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What GW are

• GW are elastic deformation of the space-time metric, they propagate at speed of

light

• GW have 2 polarizations (ie quadrupole wave) generated by assymetric matter

motion

• GW have been predicted by GR, and first observed by LIGO in 2015

• astrophysical GW source: object needs to have a non spherical acceleration and

to be massive/dense: binary systems or asymmetric explosions

• Observational effect: variation of the light-distance between 2 masses at rest:

δl/L = h/2 with h: the gw amplitude. In the LISA context, we seek for

h ∼ pm/Mkm ∼ 10−21

(Image credit: Shutterstock)
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Sources along the GW spectrum

(Image credit: NASA)

• We look for massive / compact binaries

• The wave or orbital period is given on x-axis, by descending order (or increasing frequency)

• Evolution time on a given observable frequency band can differ from millions of years (white

dwarf binary) to milliseconds (stellar black hole).

• On the right hand side: lighter (thus nearby) objects

• On the left hand side: heavier, far objects (extra-galactic).
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GW observatories: from 2022 to 2035

(http://gwplotter.com/)

iPTA (international PTA: Europe, North

America, Australia, India)

• target galactic millisecond pulsars, L =

distance to earth.

• Stochastic background of supermassive

black hole binaries 109M⊙, up to z=1

LVK (LIGO/Virgo/Kagra)

• ∼ 90 events since 2015 (mainly stellar

black holes, + some neutron stars mergers).

• O4 in March 2023, almost x 2 in sensitivity,

1 yr of observation. O5 in 2027+ (factor 2

in sensitivity again)
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LISA sensitivity and key numbers

• At low frequency: imperfection of free fall =

acceleration noise: require a control the

thermal/mag/grav environment. ∼ 3fms−2/
√
Hz

around 1-2mHz.

• At high frequency: precision of test mass separation

measurement: dominated by photon shot noise,

trade-off between telescope diameter (30cm) and arm

length (2.5 Mkm) and laser power (2 W)

∼ 12pm/
√
Hz

• Above 30mHz: GW period becomes shorter than light

travel time, so the signal is partially cancelled out

• Not shown here: the laser frequency noise is

mitigated by active stabilization of the laser freq

(through a 3rd reference interferometer) and TDI.

• Heliocentric trailing orbits, 20 deg behind the Earth ie

50 millions km, to avoid the thermal/mag/grav

perturbations from the Earth.

• Ground communication with only one spacecraft,

334Mb per day (in 8hrs) using 1 to 3 stations of the

ESA network, constrained by distance from earth and

antenna size.

• Duration: 1yr comissioning + 4 yrs science up to 5

yrs extension
6



The LISA project

• A space project proposed by the LISA consortium decades ago, selected and led

by ESA since 2018, NASA as junior partner, with industrial contractor to be

selected in the coming year.

• All technologies must be TRL6 to pass adoption [free fall has already been

demonstrated by LISA Pathfinder, with great succes]. After adoption: 10 years to

build the instrument and get ready to do a live data analysis.

• Key documents

• LISA L3 Mission Proposal

• The science requirement document

• The redbook (to be released before

adoption)

• White papers, living reviews:

references given in the following slides

Armano et al., 2018 7

https://www.elisascience.org/files/publications/LISA_L3_20170120.pdf
https://www.cosmos.esa.int/documents/678316/1700384/SciRD.pdf
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Global picture

Astro white paper: Amaro-Seoane et al., 2022
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Massive Black Hole Binaries (MBHB)

• MBHB are the strongest signal that LISA can see, up

to SNR > 1000 for low redshift sources.

• GW weakly interact with matter, they travel

undisturbed and allow to explore redshift up to z∼20.

LISA should see MBHB signal from cosmic to recent

time, thus giving insight on the co-evolution of

galaxies and MBH across cosmic time: formation,

growth, ...

• Expected mass range in
[

104 − 107
]

solar mass (compare to

MBH in Milky way, Sagittarius A, 4× 106), MBHB are transient

signals, LISA will see: late inspiral, merger and ringdown phase.

• Event rate around few - a few hundreds per year.

• GW signal gives access to spin and masses to % accuracy. Spin

is difficult to measure with EM spectra. Masses and spins

constrain formation scenario: accretion (higher spin) versus

merger (lower spin).

• GW signal is the only probe for inactive/quiet objects, so far we

only have access to EM signal of active galactic nuclei.
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Galactic Binaries (GB)

• In our Galaxy: most of the stars have a companion, half of which is sufficiently close to

interact. This leads to millions of sources that LISA could see. Among them: thousands

resolvable, rest is a background (a limiting one).

• some (∼ 30) verification systems, already known by EM emission (Gaia, ZTF)

• White dwarfs (most of them), thousands of detached systems

or interacting ones (refered as AMCVn where there is mass

transfer) but also hundreds of binary with neutron stars (aka

UCXB, with X ray emission), BH (10 or 100 of them). In one

word: systems at the end state of stellar evolution.

