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Introduction

Michael and myself (Joe) are from the University of 
Glasgow, Scotland. 

We primarily work on LIGO data analysis utilising 
machine learning for many of our projects: 

• Detection of Continuous gravitational waves and 
Compact binary coalescence 

• Enhancing Bayesian Parameter estimation for GW 
signals with ML
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Summary

Traditional methods 

Signal processing 

Matched filtering 

Other search methods

Machine learning 

Overview of neural networks 

Building, Training, Testing 

Application to detection 

Introduction to tutorial
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Aim of tutorial

• See an overview of some of the traditional methods used to detect 
gravitational wave signals 

• See how a common detection method is implemented (Matched filtering) 

• Understand the background of machine learning (specifically Neural 
Networks), how they are built, trained and tested. 

• Gain some practical experience in building and training a Neural network 
for gravitational wave detection
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Detection MBHB

Galactic binaries

GW 
background

EMRIs

Goal: Detect an astrophysical 
signal 

Different signals may require 
different approaches for 
detection.
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Traditional methods

Matched filtering

Good knowledge 
of the waveform

Poor knowledge 
of the waveform
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Good knowledge of 
the waveform but 
too many templates

Semi-coherent search Correlate data 
between detectors 



Detector data

h(t; θ)

d(t)

d(t) = n(t) + h(t; θ)

Assume additive noise

We want to search through data  to 
identify if a signal model  is present.

d(t)
h(t; θ)
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Noise
d(t) = n(t) + h(t) d(t) − h(t) = n(t)

Stationary white noise : In this case noise 
is uncorrelated and drawn from a Gaussian 
with fixed variance 

p(ni) =
1

2πσ2
e− n2

i
2σ2

p(n) = ∏
i

p(ni)
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Likelihood

n(t) = d(t) − h(t)

The likelihood function is then

p(d |h) =
1

(2πσ2)N/2
exp (−

N

∑
i

(di − hi)2

2σ2 )

p(d |h) =
1

det(2πC)N/2
exp −

1
2 ∑

ij

(di − hi)C−1
ij (dj − hj)

Cij = δijσ2More generally

White noise
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Noise model

In simple cases we can assume that the noise is 
stationary and Gaussian distributed following some 
PSD, i.e. 

Multiple possible noise components make up the PSD: 
• Instrument noise 
• Signal confusion noise

https://arxiv.org/abs/1803.01944

Cij = δijSn( fi)
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Signal model

Signal model can be anything you like 

In the tutorial tomorrow we will use a 
Massive black hole binary model in 
the LISA band. 

The faster these can be generated 
the better (see Michael Katz’s talk 
later) 

For tutorial tomorrow we will use 

IMRPhenomD 

Compact binaries, Aligned spin, non 
precessing

h(θ)

Time 
domain

Frequency 
domain

11



Matched filter

̂d = ∫
∞

−∞
d(t)K(t)dt

That maximises the SNR
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Want to find an optimal filter K(t)

S
N

=
⟨ ̂d⟩h=h

[⟨ ̂d2⟩h=0
− ⟨ ̂d⟩

2

h=0]
1/2

Expectation value of  when signal is present⟨ ̂d⟩
Root mean square of  when no signal is present⟨ ̂d⟩



Matched filter

S = ⟨ ̂d⟩h=h
= ∫

∞

−∞
⟨d(t)⟩ K(t)dt
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Want to find an optimal filter K(t)

= ∫
∞

−∞
h(t)K(t)dt

= ∫
∞

−∞
h̃( f )K̃*( f )df

N = [⟨ ̂d2⟩h=0
− ⟨ ̂d⟩

2

h=0]
1/2

= [∫
∞

−∞ ∫
∞

−∞
⟨n(t)n(t′ )⟩ K(t)K(t′ )dtdt′ ]

1/2

= ⟨ ̂d2⟩
1/2

h=0
= ⟨ ̂n2⟩1/2

= [∫
∞

−∞

1
2

Sn( f ) | K̃*( f ) |2 df]
1/2

= ∫
∞

−∞
(⟨n(t)⟩ + ⟨h(t)⟩) K(t)dt



Matched filter
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We can define the noise weighted inner product

(a |b) = 4ℛe∫
∞

0

ã( f )b̃*( f )
Sn( f )

df

So we can write the SNR as 

S
N

=
(u |h)

(u |u)1/2

We have assumed so far that  however in practice we only have the detector output  
not its expectation value, so we can approximate 

⟨d⟩ = h d

Assume the optimal filter  so can define the optimal SNRK ∝ h

( S
N )

opt
=

(h |h)
(h |h)1/2

= (h |h)1/2

ρ =
S
N

≈
(h |d)

(h |h)1/2

u =
1
2

Sn( f )K̃( f )



Matched filter

(d |h)(t) = 4ℛe∫
∞

0

d̃( f )h̃*( f )
Sn( f )

e−2πiftdf

The matched filter SNR can then be found with

ρ(t) =
(d |h)(t)

(h |h)
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The matched filter time series is defined by



Matched filter search

For a search we want to compare many 
different templates to the data  

• How many templates? 
• Where in parameter space?

E[(n + 𝒜h |h)] = 𝒜

Have a template  and noise h n

If the signal  is different from the template s h

E[(n + 𝒜s |h)] = 𝒜(s |h)

and is a measure of the fraction of SNR 
retained by using a template  to filter a 
signals with parameters 

h(θ)
θ + Δθ

M = (h(θ) |h(θ + Δθ))

The match between two templates is

https://link.aps.org/doi/10.1103/PhysRevD.53.6749

M ≈ (h(θ) |h(θ)) +
1
2

∂2M
∂θi∂θj

ΔθiΔθ j

1 − M ≈ gijΔθiΔθ j

Mismatch between neighbouring templates
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Template placement

Grid placement 
• Placement is defined by metric  
• Spaced according to some mismatch 

gij

Random placement 
• Number of templates defined by 

metric  
• Can be more efficient in high 

dimensions

gij

Monte caro - MCMC
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Significance

We have just been using stationary 
white Gaussian noise. 

