial

• Other tutorials at https://pytorch.org

❖ Paper references

• GW parameter estimation with deep learning: 2008.03312, 2106.12594,
2210.05686.

3

https://www.deeplearningbook.org
https://pytorch.org
https://arxiv.org/abs/2008.03312
https://arxiv.org/abs/2106.12594
https://arxiv.org/abs/2210.05686

Machine learning

4

Introduction to machine learning
❖ Machine learning uses computers to learn patterns from data.

• Typically used to solve problems that are hard to program in conventional
ways. Instead, train by example.

❖ Typically we have a dataset consisting of many data points .
The data points may or may not have associated labels .

❖ Unsupervised: learn

• Examples: density estimation, sampling

❖ Supervised: learn

• Examples: regression, classification

{x(i)} x(i) ∈ ℝn

y(i) ∈ ℝm

p(x)

p(y |x)

5

Supervised learning for GWs
❖ Classification: Learn a distribution over a discrete space 

 

• Detection: Is there a signal? Yes or no?

• Glitch classification: Assign observed glitches to classes.

❖ Regression: Learn a distribution over continuous variables 
 

• Waveform modeling: Predict a signal given the source parameters

• Parameter estimation: Predict the source parameters given the data 

p(y |x) x ∈ ℝn, y ∈ {1,…, k}

p(y |x) x ∈ ℝn, y ∈ ℝm

6

Machine learning recipe
1. Build a dataset of training examples.

✴ pairs

2. Define a parametrised probabilistic model for the data.

✴

3. Choose a measure of performance for the model on the data.

✴ “loss function” — typically maximum likelihood

4. Fit the model to the data according to the performance metric.

✴ choose .

(x(i), y(i))

pmodel(y |x; θ)

θ

7

Maximum likelihood estimation
❖ Given a model, the loss function is determined by maximising the likelihood of the

training data under the model.

❖ Unsupervised learning. Assume we have

1. independent samples

2. Parametrised model

❖ Maximum likelihood estimate 
 
 
 
 
 
 

N x(i) ∼ pdata(x)
pmodel(x; θ)

<latexit sha1_base64="OHM1H3ehUcfT1hzMFZY8JdgxTRo=">AAAD03ictVNdixMxFE1n/FjrV1cffQkWpYWlzCyLCrKwKIIPKhXsbqHpDplM2oZNJkOSWbaEoIiv/jnf/An+CzPTQWt3YQXxQsi599x7z01I0oIzbaLoeysIr1y9dn3rRvvmrdt37na27x1qWSpCR0RyqcYp1pSznI4MM5yOC0WxSDk9Sk9eVvzRKVWayfyDWRZ0KvA8ZzNGsPGhZLv1A6WSZ3op/IbMghqcWCSwWShh375xDj7eh7UvC4uwmlfOmfM5da6DaAcWvyuEzCh3rrfW1I7dc7juN5V9iFD7suaFklli2X7sjt9dpnPmjm2P9f9BTZfilxjicv7/FXdWdJrCV4ldU8uwpzfF+u4vp7p4nqTTjQZRbfA8iBvQBY0Nk843lElSCpobwrHWkzgqzNRiZRjh1LVRqWmByQme04mHORZUT239Jh185CMZnEnlV25gHV2vsFjoakCfWZ1Fb3JV8CJuUprZs6lleVEampOV0Kzk0EhYPXCYMUWJ4UsPMFHMzwrJAitMjP8GbX8J8eaRz4PD3UH8ZLD3fq978KK5ji3wADwEPRCDp+AAvAZDMAIkGAanwcfgUzgKbfg5/LJKDVpNzX3wh4VffwK9Y0lU</latexit>

✓ML = argmax
✓

pmodel(X;✓)

= argmax
✓

NY

i=1

pmodel(x
(i);✓)

= argmax
✓

NX

i=1

log pmodel(x
(i);✓)

= argmax
✓

Epdata(x) log pmodel(x;✓)

negative log probability loss
8

Conditional distributions

❖ Supervised learning: Estimate a conditional probability

❖ Generalise the maximum likelihood estimator: 
 
 
 

pmodel(y |x; θ)

<latexit sha1_base64="mSDk65+BFu5PJg6rIvSYmC3SbaI=">AAADO3icjVJNaxQxGM6MX3X92urRS3BRdqEsM1JUkEJRBA9WWnDbwmY7ZDLZ3dBkMiQZ6ZLmf3nxT3jz4sWDUrx6NzM74Gxb0BdCnjzPm7xPkjctONMmir4G4ZWr167fWLvZuXX7zt173fX7+1qWitARkVyqwxRryllOR4YZTg8LRbFIOT1Ij19X+sFHqjST+QezKOhE4FnOpoxg46lkPdhDqeSZXgg/ITOnBicWCWzmStidd851nmzBei0Li7CaVYsT53PqXAeRLkVi2Vbsjt5DxOUMFn8PEDKj3Ll+qwZcHNk+G7jTFmdP3JJ8CdtsU2IAEfqni42lnKbwTWJbDjLs5RUDvtjGip+Bg/9nHJ7C1XMut5t0e9EwqgNeBHEDeqCJ3aT7BWWSlILmhnCs9TiOCjOxWBlGOHUdVGpaYHKMZ3TsYY4F1RNb/72Djz2TwalUfuQG1mx7h8VCVwZ9ZnU3fV6ryMu0cWmmLyaW5UVpaE6WhaYlh0bCqpFgxhQlhi88wEQx7xWSOVaYGN9uHf8I8fkrXwT7T4fxs+Hm3mZv+1XzHGvgIXgE+iAGz8E2eAt2wQiQ4FPwLfgR/Aw/h9/Ds/DXMjUMmj0PwEqEv/8ANGkR8g==</latexit>

