LISA Data Analysis: from classical methods to machine learning
November 22, 2022

Stephen Green

MaChlne Learnlng f()I' (University of Nottingham)
GW Parameter Estimation | with Natatia Korsakova

(APC)

Outline

+ Intro to machine learning and deep learning
* Density estimation with normalising flows

+ (Gravitational wave inference

References

« Textbook: “Deep Learning” by Goodfellow, Bengio, and Courville

* Free online at https:/ /www.deeplearningbook.org P Learn

* Lecture covers parts of Chapters 56920
+ PyTorch

* Machine learning library used for tutorial

* Other tutorials at https:/ / pytorch.org

+ Paper references

* GW parameter estimation with deep learning: 2008.03312, 2106.12594,
2210.05686.

https://www.deeplearningbook.org
https://pytorch.org
https://arxiv.org/abs/2008.03312
https://arxiv.org/abs/2106.12594
https://arxiv.org/abs/2210.05686

Machine learning

Introduction to machine learning

+ Machine learning uses computers to learn patterns from data.

 Typically used to solve problems that are hard to program in conventional
ways. Instead, train by example.

+ Typically we have a dataset {x®} consisting of many data points x) € R".
The data points may or may not have associated labels y € R™.

« Unsupervised: learn p(x)
* Examples: density estimation, sampling
» Supervised: learn p(y|x)

* Examples: regression, classification

Supervised learning for GW's

+ Classification: Learn a distribution over a discrete space
p(y|x) reREyec il [

 Detection: Is there a signal? Yes or no?

* Glitch classification: Assign observed glitches to classes.

* Regression: Learn a distribution over continuous variables

p(y|x) xeR" yeR"

« Waveform modeling: Predict a signal given the source parameters

« Parameter estimation: Predict the source parameters given the data

Machine learning recipe

. Build a dataset of training examples.

* (x®, y pairs

. Define a parametrised probabilistic model for the data.

* Pmodel(Y [X;0)

. Choose a measure of performance for the model on the data.

* “loss function” — typically maximum likelihood
. Fit the model to the data according to the performance metric.

* choose 0.

Maximum likelihood estimation

Given a model, the loss function is determined by maximising the likelihood of the
training data under the model.

* Unsupervised learning. Assume we have
1. Nindependent samples x® ~ p,. . (x)

2. Parametrised model p,,4.(x; @)

+ Maximum likelihood estimate @y, = arg max pmodel(X; 0)
0

N
= Lo][praoder(=; 6)
i
N
— arg max Z 10g Prmodel (w(@) :0)
Uy i

— arg gnax Epdata(w) logpmodel(w; 6) ,

negative log probability loss

Conditonal distributions

« Supervised learning: Estimate a conditional probability p_, 4./(V | x; @)

+ Generalise the maximum likelihood estimator:

N
Om = arg gnaxz log Prodel(y'V |2 6)
=

= arg gnax Epdata(%y) log pmodel(y’fm 6)

Example: Linear regression

= Suppose we have labelled data (x(i), y(i)).

e Letp - (Olx) = N (,u(x), 02)()/) where u(x) = 0 - x; o fixed.

- | 1 b
+ Using the PDF p(ylw, 9) — 5o exp (— 52
we obtain the loss function
(e
J z; logp |m 0) o mean squared error
= log 2T + Z 202

Yot |

» Cansolveexactly Vg/ =0 = 0O\ = (X X)_1X Ty

10

More general regression

= More generally p(x) does not have to be linear. We can increase the
representational capacity of the model by using more complicated functions.

k
» Ego, polynomial u(x) =25+ Z wx' (can still solve in closed form)
=

* E.g. nonparametric regression

nearest neighbour: For any x, find the nearest x'") in the training set and
return y\.

* E.g., neural network

+ Not all models can be optimised in closed form.

|

Stochastic gradient descent

+ In the case where a closed-form minimum is not available,

gradient descent can be used to optimize the loss, i.e., to
tune 0 to approach the minimum.

« Starting from a point 6, we can move to a new point by
following the gradient

91 — 9() T EVQJ‘QO

“Learning rate”

* For ML loss, gradient reduces to the sum of per-example
gradients, so break into minibatches — stochastic GD.