• Monochromatic, persitent objects, period of few minutes. Seen

by EM observation, but with extinction (thus difficult to get in

the galactic halo). One could use EM (Gaia: few hundreds,

LSST: thousand, ZTF, JWST, ...) to refine localization, mass,

inclination, orbital decay (ḟ ) : due to GW radiation vs mass

transfer.

Stellar Origin Black Hole binaries (SOBH)

From inferred rate of merger discovered by LVK: up to ∼ 25 SOBH

could be seen by LISA, some of which merging in the LVK band

(months to years later). By giving access to the inspiral phase of

the signal, LISA should be able to measure eccentricity (binary

becomes circular closer to merger).

credit: Caltech

GB science case

• Thousands of sources with

distance and sky position will

help refinig our galaxy

morphology model.

• Stellar population models

(formation+evolution) from

coalescence rate.
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Extrem mass ratio inspiral (EMRI)

• EMRI are made of a compact star (neutron star or BH)

of ∼ 10-60 M⊙ captured by BH (of 105 − 106 M⊙),

spiralling in the few Schwarzschild radii region from

event horizon (during months to years), then plunging

into it.

• Number of cycles is roughly inversely proportional to

mass ratio.

• Because of relativistic effects, the waveform is very

complex, but we expect to get a lot of cycles (104-105)

thus a potential precise measurement of intrinsec

parameters like spin.

• Spin of the MBH tells about formation history: gas accretion (higher spin) versus

mergers with other MBH (lower spin). Eccentricity and orbital inclination gives

information on formation of the binary.

• Also from the long time spent close to the BH horizon, one can measure the

multipolar structure of the BH encoded in the GW signal, allowing for tests of GR

(no hair theorem).

• Event rate is uncertain due to the lack of EM observations so far (1-1000 per

year). There are many plausible formation channels, such that even no detection

would put contrains on them.
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EM counterparts and standard sirens

• Ultra compact binaries are guaranted source with EM counterpart in optical and X-ray.

• Regarding BH, if merger happen not in vaccum but in region with surounding gas, EM signal

expected (mostly X-ray from gas accretion), at pre-merger, merger, and post-merger (disc

rebrightening, corona, jet).

• Radio signal is also expected from AGN relativistic jet.

• Multi-messenger studies involve: LSST (10deg2 FoV), SKA, Athena, ...

• Today: some effort ongoing to better understand EM signatures of MBHB (with numerical

simulation), as well as instrumental effort to find observable candidates (highlighting the

binary nature of objects in optical / spectro catalogs).

• Alerts with LISA: real time measurement of EM counterpart will bring unvaluable information

on the BH environment.

• Offline analysis are powerfull too (evolution, co-evolution studies).

(Tamanini et al., 2016)

Cosmology with standard sirens

• absolute luminosity DL(z) encoded in the signal,

calibration given by GR

• with an independant redshift measurement, provided by

EM counterpart, one can get points on the distance vs

redshift curve, and then constrain H0 at the % level.

• without EM counterpart: one can match sky localization

+ distance with existing galaxy catalogs, giving several

host candidates for each GW event: dark sirens

13



Stochastic GW Background (SGWB)

of cosmological origin

• Cosmological stochastic background of

gravitational waves can be produced by

several processes in the early universe (like

first order phase transition, cosmic string,

inflation). Especially first order phase

transition is right on the LISA band.

• Measuring such a cosmological background

(its shape and amplitude) would allow to

constrain theoritical scenarios. Detection of

a deviation from isotropy, Gaussianity and

circular polarization would also be a

valuable interest.

Auclair et al., 2022

of astrophysical origin

• from any of the source type mentioned so

far (SMBH, SOBH, EMRI, GB): carry

information on the underlying population

• from unresolved SOBH: spectral index 2/3,

amplitude depends on merger rate, and

parameter distributions (masses, spins,

redshifts). Expected SNR around 15.

• from EMRI: depending on population

model, could be negligible to limiting in the

10−3 − 10−2 Hz band.

(Image credit: Karnesis)
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Fundamental physics

See living review in relativity Arun et al., 2022
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LISA data flow [1/2]

LISA objectives from Lammers et al., 2019

• All-sky survey of GW sources and creation of a corresponding catalogue

• Issuing of alerts of upcoming GW events to enable contemporaneous observations

in the EM band

• Ground segment includes: MOC

(ESOC/Darmstadt) + SOC (ESAC/Madrid) +

DPC (Consortium)

• MOC will receive telemetry data (TM), and send

them to SOC.

• SOC will process/complete them to build L0 data,

and derive L1 (daily). SOC will deliver LISA end

products (catalogs, alerts) to the community.

• DPC will build the catalogs (L1 to L3), produce

simulated data, and will be involved in alerts and

preprocessing.
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LISA data flow [2/2]

• L0 includes telemetry data: all data accumulated by the S/C compressed,
packetized, transmitted to SOC via MOC as files.