✓ML = argmax
✓

NX

i=1

log pmodel(y
(i)|x(i);✓)

= argmax
✓

Epdata(x,y) log pmodel(y|x;✓)

9

Example: Linear regression
❖ Suppose we have labelled data .

❖ Let where ; fixed. 

❖ Using the PDF  
 
we obtain the loss function 
 
 
 
 
 

❖ Can solve exactly

(x(i), y(i))

pmodel(y |x) = 𝒩 (μ(x), σ2)(y) μ(x) = θ ⋅ x σ

∇θJ = 0 ⟹ θML = (X⊤X)−1 X⊤y

<latexit sha1_base64="5hoisoN54rBEpNHE+YT6WLe4/mU=">AAACcXicbVFdaxQxFM2MH63rR9fqi4gSugiziMvMUtqCCEVffKzgtoXNumSyd3ZDk5mY3JEO47z7+3zzT/jiHzCzHaEfXgg5Ofeem5uT1CjpMI5/BeGt23fubmze691/8PDRVv/x9rErSitgIgpV2NOUO1AyhwlKVHBqLHCdKjhJzz60+ZNvYJ0s8s9YGZhpvsxlJgVHT837P0xUfWdpoRau0n6j52/p5SPDFSAf0neUZZaLOmlq5r5arMfMSObkUvMv46ahDM4NZQoyjOibrjaqWqjL6Er/4dALvPyfllm5XOFw3h/Eo3gd9CZIOjAgXRzN+z/ZohClhhyF4s5Nk9jgrOYWpVDQ9FjpwHBxxpcw9TDnGtysXjvW0FeeWdCssH7lSNfsZUXNtWsH9pWa48pdz7Xk/3LTErODWS1zUyLk4uKirFQUC9raTxfSgkBVecCFlX5WKlbcu4X+k3rehOT6k2+C4/Eo2RvtftodHL7v7Ngkz8kOiUhC9skh+UiOyIQI8jt4GrwIXgZ/wmchDXcuSsOg0zwhVyJ8/RdUvLxE</latexit>

p(y|x;✓) = 1p
2⇡�2

exp

✓
� (y � µ(x))2

2�2

◆

<latexit sha1_base64="zfNaaT/NwV1YDMTngAhNqwvBows=">AAACq3icbVFdb9MwFHXCgFG+Onjcy9UqUCq0KokmmIQmTewF7aEagq4VdVs5rtNas+PIdhBVyJ/jJ/DGv8FNs419XMny0bn3nnN9neSCGxuGfz3/wdbDR4+3n7SePnv+4mV759W5UYWmbECVUHqUEMMEz9jAcivYKNeMyESwYXJxss4PfzBtuMq+2VXOJpIsMp5ySqyjZu3fpwG2S2ZJF94ewT5gU8hZyY+iatoHLNQC8mA1LQPereAX4ESJuVlJd8HPDfvxBtloYdxyajjVhJb9qoyrjVSMc+4c+EKSaQzvajO4dqvLr9zcLLII7nHsdqex07zUqWbtTtgL64C7IGpABzVxNmv/wXNFC8kySwUxZhyFuZ2URFtOBatauDAsJ/SCLNjYwYxIZiZlvesK3jhmDqnS7mQWavb/jpJIs57XVUpil+Z2bk3elxsXNj2clDzLC8syujFKCwFWwfrjYM41o1asHCBUczcr0CVxK7Pue1tuCdHtJ98F53Evet87+HLQOf7UrGMb7aI9FKAIfUDH6DM6QwNEvcDre0Nv5O/7X/3vPt6U+l7T8xrdCJ/9A84RzXU=</latexit>

J(✓) = �
NX

i=1

log p(y(i)|x(i);✓)

=
N

2
log 2⇡�2 +

NX

i=1

(y(i) � µ(x(i)))2

2�2

 mean squared error∝

10

More general regression
❖ More generally does not have to be linear. We can increase the

representational capacity of the model by using more complicated functions.

• E.g., polynomial (can still solve in closed form)

• E.g. nonparametric regression 
 
 nearest neighbour: For any , find the nearest in the training set and 
 return .

• E.g., neural network

❖ Not all models can be optimised in closed form.

μ(x)

μ(x) = b +
k

∑
i=1

wixi

x x(i)

y(i)

11

Stochastic gradient descent
❖ In the case where a closed-form minimum is not available,

gradient descent can be used to optimize the loss, i.e., to
tune to approach the minimum.

❖ Starting from a point we can move to a new point by
following the gradient 
 
 
 

❖ For ML loss, gradient reduces to the sum of per-example
gradients, so break into minibatches — stochastic GD.

