
LISA workshop
Traditional methods and
machine learning for GW
detection

Joe Bayley

Michael Williams

2022-09-21

1

Introduction

Michael and myself (Joe) are from the University of
Glasgow, Scotland.

We primarily work on LIGO data analysis utilising
machine learning for many of our projects:

• Detection of Continuous gravitational waves and
Compact binary coalescence

• Enhancing Bayesian Parameter estimation for GW
signals with ML

2

Summary

Traditional methods

Signal processing

Matched filtering

Other search methods

Machine learning

Overview of neural networks

Building, Training, Testing

Application to detection

Introduction to tutorial

3

Aim of tutorial

• See an overview of some of the traditional methods used to detect
gravitational wave signals

• See how a common detection method is implemented (Matched filtering)

• Understand the background of machine learning (specifically Neural
Networks), how they are built, trained and tested.

• Gain some practical experience in building and training a Neural network
for gravitational wave detection

4

Detection MBHB

Galactic binaries

GW
background

EMRIs

Goal: Detect an astrophysical
signal

Different signals may require
different approaches for
detection.

5

Traditional methods

Matched filtering

Good knowledge
of the waveform

Poor knowledge
of the waveform

6

Good knowledge of
the waveform but
too many templates

Semi-coherent search Correlate data
between detectors

Detector data

h(t; θ)

d(t)

d(t) = n(t) + h(t; θ)

Assume additive noise

We want to search through data to
identify if a signal model is present.

d(t)
h(t; θ)

7

Noise
d(t) = n(t) + h(t) d(t) − h(t) = n(t)

Stationary white noise : In this case noise
is uncorrelated and drawn from a Gaussian
with fixed variance

p(ni) =
1

2πσ2
e− n2

i
2σ2

p(n) = ∏
i

p(ni)

8

Likelihood

n(t) = d(t) − h(t)

The likelihood function is then

p(d |h) =
1

(2πσ2)N/2
exp (−

N

∑
i

(di − hi)2

2σ2)

p(d |h) =
1

det(2πC)N/2
exp −

1
2 ∑

ij

(di − hi)C−1
ij (dj − hj)

Cij = δijσ2More generally

White noise

9

Noise model

In simple cases we can assume that the noise is
stationary and Gaussian distributed following some
PSD, i.e.

Multiple possible noise components make up the PSD:
• Instrument noise
• Signal confusion noise

https://arxiv.org/abs/1803.01944

Cij = δijSn(fi)

10

Signal model

Signal model can be anything you like

In the tutorial tomorrow we will use a
Massive black hole binary model in
the LISA band.

The faster these can be generated
the better (see Michael Katz’s talk
later)

For tutorial tomorrow we will use

IMRPhenomD

Compact binaries, Aligned spin, non
precessing

h(θ)

Time
domain

Frequency
domain

11

Matched filter

̂d = ∫
∞

−∞
d(t)K(t)dt

That maximises the SNR

12

Want to find an optimal filter K(t)

S
N

=
⟨ ̂d⟩h=h

[⟨ ̂d2⟩h=0
− ⟨ ̂d⟩

2

h=0]
1/2

Expectation value of when signal is present⟨ ̂d⟩
Root mean square of when no signal is present⟨ ̂d⟩

Matched filter

S = ⟨ ̂d⟩h=h
= ∫

∞

−∞
⟨d(t)⟩ K(t)dt

13

Want to find an optimal filter K(t)

= ∫
∞

−∞
h(t)K(t)dt

= ∫
∞

−∞
h̃(f)K̃*(f)df

N = [⟨ ̂d2⟩h=0
− ⟨ ̂d⟩

2

h=0]
1/2

= [∫
∞

−∞ ∫
∞

−∞
⟨n(t)n(t′)⟩ K(t)K(t′)dtdt′]

1/2

= ⟨ ̂d2⟩
1/2

h=0
= ⟨ ̂n2⟩1/2

= [∫
∞

−∞

1
2

Sn(f) | K̃*(f) |2 df]
1/2

= ∫
∞

−∞
(⟨n(t)⟩ + ⟨h(t)⟩) K(t)dt

Matched filter

14

We can define the noise weighted inner product

(a |b) = 4ℛe∫
∞

0

ã(f)b̃*(f)
Sn(f)

df

So we can write the SNR as

S
N

=
(u |h)

(u |u)1/2

We have assumed so far that however in practice we only have the detector output
not its expectation value, so we can approximate

⟨d⟩ = h d

Assume the optimal filter so can define the optimal SNRK ∝ h

(S
N)

opt
=

(h |h)
(h |h)1/2

= (h |h)1/2

ρ =
S
N

≈
(h |d)

(h |h)1/2

u =
1
2

Sn(f)K̃(f)

Matched filter

(d |h)(t) = 4ℛe∫
∞

0

d̃(f)h̃*(f)
Sn(f)

e−2πiftdf

The matched filter SNR can then be found with

ρ(t) =
(d |h)(t)

(h |h)

15

The matched filter time series is defined by

Matched filter search

For a search we want to compare many
different templates to the data

• How many templates?
• Where in parameter space?

E[(n + 𝒜h |h)] = 𝒜

Have a template and noise h n

If the signal is different from the template s h

E[(n + 𝒜s |h)] = 𝒜(s |h)

and is a measure of the fraction of SNR
retained by using a template to filter a
signals with parameters

h(θ)
θ + Δθ

M = (h(θ) |h(θ + Δθ))

The match between two templates is

https://link.aps.org/doi/10.1103/PhysRevD.53.6749

M ≈ (h(θ) |h(θ)) +
1
2

∂2M
∂θi∂θj

ΔθiΔθ j

1 − M ≈ gijΔθiΔθ j

Mismatch between neighbouring templates

16

https://link.aps.org/doi/10.1103/PhysRevD.53.6749

Template placement

Grid placement
• Placement is defined by metric
• Spaced according to some mismatch

gij

Random placement
• Number of templates defined by

metric
• Can be more efficient in high

dimensions

gij

Monte caro - MCMC
17

Significance

We have just been using stationary
white Gaussian noise.