• Housekeeping data: sensors monitoring, star tracker, clocks data

• Science data: phasemeters measurements (long-arm, TM, reference), and all other

instruments monitoring (laser, GRS, ...), DFACS data.

• but also: orbits data, auxiliary timing from ground, meteorological data.

• De-packetized, de-compressed, cleaned from corrupted items, converted from row

ADC to physical units, clock synchronized, time ordered (L0.5).

• L1: calibrated and noise corrected

data

• L2: fully processed data.

• L3: fraction of L2 to be released to

the community (catalogue, sources

strain time series, residual data, TBD)

Public data

• Any released item should be reproducible from L1: algorithm, software, models

need to be released too. Discussions on the potential release of L0/L0.5 ongoing.

• Data will be given in open source / standard format, software with open source

license. A support will be provided by SOC+Consortium.
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Detector response to a GW source strain

• The GW strain is a dimensionless number characterizing amplitude of spacetime streching

caused by GW: h(t) = δL(t)/L = δt(t)/(2L/c)

• The detector response is the phase difference in the laser light between 2 arms of the

interferometer, or equivalently the laser light travel time difference δt(t)

• Because the GW signal is weak, detector response is linear in the wave metric perturbation,

h(t) is the convolution of the metric perturbation with the impulse response of the detector.

• Since it’s a polarized signal, we derive h+, hx (the waveform) in source frame, then detector

frame (solar barycentric system for LISA), then apply antenna response F+/x (t).

• It varies with time following orbital motion of the constellation, and is link dependant.

• Sensitivity to a given GW source depends on the orientation of the constellation wrt to the

source, which changes with time.
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Time Delay Interferometry

• Laser noise is 8 orders of magnitude above the GW signal, and thus should be

cancelled. yrs(t) = yGW
rs (t) + y laser

rs (t) + yacc
rs (t) + yrs(t)oms + ...

• TDI combines the delayed interferometric

measurements along the 6 links to cancel the laser

noise (of the 3 s/c), and build 3 TDI variables. 1st

generation was derived for a unequal but fixed

constellation (8 terms), 2nd generation works with time

varying armlengths (16 terms).

(Image credit: J.-B. Bayle)

• There is an infinity set of combinations which allows to cancel the laser noise.

Once chosen, one needs to derive the response of GW and other noise source to it.

• Usual combination is Michelson variables (X,Y,Z), which gives virtual 3

Michelson equal arm interferometers measurements, but correlated noise. The

combination widely used in data analysis is the un-correlated AET decomposition

Prince et al., 2002 , with T less sensitive to GW signal, can be seen as a null channel.

Auclair et al., 2022
20



Other noise reduction and calibration

Noise reduction

• Full L0 to L1 preprocessing includes a

various other noise reduction in addition (or

as part of) TDI

• TTL noise: relative jitter between OB and

distant laser beam, change optical path

length. TTL correction can be done using

on-board DWS measurements (differential

wavefront sensing) and a TTL coefficients

fitting procedure. Paczkowski et al., 2022

Calibration

• Rely on our knowledge of the wavelength of

the laser light and onboard clocks timing,

and translates into a calibration of signal

phase and amplitude

• In order to keep the calibration error smaller

than the random error, especially for

distance measurement, we need

σa < few10−3 (and σφ < 10−3) ( Savalle

et al., 2022).

• Sources with known luminosity distance

(like VGB) all together could be used as

cross check, with a precision of few % in

amplitude. Phase calibration could be

checked with EMRI.
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GW data analysis

GW event detection and characterization lie on a hypothesis testing framework (or

inference)

• Hypothesis are usually based on a

model with some parameters θ

• Question is: does the data d favors

one hypothesis or the other ?

Frequentist approach

p(d̂ |θ) → the likelihood

• A true value for the parameters exists,

the data is a particular noisy

realization of the model.

• One use an estimator θ̂ which can be

the maximum likelihood

• If model is correct, one can derive

confidence intervals or p-value and

lower bound uncertainties on the

best-fit parameters from the Fisher

Information Matrix

Bayesian approach

p(θ|d) = p(d|θ)p(θ)
p(d)

→ the posterior

• Given the data, what is the probability

for the parameter to take a particular

value.

• p(θ) reflects prior knowledge on the

model: ranges and distributions

• The posterior gives the most complete

information about the parameters, one

can derive confidence intervals,

maximum a posteriori, ...
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Likelihood in GW search

• Assuming independance of the signal with respect to the instrumental noise:

d(t) = s(t) + n(t)

• and that the residual r(t) = d(t)− h(t) = n(t) is left with Gaussian noise (by

central limit theorem)

• Likelihood is given by the Gaussian distribution:

p(d |h) = 1√
det(2πCn)

e
− 1

2

∑

i,j ri (C
−1
n )

ij
rj

• Cn is the noise correlation matrix, diagonal in Fourier domain for a stationary

noise: 1
σ
√

2π
e
− r2

2σ2

• For multiple detectors, the sum goes over both samples and channels (like A,E if

working with TDI AET decomposition).