❖ Two advantages: (1) faster to compute each update, and (2)
introduces stochasticity, which helps avoid local minima.

θ

θ0

<latexit sha1_base64="qmP+UJ5gB+HrnZW6NfzkhgRA3y4=">AAACU3icbVFNSyQxEE33+jl+je5xL8FB8OLQLeLuRRC9yJ5ccFSYHprqTI0TTSdNUi0M7fxHEfbgH/HiQTMfBz/mQcjj1Suq8pIVSjqKoucg/DE3v7C4tFxbWV1b36hvbl06U1qBLWGUsdcZOFRSY4skKbwuLEKeKbzK7k5H9at7tE4afUGDAjs53GjZkwLIS2n9NsmM6rpB7i+eUB8J0pgf8RlyxPd4goWTymieaMgUpNUH38Q25H8fZshpNEzrjagZjcG/k3hKGmyK87T+lHSNKHPUJBQ4146jgjoVWJJC4bCWlA4LEHdwg21PNeToOtU4kyHf8UqX94z1RxMfqx87KsjdaEHvzIH67mttJM6qtUvq/elUUhcloRaTQb1ScTJ8FDDvSouC1MATEFb6XbnogwVB/htqPoT465O/k8v9ZnzYPPh30Dg+mcaxxH6xbbbLYvabHbMzds5aTLBH9sLeAhb8D17DMJybWMNg2vOTfUK49g7L3bUs</latexit>

✓1 = ✓0 � ✏r✓J |✓0

“Learning rate”

CHAPTER 4. NUMERICAL COMPUTATION

�30 �20 �10 0 10 20

x1

�30

�20

�10

0

10

20

x
2

Figure 4.6: Gradient descent fails to exploit the curvature information contained in the
Hessian matrix. Here we use gradient descent to minimize a quadratic function f(x) whose
Hessian matrix has condition number 5. This means that the direction of most curvature
has five times more curvature than the direction of least curvature. In this case, the most
curvature is in the direction [1, 1]> and the least curvature is in the direction [1, �1]>. The
red lines indicate the path followed by gradient descent. This very elongated quadratic
function resembles a long canyon. Gradient descent wastes time repeatedly descending
canyon walls, because they are the steepest feature. Because the step size is somewhat
too large, it has a tendency to overshoot the bottom of the function and thus needs to
descend the opposite canyon wall on the next iteration. The large positive eigenvalue
of the Hessian corresponding to the eigenvector pointed in this direction indicates that
this directional derivative is rapidly increasing, so an optimization algorithm based on
the Hessian could predict that the steepest direction is not actually a promising search
direction in this context.

91

Goodfellow et al (2016)

12

Risk of overfitting

CHAPTER 5. MACHINE LEARNING BASICS

have more parameters than training examples. We have little chance of choosing
a solution that generalizes well when so many wildly different solutions exist. In
this example, the quadratic model is perfectly matched to the true structure of
the task so it generalizes well to new data.

x0

y

Underfitting

x0

y

Appropriate capacity

x0
y

Overfitting

Figure 5.2: We fit three models to this example training set. The training data was
generated synthetically, by randomly sampling x values and choosing y deterministically
by evaluating a quadratic function. (Left)A linear function fit to the data suffers from
underfitting—it cannot capture the curvature that is present in the data. (Center)A
quadratic function fit to the data generalizes well to unseen points. It does not suffer from
a significant amount of overfitting or underfitting. (Right)A polynomial of degree 9 fit to
the data suffers from overfitting. Here we used the Moore-Penrose pseudoinverse to solve
the underdetermined normal equations. The solution passes through all of the training
points exactly, but we have not been lucky enough for it to extract the correct structure.
It now has a deep valley in between two training points that does not appear in the true
underlying function. It also increases sharply on the left side of the data, while the true
function decreases in this area.

So far we have described only one way of changing a model’s capacity: by
changing the number of input features it has, and simultaneously adding new
parameters associated with those features. There are in fact many ways of changing
a model’s capacity. Capacity is not determined only by the choice of model. The
model specifies which family of functions the learning algorithm can choose from
when varying the parameters in order to reduce a training objective. This is called
the representational capacity of the model. In many cases, finding the best
function within this family is a very difficult optimization problem. In practice,
the learning algorithm does not actually find the best function, but merely one
that significantly reduces the training error. These additional limitations, such as

113

Goodfellow et al (2016)

CHAPTER 5. MACHINE LEARNING BASICS

0 Optimal Capacity

Capacity

E
rr

or

Underfitting zone Overfitting zone

Generalization gap

Training error

Generalization error

Figure 5.3: Typical relationship between capacity and error. Training and test error
behave differently. At the left end of the graph, training error and generalization error
are both high. This is the underfitting regime. As we increase capacity, training error
decreases, but the gap between training and generalization error increases. Eventually,
the size of this gap outweighs the decrease in training error, and we enter the overfitting
regime, where capacity is too large, above the optimal capacity.

the concept of non-parametric models. So far, we have seen only parametric
models, such as linear regression. Parametric models learn a function described
by a parameter vector whose size is finite and fixed before any data is observed.
Non-parametric models have no such limitation.