+ Two advantages: (1) faster to compute each update, and (2)
introduces stochasticity, which helps avoid local minima.

12

Z2

20

10

0

—10

—20

—30
-30 -20 -10 0 10 20

1

Goodfellow et al (2016)

Error

Risk of overfitting

Underfitting Appropriate capacity
o9
/< >
[
Lo Lo

Overfitting

Lo

Underfitting zone| Overfitting zone

— - Training error

—— (Generalization error

eneralization gap

0 Optimal Capacity

Capacity

15

%

High capacity models run
the risk of overfitting. The
algorithm must perform
well not just on data used
for training, but must also
generalize to new data.

>

» Capacity should be chosen
to minimize generalization

<,

eIrofr.

+ A larger training set will
allow for better
generalization.

Goodfellow et al (2016)

Summary so far...

* A machine learning algorithm requires the following;:

I

2

dataset — for supervised learning {x¥, yV} pairs
model — E.g., linear regression p_ 4.V |X) = A @' x, ()
loss function — E.g, J(0) = — [k, ()108Ppoqe1(X)

optimization algorithm — E.g., stochastic gradient descent

14

Deep learning

Introduction to deep learning

* In many cases, to use a machine learning algorithm, one must first
reduce the raw data to a small number of high-level features x, which are
provided as input to the algorithm.

« This representation is often specified by hand, but it can also be learned
from lower-level features, or raw data.

+ Deep learning seeks to learn higher level representations in terms of
lower level ones by composing functions.

16

Introduction to deep learning

Output
(object identity)

3rd hidden layer
(object parts)

2nd hidden layer
(corners and
contours)

1st hidden layer
(edges)

Visible layer
(input pixels)

Goodfellow et al (2016)

Feedforward neural networks

* Feedforward neural networks or multilayer perceptrons (MLPs) are the
classic deep learning model.

Defines a mapping y = f(x;0) as a composition of simpler mappings:

depth of network

‘
_Al, -0, ... 8
f=08°S] °

7 \

output layer first (hidden) layer

second (hidden) layer

« “Feed-forward” because there is no feedback of later layers on earlier ones.

18

Feedforward neural networks

f :f(d) of(d_l) O o of(z) of(l)

+ Each layer is of the form _ , ,
weight matrix bias vector

i

i) = o <W].Th . bj>

ReLU o(2) / \\

activation function linear mapping z; = WJ.Th + b,
Z; often nonlinear

+ Weights and biases are the parameters defining the model 6 = {W,, b, }Jc.lzl. These

are tuned during training.

19

Feedforward neural networks

f :f(d) of(d_l) O o of(z) of(l)

k) = o <WJ.Th + bj)

* The MLP is therefore defined by
 depth (number of layers)

» widths (dimensions of hidden layers)
* choice of activation functions

Training uses stochastic gradient descent with gradients calculated using back-
propagation (the chain rule).

20

Output layer

* The activation function for the output layer is determined by the nature
of the output and the distribution we are modeling.

+ Example: For regression, typically take the output to be the mean of a
Gaussian distribution

Pinodel(¥ 1%) = A (f(x),I)(y)

e Since the mean is unconstrained, use a linear output layer
Glinear(z) =<

* Maximum likelihood gives the mean squared error loss (as before).

2

Back-propagation

» To train the network using some form of gradient descent, it is necessary to be
able to efficiently compute gradients with respect to all of the network
parameters (weights and biases).

This is accomplished using a form of automatic differentiation call back-

propagation.

+ Relies on compositional nature of neural networks

f:f(d) of(d—l) i O]0(2) o]f(l)

plus the chain rule of calculus and differentiability of all operations.

22

Back-propagation

« It is important to organize the calculation in an efficient way, and not
carry out the same calculation multiple times.

0z 020y dz
8_w_0y0338w f
= (W) f (=) f(2)
= f/(f(f)) f'(f(w)) f' (w)
/ >

Efficient implementations in every

deep-learning framework
(PyTorch, TensorFlow, JAX, ...)

Goodfellow et al (2016)

25

Beyond point estimates

+ Neural networks can parametrize more complicated distributions, including uncertainty
estimates (as needed for GW parameter estimation).