Data is not often exactly distributed
like this but has many other artefacts

We can empirically estimate the
significance of a matched filter SNR by
estimating noise background

Then set a False Alarm Rate

18

Other search methods

Semi-coherent methods

 - Break data into smaller segments and run
matched filter on segments

 - Search for tracks in power spectrum

19

CWb

 - Uses a wavelet transform and correlates
power between detectors

Limitations

Matched filtering can be limited if signal model is not known well

If too many templates need to be generated then it is computationally not
feasible to run a complete templated matched filter search.

Other semi-coherent methods are limited in their sensitivity and ability to extract
parameters

20

Machine Learning

Generated with: https://stablediffusionweb.com/#demo
21

Machine
learning

Supervised
learning

Unsupervised
learning

Reinforcement
learning

Classification

Regression Clustering

Dimensionality
reduction

Artificial neural networks
Decision trees
Support vector machines
Nearest Neighbour

22

Neural networks
Why use machine learning/neural
networks?

• It is very flexible and can be applied
to many problems

• Can learn complex relationships
between inputs/outputs

• Can offer large speed ups to existing
analyses

• You have nothing Toulouse
Artificial neural networks are models
which use data to learn and improve
over time.

23

Neurons

The building blocks of Neural networks are `Neurons’

o = f (b + ∑
i

aiwi)

a0

a1

a2

w0

w1

w2

b
f()

Inputs -
Weights -
Bias -
Activation function -

a0, a1, a2
w0, w1, w2

b
f()

24

Simple network

These can then be arranged into a
Network or neurons

There are many different ways to
arrange these

Deep Learning is just many hidden
layers

For classification:
 Output 1 Neuron - probability
 of signal being present

Input
layer

Hidden
layers

Output
layer

25

Activation function

The activation function adds non
linearities into the network

It is key to making neural networks learn
effectively.

Many choices of activation functions -
useful for different purposes

26

Training networks

Data

Model Loss
Function Optimiser

Data
labels

LossPrediction

Updates

27

Data preparation/preprocessing

Tomorrow we will use a whitened time
series such that the noise is Gaussian
with a Variance of 1.

Each of these have a label
For detection:
 - 0 for noise
 - 1 for signal + noise
For parameter estimation:
 - nothing for noise
 - signal parameters for signal +
noise

28

Data preparation/preprocessing

Data preparation is key for networks
to learn efficiently

Scaling data - should always try to
have values close to 1(both for inputs
and for labels)

• Whiten the data

Make sure training data is as close as
possible to expected real data

29

Loss functions

There are many different loss functions for many different purposes

The simplest starting point might be to minimise the absolute difference between
the truth and the network estimate

L = ∑ (ptrue − ppred)2

This is the mean squared error

30

Loss functions

L = ∑ ptrue log(1 − ppred) + (1 − ptrue)log ppred

For the detection case we want to compute the likelihood that a signal is present
within the data.

This (log) likelihood is the binary cross entropy

You have to be aware of the output activations of the neural network, in this
case they need to be scaled between 0 and 1, e.g. using a sigmoid function

Here our is our data label (either 0 or 1) and is out network output.ptrue ppred

31

Optimisers

Optimisers are what compute the
gradient for each parameter based on
the loss

Loss

Parameter

wnew = wi + α
dL
dwi

And update the parameters based on
that gradient

∂L
∂wi

=
∂L

∂outi

∂outi
∂neti

∂neti
∂wi

a0

w0

net = a0w0 + b

out = f(net)

32
 = learning rateα

Optimisers

Stochastic gradient descent computes
gradient over smaller batches

Many additions to this including
momentum, weight decay etc

Tomorrow we will be using the ADAM
optimiser which includes these additions

33

Loss

Parameter

Training a network

The training process involves
calculating the loss and updating
the optimiser and network
parameters for many examples of
data.

We generally batch data - to fit as
much data on GPU as possible

for epoch in epochs:
 for batch, label in data:
 model_output = model(batch)
 loss = loss_fn(model_output, label)
 gradients = optimiser(loss)
 model.update(gradients)

Data

Model Loss
Function Optimiser

Data
labels

LossPrediction

Update

34

Validation

Validating the network is important to
prevent overfitting to the training data

Overfitting is where the network learns
the training data, not the underlying
structure in the data.

Compute loss during training without
updating network.

35

Testing data

Data Model Prediction (0-1)

Testing data is to test the final output
of the network

Why have testing and validation data?

36

Evaluating performance

There are many metrics to look at to
evaluate the performance on testing
data

• Loss

• Accuracy

• True positive rate

For detection using the loss and ROC
curves are good metrics

37

Parameter prediction

The outputs of the above network are

Signal or no signal

However, whilst useful information we
really want more to give a followup
search

We can also return estimates of
parameter signals

Inputs

Hidden

Outputs M qpdet

38

Other networks

Convolutional layers (CNNs)

ResNets

Auto-encoders

Flows

Transformers

Recurrent Neural Networks

39

Summary

Seen an overview of some of the traditional methods used to detect
gravitational wave signals

Introduced some background of machine learning (specifically Neural
Networks)

Showed how they can be used for detection and basic parameter estimation

Tomorrow we will put some of these things into practice!

40