Sometimes, non-parametric models are just theoretical abstractions (such as
an algorithm that searches over all possible probability distributions) that cannot
be implemented in practice. However, we can also design practical non-parametric
models by making their complexity a function of the training set size. One example
of such an algorithm is nearest neighbor regression. Unlike linear regression,
which has a fixed-length vector of weights, the nearest neighbor regression model
simply stores the X and y from the training set. When asked to classify a test
point x, the model looks up the nearest entry in the training set and returns the
associated regression target. In other words, ŷ = yi where i = arg min ||Xi,: � x||

2
2.

The algorithm can also be generalized to distance metrics other than the L2 norm,
such as learned distance metrics (Goldberger et al., 2005). If the algorithm is
allowed to break ties by averaging the yi values for all Xi,: that are tied for nearest,
then this algorithm is able to achieve the minimum possible training error (which
might be greater than zero, if two identical inputs are associated with different
outputs) on any regression dataset.

Finally, we can also create a non-parametric learning algorithm by wrapping a

115

❖ High capacity models run
the risk of overfitting. The
algorithm must perform
well not just on data used
for training, but must also
generalize to new data.

❖ Capacity should be chosen
to minimize generalization
error.

❖ A larger training set will
allow for better
generalization.

13

Summary so far…

❖ A machine learning algorithm requires the following:

1. dataset — for supervised learning pairs

2. model — E.g., linear regression

3. loss function — E.g.,

4. optimization algorithm — E.g., stochastic gradient descent

{x(i), y(i)}

pmodel(y |x) = 𝒩(θ⊤x, 1)(y)

J(θ) = − 𝔼pdata(x) log pmodel(x)

14

Deep learning

15

Introduction to deep learning

❖ In many cases, to use a machine learning algorithm, one must first
reduce the raw data to a small number of high-level features , which are
provided as input to the algorithm.

❖ This representation is often specified by hand, but it can also be learned
from lower-level features, or raw data.

❖ Deep learning seeks to learn higher level representations in terms of
lower level ones by composing functions.

x

16

Introduction to deep learningCHAPTER 1. INTRODUCTION

Visible layer
(input pixels)

1st hidden layer
(edges)

2nd hidden layer
(corners and

contours)

3rd hidden layer
(object parts)

CAR PERSON ANIMAL Output
(object identity)

Figure 1.2: Illustration of a deep learning model. It is difficult for a computer to understand
the meaning of raw sensory input data, such as this image represented as a collection
of pixel values. The function mapping from a set of pixels to an object identity is very
complicated. Learning or evaluating this mapping seems insurmountable if tackled directly.
Deep learning resolves this difficulty by breaking the desired complicated mapping into a
series of nested simple mappings, each described by a different layer of the model. The
input is presented at the visible layer, so named because it contains the variables that
we are able to observe. Then a series of hidden layers extracts increasingly abstract
features from the image. These layers are called “hidden” because their values are not given
in the data; instead the model must determine which concepts are useful for explaining
the relationships in the observed data. The images here are visualizations of the kind
of feature represented by each hidden unit. Given the pixels, the first layer can easily
identify edges, by comparing the brightness of neighboring pixels. Given the first hidden
layer’s description of the edges, the second hidden layer can easily search for corners and
extended contours, which are recognizable as collections of edges. Given the second hidden
layer’s description of the image in terms of corners and contours, the third hidden layer
can detect entire parts of specific objects, by finding specific collections of contours and
corners. Finally, this description of the image in terms of the object parts it contains can
be used to recognize the objects present in the image. Images reproduced with permission
from Zeiler and Fergus (2014).

6

Goodfellow et al (2016)
17

Feedforward neural networks
❖ Feedforward neural networks or multilayer perceptrons (MLPs) are the

classic deep learning model.

❖ Defines a mapping as a composition of simpler mappings: 
 
 
 
 
 
 

❖ “Feed-forward” because there is no feedback of later layers on earlier ones.

y = f(x; θ)

first (hidden) layer

second (hidden) layer

depth of network

output layer

f = f (d) ∘ f (d−1) ∘ ⋯ ∘ f (2) ∘ f (1)

18

Feedforward neural networks

❖ Each layer is of the form 
 
 
 
 
 
 
 

❖ Weights and biases are the parameters defining the model . These
are tuned during training.

θ ≡ {Wj, bj}d
j=1

f = f (d) ∘ f (d−1) ∘ ⋯ ∘ f (2) ∘ f (1)

weight matrix bias vector

linear mapping zj = W⊤
j h + bjactivation function

• often nonlinear

f (j)(h) = σj (W⊤
j h + bj)

19

zi

σi(zi)ReLU

Feedforward neural networks

❖ The MLP is therefore defined by

• depth (number of layers)

• widths (dimensions of hidden layers)

• choice of activation functions

❖ Training uses stochastic gradient descent with gradients calculated using back-
propagation (the chain rule).

f (j)(h) = σj (W⊤
j h + bj)

f = f (d) ∘ f (d−1) ∘ ⋯ ∘ f (2) ∘ f (1)

20

Output layer
❖ The activation function for the output layer is determined by the nature

of the output and the distribution we are modeling.