• Matched filter based likelihood can be used to find a good starting point. It is

based on SNR maximization, and involves inner product:

(d |h) = SNR2 = 4ℜ
∫∞
0

d̃(f )h̃(f )∗

Sn(f )
df

• In practise, we use the log-likelihood: exponential likelihood, normal distribution

is log-concave, products become sums, and other pratical reasons.
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Parameter fitting

One is mostly interested in getting a small residual, such that a big part of the work if

about optimization.

Multiple techniques are broadly used in data analysis:

• Gradient descent methods (w/wo preconditioner):

first/second order iterative optimization of the

likelihood.

• Stochastic methods (Monte Carlo Markov Chain,

Nested Sampling): not strictly speaking designed

for it, but good at finding high density region of

the posterior while sampling.
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In GW data analysis

• High dimensionality of the model and multi-modality of the likelihood/posterior

are the main issues in this optimization problem.

• The 1st category also suffers from the need to keep parameters in their physically

allowed ranges, which creates discontinuity of the likelihood surface.

• Most GW data analysis falls into the 2nd category.
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Reducing the dimensionality with F-statistic

• In GW data analysis, F-statistic can be used to reduce the dimensionality of the

optimization problem, by splitting them into intrinsec (related to the source

itself) vs extrinsec (related to the observer).

• Going back to the expression of the response function of the detector to a GW,

one can re-write it as a linear combination of 4 functions:

h(t) =
∑4

k=1 a
khk (t, ξµ) where ak are the extrinsec parameters.

• From this linear combination, one can find a closed form ML estimator â

• Using this estimator, the log likelihood can be re-written in a form which only

depends on intrinsec parameters, which is called the F-statistic.

• F-statistic then can help in solving the ML optimization problem or to find a

good starting point.
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Stochastic methods

Stochastic methods aim at mapping the posterior distribution, by randomly generating a set of

samples θi (a chain), iteratively, until they faithfully describe the true posterior distribution.

From https://www.turing.ac.uk From https://pypi.org/project/corner/

Different approaches exist:

• Metropolis Hasting sampling and its extensions (multiple try or delayed rejection, tempering)

• Hamiltonian sampling: replace random walk by state space proposal

• Slice sampling: sample from the area under the graph of the density function

• Splitting the parameters to look iteratively for marginal distributions instead of the full joint

distribution (Gibbs sampling)

A special case is the Nested Sampling techniques, which aim at estimating the evidence, and for

which the posterior is a by-product.
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MCMC [1/2]

How it works

• Key requirements to ensure the convergence to target posterior distribution are:

• irreducibility: all points should be visitable in a finite number of steps

• aperiodicity: one should not get trapped in some cycle

which in turn constrain the decision rule of accepting/rejecting new samples.

• The baseline is to use the Metropolis Hasting acceptance probability:

A(θn+1, θn) = min(1,
p(θn+1)p(d|θn+1)

p(θn)p(d|θn)
) where new points are randomly chosen from p(θ).

• A higher likelihood increases the probability of being accepted.

• One can increase the probability for new points of being accepted by learning from the chain

history: adaptive MCMC. This breaks the Markovian property of the chain, but

assymptotically, one assumes to get a Markov chain back once everything’s stabilized.

Convergence

• Far from the high density region of the posterior, it is difficult to propose new samples which

are accepted, this increases the auto-correlation length. Usually burn-in part of the chain is

discarded.

• On the other hand, one can design a stopping criteria from the effective sample size (ESS).

• Highly correlated (degenerated) parameters are of the main reasons for a slow convergence

(requires time to learn the correlation and propose good points), and should be avoided

whenever possible.

• Another one is when the chain get stuck in a secondary maximum.
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MCMC [2/2]

Ensemble chains

A common way to use MCMC is to run chains in parallel:

• N chains gives N more samples of the posterior for a given

time. Mixture of chains can improve the proposals.

• Having several chains running in parallel offers the possibility to

use parallel tempering with different cooling at the same time

p(d|θ) → p1/T (d|θ)

• By flattening the likelihood, high temperature chains can

explore all the modes of the posterior, while the coolest ones

focuses on the main one. Point exchanges between the chains

triggered by a higher likelihood, allows newly discovered modes

to become the important ones.

• This helps to solve the secondary maxima issue.

• In the case where several chains are run in the same time, the

Gelman-Rubin ratio is commonly used to assess the

convergence. It is based on the ratio of the within-chain and

between chain variance.

• This can be extended beyond the single parameter comparison,

using distance (like Kullback-Leibler) of the chain’s KDE.