Data is not often exactly distributed 
like this but has many other artefacts 

We can empirically estimate the 
significance of a matched filter SNR by 
estimating noise background 

Then set a False Alarm Rate
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Other search methods

Semi-coherent methods 

 - Break data into smaller segments and run 
matched filter on segments 

 - Search for tracks in power spectrum

19

CWb 

 - Uses a wavelet transform and correlates 
power between detectors



Limitations 

Matched filtering can be limited if signal model is not known well 

If too many templates need to be generated then it is computationally not 
feasible to run a complete templated matched filter search. 

Other semi-coherent methods are limited in their sensitivity and ability to extract 
parameters 
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Machine Learning

Generated with: https://stablediffusionweb.com/#demo
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Machine 
learning

Supervised 
learning

Unsupervised 
learning

Reinforcement 
learning

Classification

Regression Clustering

Dimensionality 
reduction

Artificial neural networks 
Decision trees 
Support vector machines 
Nearest Neighbour
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Neural networks
Why use machine learning/neural 
networks? 

• It is very flexible and can be applied 
to many problems 

• Can learn complex relationships 
between inputs/outputs 

• Can offer large speed ups to existing 
analyses 

• You have nothing Toulouse
Artificial neural networks are models 
which use data to learn and improve 
over time.
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Neurons

The building blocks of Neural networks are `Neurons’

o = f (b + ∑
i

aiwi)

a0

a1

a2

w0

w1

w2

b
f()

Inputs -  
Weights -  
Bias -  
Activation function - 

a0, a1, a2
w0, w1, w2

b
f()
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Simple network

These can then be arranged into a 
Network or neurons  

There are many different ways to 
arrange these  

Deep Learning is just many hidden 
layers 

For classification: 
        Output 1 Neuron - probability  
        of signal being present

Input 
layer

Hidden 
layers

Output 
layer
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Activation function

The activation function adds non 
linearities into the network 

It is key to making neural networks learn 
effectively. 

Many choices of activation functions - 
useful for different purposes
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Training networks

Data

Model Loss 
Function Optimiser

Data  
labels

LossPrediction

Updates
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Data preparation/preprocessing

Tomorrow we will use a whitened time 
series such that the noise is Gaussian 
with a Variance of 1. 

Each of these have a label 
For detection: 
 - 0 for noise 
 - 1 for signal + noise 
For parameter estimation: 
 - nothing for noise 
 - signal parameters for signal + 
noise
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Data preparation/preprocessing

Data preparation is key for networks 
to learn efficiently 

Scaling data - should always try to 
have values close to 1(both for inputs 
and for labels) 

• Whiten the data 

Make sure training data is as close as 
possible to expected real data
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Loss functions

There are many different loss functions for many different purposes 

The simplest starting point might be to minimise the absolute difference between 
the truth and the network estimate

L = ∑ (ptrue − ppred)2

This is the mean squared error
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Loss functions

L = ∑ ptrue log(1 − ppred) + (1 − ptrue)log ppred

For the detection case we want to compute the likelihood that a signal is present 
within the data.

This (log) likelihood is the binary cross entropy 

You have to be aware of the output activations of the neural network, in this 
case they need to be scaled between 0 and 1, e.g. using a sigmoid function

Here our  is our data label (either 0 or 1) and  is out network output.ptrue ppred
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Optimisers

Optimisers are what compute the 
gradient for each parameter based on 
the loss

Loss

Parameter

wnew = wi + α
dL
dwi

And update the parameters based on 
that gradient

∂L
∂wi

=
∂L

∂outi

∂outi
∂neti

∂neti
∂wi

a0

w0

net = a0w0 + b

out = f(net)

32
 = learning rateα



Optimisers

Stochastic gradient descent computes 
gradient over smaller batches  

Many additions to this including 
momentum, weight decay etc 

Tomorrow we will be using the ADAM 
optimiser which includes these additions
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Loss

Parameter



Training a network

The training process involves 
calculating the loss and updating 
the optimiser and network 
parameters for many examples of 
data. 

We generally batch data - to fit as 
much data on GPU as possible 

for epoch in epochs:
    for batch, label in data:
        model_output = model(batch)
        loss = loss_fn(model_output, label)
        gradients = optimiser(loss)
        model.update(gradients)
    

Data

Model Loss 
Function Optimiser

Data  
labels

LossPrediction

Update
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Validation

Validating the network is important to 
prevent overfitting to the training data 

Overfitting is where the network learns 
the training data, not the underlying 
structure in the data. 

Compute loss during training without 
updating network.
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Testing data

Data Model Prediction (0-1)

Testing data is to test the final output 
of the network 

Why have testing and validation data?
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Evaluating performance

There are many metrics to look at to 
evaluate the performance on testing 
data 

• Loss 

• Accuracy 

• True positive rate 

For detection using the loss and ROC 
curves are good metrics
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Parameter prediction

The outputs of the above network are 

Signal or no signal 

However, whilst useful information we 
really want more to give a followup 
search 

We can also return estimates of 
parameter signals

Inputs

Hidden

Outputs M qpdet
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Other networks

Convolutional layers (CNNs)  

ResNets 

Auto-encoders 

Flows 

Transformers 

Recurrent Neural Networks
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Summary

Seen an overview of some of the traditional methods used to detect 
gravitational wave signals 

Introduced some background of machine learning (specifically Neural 
Networks) 

Showed how they can be used for detection and basic parameter estimation 

Tomorrow we will put some of these things into practice!
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