❖ Example: For regression, typically take the output to be the mean of a
Gaussian distribution 
 

• Since the mean is unconstrained, use a linear output layer 
 

• Maximum likelihood gives the mean squared error loss (as before).

pmodel(y |x) = 𝒩 (f(x), I)(y)

σlinear(z) = z

21

Back-propagation

❖ To train the network using some form of gradient descent, it is necessary to be
able to efficiently compute gradients with respect to all of the network
parameters (weights and biases).

❖ This is accomplished using a form of automatic differentiation call back-
propagation.

❖ Relies on compositional nature of neural networks  
 
 
 
plus the chain rule of calculus and differentiability of all operations.

f = f (d) ∘ f (d−1) ∘ ⋯ ∘ f (2) ∘ f (1)

22

Back-propagation
❖ It is important to organize the calculation in an efficient way, and not

carry out the same calculation multiple times.

Goodfellow et al (2016)

<latexit sha1_base64="Pr9/WtsUvmnBqzwRt4NbevyHAwQ=">AAAClnicfVHbTgIxEO2ud7yhvJj40khU9oXsGuPlQUMwRh8xESFhCemWLjR0L2m7wrLZT/JnfPNv7ALxAsZpOjk5Z2Y6nXFCRoU0zQ9NX1peWV1b38htbm3v7Ob39l9EEHFM6jhgAW86SBBGfVKXVDLSDDlBnsNIwxncZXrjlXBBA/9ZxiFpe6jnU5diJBXVyb/ZLkc4sUPEJUUMjtNvPExzJzfwn4A4nRPjH+JoXhz9Km3bWXH3tBQbyo0yNza+SFedoWEYUzycgqHRyRfNsjkxuAisGSiCmdU6+Xe7G+DII77EDAnRssxQtpOsC8xImrMjQUKEB6hHWgr6yCOinUzGmsJjxXShG3B1fQkn7M+MBHlCxJ6jIj0k+2Jey8i/tFYk3at2Qv0wksTH04fciEEZwGxHsEs5wZLFCiDMqeoV4j5Sw5Rqkzk1BGv+y4vg5axsXZTPn86LlepsHOvgEByBErDAJaiAR1ADdYC1gnatVbU7/UC/1e/1h2mors1yCuCX6bVP7GDGqw==</latexit>

@z

@w
=

@z

@y

@y

@x

@x

@w

= f 0(y)f 0(x)f 0(z)

= f 0(f(f(w)))f 0(f(w))f 0(w)

CHAPTER 6. DEEP FEEDFORWARD NETWORKS

zz

xx

yy

ww

f

f

f

Figure 6.9: A computational graph that results in repeated subexpressions when computing
the gradient. Let w 2 R be the input to the graph. We use the same function f : R ! R
as the operation that we apply at every step of a chain: x = f(w), y = f(x), z = f(y).
To compute @z

@w , we apply equation 6.44 and obtain:

@z

@w
(6.50)

=
@z

@y

@y

@x

@x

@w
(6.51)

=f 0(y)f 0(x)f 0(w) (6.52)
=f 0(f(f(w)))f 0(f(w))f 0(w) (6.53)

Equation 6.52 suggests an implementation in which we compute the value of f(w) only
once and store it in the variable x. This is the approach taken by the back-propagation
algorithm. An alternative approach is suggested by equation 6.53, where the subexpression
f(w) appears more than once. In the alternative approach, f(w) is recomputed each time
it is needed. When the memory required to store the value of these expressions is low, the
back-propagation approach of equation 6.52 is clearly preferable because of its reduced
runtime. However, equation 6.53 is also a valid implementation of the chain rule, and is
useful when memory is limited.

211

CHAPTER 6. DEEP FEEDFORWARD NETWORKS

zz

xx

yy

ww

f

f

f

zz

xx

yy

ww

f

f

f

dz

dy

dz

dy

f 0

dy

dx

dy

dx

f 0
dz

dx

dz

dx

⇥

dx

dw

dx

dw

f 0
dz

dw

dz

dw

⇥

Figure 6.10: An example of the symbol-to-symbol approach to computing derivatives. In
this approach, the back-propagation algorithm does not need to ever access any actual
specific numeric values. Instead, it adds nodes to a computational graph describing how
to compute these derivatives. A generic graph evaluation engine can later compute the
derivatives for any specific numeric values. (Left)In this example, we begin with a graph
representing z = f(f(f(w))). (Right)We run the back-propagation algorithm, instructing
it to construct the graph for the expression corresponding to dz

dw . In this example, we do
not explain how the back-propagation algorithm works. The purpose is only to illustrate
what the desired result is: a computational graph with a symbolic description of the
derivative.

Some approaches to back-propagation take a computational graph and a set
of numerical values for the inputs to the graph, then return a set of numerical
values describing the gradient at those input values. We call this approach “symbol-
to-number” differentiation. This is the approach used by libraries such as Torch
(Collobert et al., 2011b) and Caffe (Jia, 2013).