Andrieu et al., 2003

Jacobs et al., 2015
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LISA sources and the global fit problem [1/2]

• One needs to infer the parameters of GW sources of different kind, with different properties

• GB: thousands of sources to find, 8 parameters each. Model selection is needed here.

• BHB: not too many sources but some tricky parameter degeneracies and correlations.

• GB are quasi monochromatic event → narrow band in the frequency domain: one can split

the frequency domain into independent regions where to look for a reduced number of

sources at the same time.

• On the other hand BBH are transient signals, with response

varying both with time and frequency.

• Splitting the source identification into 2 independant steps

would simplified the problem a lot.

• But, one needs to fit them together in order to properly

account for their respectives uncertainties (or removal

residuals) impacting one with each other.
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LISA sources and the global fit problem [2/2]

• A careful modeling of the (non Gaussian) residual coming from

resolved bright sources is also required to fit for stochastic

background, such that SGWB fitting must be part of the global

fit too. Auclair et al., 2022

• It is assumed that the joint identification can be done in an

iterative way (Gibbs sampling), assuming small correlation

between the parameters of the different resolvable source types

and background.

• There are some ongoing studies to demonstrate the

performance of that Gibbs sampling approach:

• SGWB / resolvabes sources in the LVK context Biscoveanu

et al., 2020

• GB / BHB in the LISA Data Challenge context

• This requires some load balancing between update of each

source type, weighting including: number of sources (GB),

speed of convergence (multi-modality, correlations of BHB),

speed of likelihood evaluation (waveform complexity of EMRI)

etc
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CPU needs of the global fit

• Cost is driven by the time take to compute a likelihood evaluation and number of likelihood

evaluations needed to converge.

• Time to converge is governed by multi-modality of the likelihood, presence of correlated

parameters, number of parameters jointly explored.

• Likelihood evaluation is dominated by the waveform computation, for which a broad range of

approximations are explored, together with their impact on source identification (bias,

variance).

• Varying the likelihood approximation along the MCMC run can be used to mitigate this

rough product (F-statistic, heterodyning, machine learning, etc)

• GPU can be used on top of that: parallelization over time or frequency series, or over

multiple points in MCMC machinery.

• All those considerations enter the MFR cost study Babak, 2021 with actual numbers supported

by LDC R&D.

• 1 year, analysis of all resolvable events: → 20Mcpu.h to 30Mcpu.h (French support to the

project today is ∼ 5Mcpu.h)

• 3 iterations per year, 2 pipelines gives an additional factor 6

• R&D requires to multiply this quantity by a big prefactor...
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Gaps

• Short (< hours) gaps are expected from antenna

repointing (9 days) and laser relocking (several weeks),

plus unexpected long gaps (∼ days) like in LPF are often

considered. Total duty cycle is 80-90%.

• Gaps in time series lead to spectral leakage when

switching to Fourier domain, and off-diagonal terms in the

noise matrix. Apodization in time domain can reduce the

spectral leakage, but inpainting approach is better to solve

the 2 issues at the same time.

• Additional parameters can be use to draw some signal in

the missing part, then iterate on the GW signal parameters

in a blocked Gibbs sampling mode.

• Number of those additional parameters depends on the

number of the neighboring samples are used to set

condition on the inpainted samples: depends on gap size,

then trade-off between accuracy and computing time.

• Works well for GB, short glitches, at the price of spending

more time in gap filling than in GW source sampling Baghi

et al., 2019 .

• Regarding MBHB, a more challenging task due to their
transient nature, but should be OK if protected periods
are in place Dey et al., 2021.

38



Impact of glitches

Two kind of issues:

1. High amplitude glitch on top of a transient event

2. High number of glitches preventing from long duration analysis

Both are adressed by the ongoing Spritz data challenge, using glitch models

from LPF.

Removal in two steps

• Detection: matched filter assuming a known shape and response, or

simple low pass filtering.

• Mitigation: Once detected, one can think of different approaches

including:

• Masking + inpainting: model independent

approach, but you may loose an important part

of the data.

• Subtraction (Davis et al., 2022 in the LVK context):

need to fully understand the uncertainties

associated to it and propagate them to GW

signal study.

• Joint fit of glitch and GW signal parameters

(Hourihane et al., 2022 ) provides a proper error

propagation, again at the price of an increase of

the number of parameters to fit jointly.
(Q. Baghi)
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Alerts: key numbers

Two timescales envisaged

• Prompt transient events: objective is to have simultaneous EM observation, would require an

alert 1 day prior to merger, with refinement on time and localization up to some hours before

merger.

• Short term astrophysical phenomena: detection of an inspiral about 2 weeks before merger,

would give time to have a protected period after 2 days of 14 days long. During the

protected period, science data should be available no later than 2 hours after measurement

(using 3 stations of ESA network for a 24/24 downlink)

Low latency pipeline should be able to

• trigger initial alert within hours after L0 data availability.

• refine source parameters before/after merger (especially

localization) in a continuous way, with ouptut within hours

too.