+ Example: Normal distribution where we also fit for the covariance matrix
Prodel(¥ 1 %) = A (p(x), Z(x))

 For diagonal covariance, better to use the precision matrix, and enforce positivity using,
e.g., softplus activation.

+ Example: Mixture density networks

+ Sum of normal distributions weighted by categorical (multinouilli) output

Pinodea Y 1%) = D @) (i), Z4x))
k

+ Example: Normalizing flow can model much more complicated distributions.

In all cases, maximum likelihood loss gives an appropriate loss function.

24

Architectural choices

+ We have described the most basic of neural network architectures, the

fully-connected feed-forward network.

+ Possible modifications:

 Sparse connectivity (sparse weight matrices)

 Shared weights (e.g., convolutional networks)

« Connections between non-adjacent layers (residual networks)
e Recursive or recurrent connections

* Usage will depend on characteristics of the data, amount of computer
resources, symmetry properties, etc.

29

Gravitational-wave parameter
estmation

26

GW parameter estimation

= (Goal is to obtain the posterior distribution p(€ | d)

e 0 — source parameters (masses, spins, sky position and orientation)

e d — observed strain data

+ For stationary Gaussian noise, the likelihood is tractable, and given by

1
p(d|0) x exp <_5(d S alidiid = h(e))sn>

so MCMC can be used to sample from the posterior.
* ML approaches enable:
1. Speed improvements (amortized inference);

2. Inference with real noise.

27

GW parameter estimation

+ Approaches

» Neural posterior estimation (NPE) — learn p(€|d)

+ Complicated distribution requires flexible density estimator, e.g., normalising flows.

+ Neural likelihood estimation (NLE) — learn p(d | 0)
= Not typically used due to high dimensionality of d.
+ Neural ratio estimation (NRE)

« Train a classifier to distinguish samples from p(0, d) and p(@)p(d). This gives
likelihood : evidence ratio.

“ Approaches to speed up classical methods

+ Normalising flows to speed up dynesty sampler (nessai).

28

Normalising flows

* For the GW posterior we require very flexible model distributions.

* A normalising flow is an architecture well suited for this task. This
represents a complex distribution in terms of a mapping from a much
simpler one

N (0,1) &

pmodel(eld) = '/V(Oal)D(fd_l(e)>

22

&
det de

Normalising flow

Pmodet(@1d) = ¥(0,1)°(f7'(6))

* Requirements:

1. Invertible

2. Simple Jacobian determinant

« Parametrise f; using neural network.

det J:!
d

K.needed to evaluate loss

30

Normalizing flow

+ Requirements:

1. Invertible J

2. Simple Jacobian determinant / det Jy, = H i (WBULgad)

» Use a sequence of “coupling transforms”:

{Ui Ciie D /2 Hold fixed half of the components

& (ui; Wi d) ife>D / 2 Transform remaining components element-wise,
2 conditional on other half and s.

= ¢; should be differentiable and have analytic inverse with respect to u..

Sl

Normalising flow

» Spline flow

(Durkan et al, 2019)

B-

RQ Spline

NVErse

° Knots

"
K\

knots and derivatives
output of neural
network;
input (.2, d)

|

L

rational-quadratic
spline interpolation

52

Figure: Durkan et al (2019)

Normalising flow

Sequence of flows can give very complicated distribution

Training data Flow density Flow samples

Image: Durkan et al (2019)

55

Training

+ Train using (%, dV) pairs
1. Draw parameters from prior: 09 ~ p(0)

2. Simulate data: d® = h(@Y) + n\V

e

waveform model noise realisation, e.g., n ~ pSn(n)

« We are free to choose any data representation (e.g., frequency domain, time
domain, PCA). This will impact how well the network learns.

+ For NPE, minimise cross-entropy loss J =[E, 4 [—log Prmode1(@ | d)]

+ Key point: Even though we learn the posterior, our training data consist only of
simulated data (not posterior samples).