Another approach is to take a computational graph and add additional nodes
to the graph that provide a symbolic description of the desired derivatives. This
is the approach taken by Theano (Bergstra et al., 2010; Bastien et al., 2012)
and TensorFlow (Abadi et al., 2015). An example of how this approach works
is illustrated in figure 6.10. The primary advantage of this approach is that
the derivatives are described in the same language as the original expression.
Because the derivatives are just another computational graph, it is possible to run
back-propagation again, differentiating the derivatives in order to obtain higher
derivatives. Computation of higher-order derivatives is described in section 6.5.10.

We will use the latter approach and describe the back-propagation algorithm in

214

Efficient implementations in every
deep-learning framework
(PyTorch, TensorFlow, JAX, …)

23

Beyond point estimates
❖ Neural networks can parametrize more complicated distributions, including uncertainty

estimates (as needed for GW parameter estimation).

❖ Example: Normal distribution where we also fit for the covariance matrix 

• For diagonal covariance, better to use the precision matrix, and enforce positivity using,
e.g., softplus activation.

❖ Example: Mixture density networks

❖ Sum of normal distributions weighted by categorical (multinouilli) output 
 

❖ Example: Normalizing flow can model much more complicated distributions.

❖ In all cases, maximum likelihood loss gives an appropriate loss function.

pmodel(y |x) = 𝒩 (μ(x), Σ(x))

24

pmodel(y |x) = ∑
k

pk(x)𝒩 (μk(x), Σk(x))

Architectural choices
❖ We have described the most basic of neural network architectures, the

fully-connected feed-forward network.

❖ Possible modifications:

• Sparse connectivity (sparse weight matrices)

• Shared weights (e.g., convolutional networks)

• Connections between non-adjacent layers (residual networks)

• Recursive or recurrent connections

❖ Usage will depend on characteristics of the data, amount of computer
resources, symmetry properties, etc.

25

Gravitational-wave parameter
estimation

26

GW parameter estimation
❖ Goal is to obtain the posterior distribution

• — source parameters (masses, spins, sky position and orientation)

• — observed strain data

❖ For stationary Gaussian noise, the likelihood is tractable, and given by 
 
 
so MCMC can be used to sample from the posterior.

❖ ML approaches enable:

1. Speed improvements (amortized inference);

2. Inference with real noise.

p(θ |d)

θ

d

p(d |θ) ∝ exp (−
1
2

(d − h(θ) |d − h(θ))Sn)

27

GW parameter estimation
❖ Approaches

❖ Neural posterior estimation (NPE) — learn

❖ Complicated distribution requires flexible density estimator, e.g., normalising flows.

❖ Neural likelihood estimation (NLE) — learn

❖ Not typically used due to high dimensionality of .

❖ Neural ratio estimation (NRE)

❖ Train a classifier to distinguish samples from and . This gives
likelihood : evidence ratio.

❖ Approaches to speed up classical methods

❖ Normalising flows to speed up dynesty sampler (nessai).

p(θ |d)

p(d |θ)

d

p(θ, d) p(θ)p(d)

28

Normalising flows
❖ For the GW posterior we require very flexible model distributions.

❖ A normalising flow is an architecture well suited for this task. This
represents a complex distribution in terms of a mapping from a much
simpler one

pmodel(θ |d)𝒩(0,1) fd

pmodel(θ |d) = 𝒩(0,1)D(f −1
d (θ)) det J−1

fd

29

Normalising flow

❖ Requirements:

1. Invertible

2. Simple Jacobian determinant

❖ Parametrise using neural network.fd

pmodel(θ |d) = 𝒩(0,1)D(f −1
d (θ)) det J−1

fd

Fast to evaluate and sample from pmodel(θ |d)

needed to evaluate loss

30

Normalizing flow
❖ Requirements:

1. Invertible

2. Simple Jacobian determinant 

❖ Use a sequence of “coupling transforms”: 
 
 
 
 

❖ should be differentiable and have analytic inverse with respect to .ci ui

Hold fixed half of the components 
 
Transform remaining components element-wise,
conditional on other half and .s

<latexit sha1_base64="AqVFqENhv6EMhHa5PT/O7K/NGhE=">AAACaXicbVFdaxQxFM1M/ahr1a2iiL4EF2ULZZ1ZShVFKdoHHyu4bWGzDJnMnd3QTGZIbsQlDPgbffMP+OKfMLudB916IXDuufeem5zkjZIWk+RnFG9du37j5vat3u2dO3fv9Xfvn9raGQETUavanOfcgpIaJihRwXljgFe5grP84uOqfvYVjJW1/oLLBmYVn2tZSsExUFn/u8h8sS/boduj7yjLYS61F0HQti6T9AVlCN/Qy5K2VFKmgB6/HFPGqMhkyEochra31GU+fcNKw4U/bv24bfcLZuR8gXubEu9XAgx00W3J+oNklKyDXgVpBwaki5Os/4MVtXAVaBSKWztNkwZnnhuUQkHbY85Cw8UFn8M0QM0rsDO/dqqlzwNT0LI24Wika/bvCc8ra5dVHjorjgu7WVuR/6tNHZavZ17qxiFocbmodIpiTVe200IaEKiWAXBhZLgrFQse/MLwOb1gQrr55KvgdDxKD0cHnw8GRx86O7bJU/KMDElKXpEj8omckAkR5Fe0Ez2MHkW/4934cfzksjWOupkH5J+IB38AAei2xQ==</latexit>