• LIGO have capabilities of issuing alert within 1 minute

with template banks.

• Time constrain is less stringent in LISA, but we are source

dominated: less waveform approximations (sky multi

modality of MBHB), fast removal of strong

contaminant/artifacts, ...

• A time constrained data challenge might help in developing

the dedicated toolbox needed for low latency analysis.

7 d 2 d 1 d 10 h 4 h 1 h

Time to merger

101

102

103

SN
R

Mass in 105 107M , z=1

https://emfollow.docs.ligo.org
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The LDC project



From MLDC to LDC

Mock LISA Data Challenge (2006-2010)

4 data challenges have been run to foster the development of data

analysis techniques for LISA, with dozens of teams participating.

• MLDC1: dozens of GB, 1 MBHB

• MLDC2: millions of GB, dozens of MBHB and EMRIs

• MLDC3: + burst, stochastic background,

• MLDC4: full enchilada

Two simulators were used, waveforms generator for each source

type, common convention to distribute the data and collect the

results. See dedicated chapter of LDC living review.

LISA Data Challenge (2017+)

• More project oriented, like supporting specific question along

LISA design. Less competition, more coordination.

• Some support from the project, to develop software with long

term (or broader) support (DPC activity), reproducible pipeline,

etc.

• Maintenance of a set of tutorials, to get new people up to

speed.
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https://asd.gsfc.nasa.gov/archive/astrogravs/docs/mldc/community_resources.html
https://lisa-ldc.lal.in2p3.fr/


LDC status

Ongoing challenges

• LDC1/Radler: Verification GB, 1 MBHB, full galaxy,

stochastic background, EMRI, SOBH

• LDC2a/Sangria: Full galaxy + dozen of MBHB and

VGB Le JeuneandBabak, 2022

• LDC2b/Spritz: Isolated signal with glitches, gaps, non

stationary noise, 2nd generation TDI

• LDC1b/Yorsh: Update on EMRI (new waveform) and

SOBH.

Resources

From the LDC portal:

• data: observations and true signal TDI X,Y,Z

• software

• documentation: conventions, source parameterization,

instrumental design

• tutorial notebooks: see gitlab or LDC workshop indico

• + gitlab wiki for ongoing work like living review, etc
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https://gitlab.in2p3.fr/LISA/LDC
https://indico.in2p3.fr/event/27463/


Simulation



Overview

(Image credit: J.-B. Bayle) Simulation is a very active project in LISA, with co-evoluting tools.
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Sky simulation

Relies on:

• Population models, given as one or several realizations

(catalogs)

• Randomization of some parameters

• Selection: number of sources, min SNR, etc

Korol, V. et al., 2020

LDC catalogs

• An online reference of all known verification systems

• GB interacting from Nelemans et al., 2004, detached from Korol et al., 2020

• MBHB popIII, Q3d, Q3d no delay from Klein et al., 2016

Tools

• LDC: Catalog processing

• lisaorbits Bayle, Hees et al., 2022: Orbit file generation (analytic, ESA like)

• LDC: Time domain computation of waveforms, projected strains and TDI (GB, BHB, EMRIs)

• gw-response Bayle, Baghi et al., 2022: Time domain computation of waveforms and projected

strains (GB, stochastic background)
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https://gitlab.in2p3.fr/LISA/lisa-verification-binaries


Noise simulation

Relies on a model of the LISA constellation:

• generate random noise for each noise source

• combine measurements like LISA will do

• post-processing of the dominant noises: TDI, but

not only

Tools

• lisainstrument and lisanode Bayle, Hartwig et al., 2022

• lisaglitch Bayle, Castelli et al., 2022

• pytdi Staab et al., 2022

Additional resources

• Simulation Model for the LISA Instrument

• Tutorials from the simulation workshop
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https://gitlab.in2p3.fr/lisa-simulation/instrumen
https://www.overleaf.com/project/5ef23d2dd6afc300011512b7
https://gitlab.in2p3.fr/lisa-simulation/simulation-workshop


Data analysis



Fast waveforms

Existing waveforms

Fast means: TDI in frequency domain, size of few hundred samples in 1ms.

• LDC provides: GB, MBHB, EMRI FastAK fast waveforms

• lisabeta (Marsat et al) provides: PhenomD, PhenomHM for MBHB, SOBH (existing

interface to LDC)

• GBGPU M. L. Katz, 2022 , with GPU support

• BBHx M. Katz, 2021 provides: PhenomD, PhenomHM, with GPU support

• TDI1.5 and TDI2

No TDI

Some waveforms available, but without TDI response

• FEW provides several EMRI waveform with GPU support M. L. Katz et al., 2021

• TBC
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https://gitlab.in2p3.fr/marsat/lisabeta_release
https://mikekatz04.github.io/GBGPU/html/index.html
https://mikekatz04.github.io/BBHx/html/index.html
https://bhptoolkit.org/FastEMRIWaveforms/html/index.html


DA tools: SNR, FIM, ...