34

Simulation-based inference

* Maximum likelihood estimation loss can also be derived by minimising
the Kullbeck-Liebler (KL) divergence between the model and the true
posterior,

= Epdata,(d) DKL [Pdata(0]d)||[Pmodel (0]d)]

pdata(eld)
ddDa.al dl Paaia(0]d) 1
/ Pdat / Pdat (|) 0g pmodel(e‘d)

ao pdata /ddpdata(d|9) [_ logpmodel(9|d)]

Z lOg pmodel(e(i) ‘d(z))

6" ~paata(8)
dD ~paata (d]6)

Bayes’ theorem

55

Data augmentation

+ Large networks (involving O(10%) free parameters) are required for
accurate inference. This runs the risk of overfitting unless the training
dataset is very large.

+ For LVK inference, we use 5 X 10° training waveforms. However, we
augment these with inexpensive transformations during training;:

+ Each epoch, draw new noise realisations and extrinsic parameters.

« If waveform models were fast enough (e.g., galactic binaries for LISA
using Michael’s code) could generate them on the fly as well.

36

Adapting to changing detectors

LVK detector noise is mostly stationary
Gaussian, but it does vary from event to event.

+ For classical methods, estimate the PSD and
use it in the noise-weighted inner product.

For SBI, augment the training data with PSD
fluctuations. This can involve an empirical
PSD distribution, e.g., example PSDs estimated
throughout an observing run.

¢ Include as additional context for the model,

P model(g | d’ Sn)

57

~
S

GW151012
GW170729
GW170814

GW170823

Y

Validating results

+ Standard GW parameter estimation tests can be used to validate results

% P'P PlOtS - —— m1 (0.044)
— mg (0.43)
: —— 0 (0.74)
+ Simulated data 08 4 — te ©3D
: —— dg, (0.77)
—— a1 (0.39)
ey e & . e . 77 — a2 (0.38)
+ “within-distribution — & (02
0.6 - 62 (0.68)
e —— ¢12 (0.43)
& . . o === ¢ (0.58)
Comparisons against other = faz 05
O -y (0.
samplers 044 oy
-~ 5 (0.96)
+ Real data
0.2 -
+ “out-of-distribution”
0.0 4~ . . I
0.0 0.2 0.4 0.6 0.8 1.0
p

38

LI MCMC

{* This generates the

o0
C
o v
il
QO
-
m
r,
@)
oyl
Y
V)
hd
0]
@)
Q.

MCMC

|1+ 50,000 samples in ~ 20's |

e
dJL

o N
e
02

S

SN
61
59

GW150914

10

(T

Wl

1
Y. Q. e,
50 0 0

<D

S ©

qio
az

P B
A s S e Pk o
aj

2SI

2,0 . >

el e A
(o

|-
i \
\ 4
y
= 9 \
A
\ \
{ y |
f |
\ B\ ; -
[
& ' v
Mo

&‘\?‘W/

5 O %O
05N

Validating results

+ Since we have access to the GW likelihood and the NPE density, we can
use importance sampling to compare.

target (prior x likelihood)

p@)p(d|0)
pmodel(gi | d)

\

()
T W

« Effective number of samples 7. = as measure of performance.

: 1 <
+ Evidence p(d)=~— Z W,
: =1

40

Importance sampling

mm [ALINFERENCE (IMRPhenomXPHM)
mm DINGO (IMRPhenomXPHM)

sampling efficiency

e =10 5%

T T)I T T T
N S R N
S N A PGS
0%
q 0

41

>

mm [ALINFERENCE (IMRPhenomXPHM)
mm DINGO-IS (IMRPhenomXPHM)
mm DINGO-IS (SEOBNRv4PHM)

LISA challenges

+ QOverlapping events

« Build into simulator + expand parameter space to include multiple
events. Challenge is dimensionality of new parameter space.

+ Realistic noise

+ Naturally treat effects like data gaps or nonstationary noise without
having to evaluate likelihoods with complicated off-diagonal covariance,
or artificial techniques like in-painting.

+ No need to infer glitch parameters. Instead, automatically marginalise
them.

+ High signal to noise

42

Conclusions

+ To specify a machine learning algorithm, require (1) training data, (2) a
model, (3) a loss function, and (4) an optimization algorithm.

+ For GW parameter estimation,

1. Training data: Parameters 0" and simulated data sets d”
2. Model: Normalising flow

+ Simulation-based inference is especially useful when likelihoods are
intractable. Can naturally treat LISA challenges such as overlapping
events and non-stationary Gaussian noise.

+ Tomorrow: Tutorial!

| Thank you! §