cd,i(u) =

(
ui if i  D/2

ci
⇣
ui;u1:D2

, d
⌘

if i > D/2

<latexit sha1_base64="ebIF+bhM4wy0dbLz7pb3nEkDvFE=">AAACPXicbVDLShxBFK3W+Jr4GM3STZFBVJShWyQRJSDqImRlwFFheiyqq2/PFFP9oOq2MBT9Y278B3fu3LgwhGyzTc04Cx85UHA451xu3RMVShr0/XtvYvLD1PTM7Fzt4/zC4lJ9eeXc5KUW0BK5yvVlxA0omUELJSq4LDTwNFJwEfWPh/7FNWgj8+wMBwV0Ut7NZCIFRyex+lkYA9IfzCYsrug3GhY6j5mVQ5poLuxJZXeqraC6OqGCyfVQQYIbJZMHtGQ22H8RqrbjUMtuDzdZveE3/RHoexKMSYOMccrqd2GcizKFDIXixrQDv8CO5RqlUFDVwtJAwUWfd6HtaMZTMB07ur6ia06JaZJr9zKkI/XlhOWpMYM0csmUY8+89Ybi/7x2iclex8qsKBEy8bwoKRXFnA6rpLHUIFANHOFCS/dXKnrc9YGu8JorIXh78ntyvtMMvjR3f+42Do/GdcySVfKZbJCAfCWH5Ds5JS0iyA15IE/kl3frPXq/vT/P0QlvPPOJvIL39x9+uq2n</latexit>

det Jfd =
DY

i=D
2 +1

c0i

⇣
ui;u1:D2

, d
⌘

31

Normalising flow
❖ Spline flow 

(Durkan et al, 2019):

ui

c i
knots and derivatives

output of neural
network;

input (u1: D
2
, d)

rational-quadratic
spline interpolationanalytic inverse

Figure: Durkan et al (2019)

32

Normalising flow
❖ Sequence of flows can give very complicated distribution

Image: Durkan et al (2019)

33

Training
❖ Train using pairs

1. Draw parameters from prior:

2. Simulate data:  
 
 

❖ We are free to choose any data representation (e.g., frequency domain, time
domain, PCA). This will impact how well the network learns.

❖ For NPE, minimise cross-entropy loss

❖ Key point: Even though we learn the posterior, our training data consist only of
simulated data (not posterior samples).

(θ(i), d(i))

θ(i) ∼ p(θ)

d(i) = h(θ(i)) + n(i)

J = 𝔼pdata(θ,d) [−log pmodel(θ |d)]

waveform model noise realisation, e.g., n(i) ∼ pSn
(n)

34

Simulation-based inference
❖ Maximum likelihood estimation loss can also be derived by minimising

the Kullbeck-Liebler (KL) divergence between the model and the true
posterior,

<latexit sha1_base64="X9Tx9kfRu20/upnGNlBv8Quduzs=">AAAEOHicjVNbixMxFM7OeFnrrauPvhwsSgtaWlnUF2HxAoKLrGB3F5paMkmmDZu5mGTEMs3P8sWf4Zv44oMivvoLzMy0pbst1QMDZ77vOznfOSRBKoU2nc7XLc8/d/7Cxe1LtctXrl67Xt+5caiTTFHeo4lM1HFANJci5j0jjOTHqeIkCiQ/Ck6eFfzRB660SOK3ZpLyQURGsQgFJcZBwx3v9T7cfQI4ImYcBPkLO8zTYV7+qihnxBBrm6xl4flwDr7at1jy0PRXhdiMuSFT1sLTJTJKGJenWCVGYzMAjGtFbxEbYAzfg3WdZ3RVC2tFi3MBy2QEOFSErpliIbP5JnO2tIW1iPj7/24+t8nWi9h0ISs3B/crq5t8wPKWMElTlXwErLPI1egs0IbQkxwq+bu8KVq28LzJIQa2UTh3WYlaYO0/fVZSmM5Pbg3rjU67UwasJt1Z0kCzOBjWv2CW0CzisaGSaN3vdlIzyIkygkpuazjTPHWjkhHvuzQmEdeDvLz4Fu44hEGYKPe59ZfockVOIq0nUeCUhX19livAdVw/M+HjQS7iNDM8plWjMJNgEiheETChODVy4hJClXBegY6Ju3fGvbWaW0L37MiryeGDdvdhe/fNbmPv6Wwd2+gWuo2aqIseoT30Eh2gHqLeJ++b98P76X/2v/u//N+V1Nua1dxEp8L/8xd6RG1m</latexit>

L = Epdata(d)DKL [pdata(✓|d)kpmodel(✓|d)]

=

Z
dd pdata(d)

Z
d✓ pdata(✓|d) log

pdata(✓|d)
pmodel(✓|d)

'
Z

d✓ pdata(✓)

Z
dd pdata(d|✓) [� log pmodel(✓|d)]

⇡
X

✓(i)⇠pdata(✓)

d(i)⇠pdata(d|✓(i))

� log pmodel(✓
(i)|d(i))

Bayes’ theorem

35

Data augmentation

❖ Large networks (involving free parameters) are required for
accurate inference. This runs the risk of overfitting unless the training
dataset is very large.