• LDC provides SNR computation facilities

• multi-fisher SAVALLE et al., 2022 provides a common framework to perform FIM

computation for all kind of sources, based on LDC

• LDC provides FFT, iFFT wrapper on top of a time/freq series container (xarray),

and some windowing facilities

• LDC provides some analytic noise models

• lisabeta provides noise models and FIM facilities for BHB.
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https://gitlab.in2p3.fr/esavalle/multi-fisher-for-ldc-and-fom


MCMC and NS sampler

Generic and publicly available MCMC samplers

• emcee, ptemcee: commonly used ensemble MCMC

sampler

• dynesty, cpnest, nessai: commonly used nested

sampler

• bilby: Bayesian framework with interface to a

broad range of samplers (dynesty, pymultinest,

emcee, ptemcee, pypolychord, etc). See also

samplers-samplers-everywhere notebook demo.

It’s sometimes useful to spend time in customizing or re-writing those tools to add

domain specific features. It’s also a good way to get a deeper understanding of how

they works.

53

https://emcee.readthedocs.io/en/stable/
https://github.com/willvousden/ptemcee
https://dynesty.readthedocs.io/en/stable/
https://github.com/johnveitch/cpnest
https://pypi.org/project/nessai/
https://lscsoft.docs.ligo.org/bilby/bilby-mcmc-guide.html
https://mattpitkin.github.io/samplers-demo/pages/samplers-samplers-everywhere/


Summary

• LISA will observe GW sources of different kind, in this new mHz window. The

LISA science case is very broad and unique.

• With a laser noise lying 8 orders of magnitude above everything else, the LISA

data analysis will require a deep understanding of the instrument systematics, and

TDI.

• With very high SNR event of MBHB merger on one hand, and faint potential

cosmological background signal on the other, data analysis techniques should be

developed and exercised in very different contexts.

• LISA is a source dominated mission. Overlapping sources and the absence of an

independent measurement of the noise is a major change wrt ground based

techniques used so far. More sophisticated approaches for the data analysis are

needed.

• Data challenges have proven to be very efficient in fostering those developments.

They now benefit from a very advanced state of the project simulation capacity,

and existing tools.

• Adding more and more complexity to the data will reinforce the need for

speeding-up existing approaches. GPU and ML are more and more used to that

aim, with very promising results.

• The hope is that those new approaches and tools will remain accessible to new

comers, both in terms of availability and readibility.
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The End

Have a good workshop !
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Böhmer, C. G., Brito, R., Calcagni, G., Cardenas-Avendaño, A., Clough, K., Crisostomi, M.,

Luca, V. D., Doneva, D., Escoffier, S., Ezquiaga, J. M., Ferreira, P. G., . . . Zumalacárregui, M.

(2022). New horizons for fundamental physics with LISA. Living Reviews in Relativity, 25(1).

https://doi.org/10.1007/s41114-022-00036-9

Auclair, P., Bacon, D., Baker, T., Barreiro, T., Bartolo, N., Belgacem, E., Bellomo, N.,

Ben-Dayan, I., Bertacca, D., Besancon, M., Blanco-Pillado, J. J., Blas, D., Boileau, G.,

Calcagni, G., Caldwell, R., Caprini, C., Carbone, C., Chang, C.-F., Chen, H.-Y., . . .

Zhdanov, V. I. (2022). Cosmology with the laser interferometer space antenna.

Babak. (2021). Computational cost and storage for l1,l2, l3 production. APC.

https://atrium.in2p3.fr/e9dcdf9d-0ee0-41b3-bcb1-8c756cb07ffb

Babak, S., Gair, J. R. & Porter, E. K. (2009). An algorithm for the detection of extreme mass

ratio inspirals in LISA data. Classical and Quantum Gravity, 26(13), 135004.

https://doi.org/10.1088/0264-9381/26/13/135004

https://doi.org/10.1103/PhysRevLett.120.061101
https://doi.org/10.1007/s41114-022-00036-9
https://atrium.in2p3.fr/e9dcdf9d-0ee0-41b3-bcb1-8c756cb07ffb
https://doi.org/10.1088/0264-9381/26/13/135004


Bibliography (cont.)

Baghi, Q., Thorpe, J. I., Slutsky, J., Baker, J., Canton, T. D., Korsakova, N. & Karnesis, N.

(2019). Gravitational-wave parameter estimation with gaps in LISA: A bayesian data

augmentation method. Physical Review D, 100(2).

https://doi.org/10.1103/physrevd.100.022003

Bartolo, N., Bertacca, D., Caldwell, R., Contaldi, C. R., Cusin, G., De Luca, V.,

Dimastrogiovanni, E., Fasiello, M., Figueroa, D. G., Franciolini, G., Jenkins, A. C., Peloso, M.,

Pieroni, M., Renzini, A., Ricciardone, A., Riotto, A., Sakellariadou, M., Sorbo, L., Tasinato, G.,

. . . Kuroyanagi, S. (2022). Probing anisotropies of the stochastic gravitational wave background

with lisa. https://doi.org/10.48550/ARXIV.2201.08782

Bayle, J.-B., Baghi, Q., Renzini, A. & Le Jeune, M. (2022). Lisa gw response (Version 1.1).

Zenodo. https://doi.org/10.5281/zenodo.6423436

Bayle, J.-B., Castelli, E. & Korsakova, N. (2022). Lisa glitch (Version 1.1). Zenodo.

https://doi.org/10.5281/zenodo.6452904

Bayle, J.-B., Hartwig, O., Petiteau, A. & Lilley, M. (2022). Lisanode (Version 1.4). Zenodo.

https://doi.org/10.5281/zenodo.6461078

Bayle, J.-B., Hees, A., Lilley, M. & Le Poncin-Lafitte, C. (2022). Lisa orbits (Version 2.0).

Zenodo. https://doi.org/10.5281/zenodo.6412992

https://doi.org/10.1103/physrevd.100.022003
https://doi.org/10.48550/ARXIV.2201.08782
https://doi.org/10.5281/zenodo.6423436
https://doi.org/10.5281/zenodo.6452904
https://doi.org/10.5281/zenodo.6461078
https://doi.org/10.5281/zenodo.6412992


Bibliography (cont.)

Biscoveanu, S., Talbot, C., Thrane, E. & Smith, R. (2020). Measuring the primordial

gravitational-wave background in the presence of astrophysical foregrounds. Phys. Rev. Lett.,

125, 241101. https://doi.org/10.1103/PhysRevLett.125.241101

Consortium, T. e., : Seoane, P. A., Aoudia, S., Audley, H., Auger, G., Babak, S., Baker, J.,

Barausse, E., Barke, S., Bassan, M., Beckmann, V., Benacquista, M., Bender, P. L., Berti, E.,

Binétruy, P., Bogenstahl, J., Bonvin, C., Bortoluzzi, D., . . . Zweifel, P. (2013). The

gravitational universe. https://doi.org/10.48550/ARXIV.1305.5720

Cornish, N. J. (2022). Low latency detection of massive black hole binaries. Physical Review D,

105(4). https://doi.org/10.1103/physrevd.105.044007

Cornish, N. J. & Crowder, J. (2005). LISA data analysis using markov chain monte carlo methods.

Physical Review D, 72(4). https://doi.org/10.1103/physrevd.72.043005

Cornish, N. J. & Littenberg, T. B. (2007). Tests of Bayesian model selection techniques for

gravitational wave astronomy. prd, 76(8), Article 083006, 083006.

https://doi.org/10.1103/PhysRevD.76.083006

Cornish, N. J. & Shuman, K. (2020). Black hole hunting with LISA. Physical Review D, 101(12).

https://doi.org/10.1103/physrevd.101.124008

Davis, D., Littenberg, T. B., Romero-Shaw, I. M., Millhouse, M., McIver, J., Di Renzo, F. &

Ashton, G. (2022). Subtracting glitches from gravitational-wave detector data during the third

observing run.

https://doi.org/10.1103/PhysRevLett.125.241101
https://doi.org/10.48550/ARXIV.1305.5720
https://doi.org/10.1103/physrevd.105.044007
https://doi.org/10.1103/physrevd.72.043005
https://doi.org/10.1103/PhysRevD.76.083006
https://doi.org/10.1103/physrevd.101.124008


Bibliography (cont.)

Dey, K., Karnesis, N., Toubiana, A., Barausse, E., Korsakova, N., Baghi, Q. & Basak, S. (2021).

Effect of data gaps on the detectability and parameter estimation of massive black hole binaries

with LISA. Physical Review D, 104(4). https://doi.org/10.1103/physrevd.104.044035

Flauger, R., Karnesis, N., Nardini, G., Pieroni, M., Ricciardone, A. & Torrado, J. (2021). Improved

reconstruction of a stochastic gravitational wave background with LISA. Journal of Cosmology

and Astroparticle Physics, 2021(01), 059–059.

https://doi.org/10.1088/1475-7516/2021/01/059

Ford, K. E. S., Bartos, I., McKernan, B., Haiman, Z., Corsi, A., Keivani, A., Marka, S., Perna, R.,

Graham, M., Ross, N. P., Stern, D., Bellovary, J., Berti, E., O’Dowd, M., Lyra, W.,

Mac Low, M.-M. & Marka, Z. (2019). Agn (and other) astrophysics with gravitational wave

events. https://doi.org/10.48550/ARXIV.1903.09529

Glampedakis, K. (2005). Extreme mass ratio inspirals: LISA’s unique probe of black hole gravity.

Classical and Quantum Gravity, 22(15), S605–S659.

https://doi.org/10.1088/0264-9381/22/15/004
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