❖ For LVK inference, we use training waveforms. However, we
augment these with inexpensive transformations during training:

❖ Each epoch, draw new noise realisations and extrinsic parameters.

❖ If waveform models were fast enough (e.g., galactic binaries for LISA
using Michael’s code) could generate them on the fly as well.

O(108)

5 × 106

36

Adapting to changing detectors
❖ LVK detector noise is mostly stationary

Gaussian, but it does vary from event to event.

❖ For classical methods, estimate the PSD and
use it in the noise-weighted inner product.

❖ For SBI, augment the training data with PSD
fluctuations. This can involve an empirical
PSD distribution, e.g., example PSDs estimated
throughout an observing run.

❖ Include as additional context for the model, 
 

pmodel(θ |d, Sn)
20 30 40 50 60 70 80

m1 [MØ]

20

30

40

50

60

70

80

m
2

[M
Ø

]

GW150914
GW151012
GW170104
GW170729
GW170809
GW170814
GW170818
GW170823

37

Validating results
❖ Standard GW parameter estimation tests can be used to validate results

❖ P-P plots

❖ Simulated data

❖ “within-distribution”

❖ Comparisons against other 
samplers

❖ Real data

❖ “out-of-distribution”

0.0 0.2 0.4 0.6 0.8 1.0

p

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F
(p

)

m1 (0.044)

m2 (0.43)

¡0 (0.74)

tc (0.31)

dL (0.77)

a1 (0.39)

a2 (0.38)

µ1 (0.82)

µ2 (0.68)

¡12 (0.43)

¡JL (0.58)

µJN (0.68)

√ (0.015)

Æ (0.44)

± (0.96)

38

GW150914 LI MCMC

DINGO

25
30
35

m
2

[M
Ø

]

20
0

40
0

60
0

d
L

[M
p
c]

0.
8

1.
6

2.
4

µ J
N

0.
0

0.
8

1.
6

2.
4

√

0.
00

0.
25

0.
50

0.
75

a
1

0.
25

0.
50

0.
75

a
2

0.
8

1.
6

2.
4

µ 1

0.
8

1.
6

2.
4

µ 2

36 42 48

m1 [MØ]

2

4

6

¡
J

L

25 30 35

m2 [MØ]
20

0
40

0
60

0

dL [Mpc]

0.
8

1.
6

2.
4

µJN

0.
0

0.
8

1.
6

2.
4

√
0.
00

0.
25

0.
50

0.
75

a1

0.
25

0.
50

0.
75

a2

0.
8

1.
6

2.
4

µ1

0.
8

1.
6

2.
4

µ2

2 4 6

¡JL

❖ This generates the
posterior, matching
MCMC

❖ 50,000 samples in ~ 20 s

39

Validating results
❖ Since we have access to the GW likelihood and the NPE density, we can

use importance sampling to compare. 
 
 
 
 
 
 

❖ Effective number of samples as measure of performance.

❖ Evidence

wi ∝
p(θi)p(d |θi)
pmodel(θi |d)

proposal (NPE)

target (prior x likelihood)

neff =
(∑i wi)

2

∑i w2
i

p(d) ≈
1
n

n

∑
i=1

wi

40

Importance sampling

LALInference (IMRPhenomXPHM)

Dingo (IMRPhenomXPHM)

0.
25

0.
50

0.
75

q

2

4

6

Æ

15 18 21 24

Mc [MØ]

°0.
6

0.
0

0.
6

1.
2

±

0.
25

0.
50

0.
75

q

2 4 6

Æ °0.
6

0.
0

0.
6

1.
2

±

LALInference (IMRPhenomXPHM)
Dingo-IS (IMRPhenomXPHM)
Dingo-IS (SEOBNRv4PHM)

0.
25

0.
50

0.
75

q

2

4

6

Æ
15 18 21 24

Mc [MØ]

°0.
6

0.
0

0.
6

1.
2

±

0.
25

0.
50

0.
75

q

2 4 6

Æ °0.
6

0.
0

0.
6

1.
2

±

sampling efficiency

ϵ = 12.5 %

41

LISA challenges
❖ Overlapping events

❖ Build into simulator + expand parameter space to include multiple
events. Challenge is dimensionality of new parameter space.

❖ Realistic noise

❖ Naturally treat effects like data gaps or nonstationary noise without
having to evaluate likelihoods with complicated off-diagonal covariance,
or artificial techniques like in-painting.

❖ No need to infer glitch parameters. Instead, automatically marginalise
them.

❖ High signal to noise

42

Conclusions
❖ To specify a machine learning algorithm, require (1) training data, (2) a

model, (3) a loss function, and (4) an optimization algorithm.

❖ For GW parameter estimation,

1. Training data: Parameters and simulated data sets

2. Model: Normalising flow

❖ Simulation-based inference is especially useful when likelihoods are
intractable. Can naturally treat LISA challenges such as overlapping
events and non-stationary Gaussian noise.

❖ Tomorrow: Tutorial!

θ(i) d(i)

Thank you!
43

