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What are we going to talk about today ?

General Machine Learning concepts

Introduction to Neural Networks and Deep Learning
Deep Learning in practice: introduction to pytorch
A few recent (sucess?) stories of Deep Learning



General Machine Learning concepts



What is Machine Learning ?

Machine Learning is a part of Artificial Intelligence. It is a set of algorithms based on models which can
be trained to learn from statistical patterns in data, and improve automatically their performance.
Once trained, models can generalize and make prediction taking unseen data as input.

Artificial Intelligence (Al) Machine Learning (ML)
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What is Machine Learning ?

Machine
Computer Science learning

Mathematics
Statistics
Data Models

science

Danger Traditional
zone Research

IT

At the intersection between Mathematics
Application domain (Probability and Statistics) and Computer Science.
(Physic, Biology, ...) ML is Applied in lot of application domain.

Try not to be

stuck here

®)
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A quick history of Al
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Why an acceleration of Al now ?

Big Data
Internet
Centralization
of information
Database

Algorithms
Backpropagation

CNNss,

RNNs, Transformers, VAEs,
GNNs, Diffusion models

Hardware accelerators
GPUs, FPGAs, ASICs, ...

Software

NNs Frameworks

Linear Algebra on accelerators
NNs dedicated



Data-driven science: A new scientific paradigm 7

Theorical science
Scientific Theory

Computational science
Simulating complex

Using mathematics,

models,

generalization

1% paradigm
5

i3

Experimental science

Experimental science
Empirical Evidence
Observations
Describing natural
phenomena

1Jim Gray, 2007

1600

phenomena
3 paradigm
an paradigm zh%\\p(r)_mm(t)
ih%\\l/(t)) _ Al ) — =
o "]
VxH=1+% ;‘,.’-;iﬁ
F—qG. my - My H

r2

Computational science

Theoretical science

1950 2000

From « Introduction to Deep Learning » CNRS FIDLE Formation
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Data-intensive Scientific

T o2 .
AR ® T4 2 Discovery
= = = =  Unify theory, experiment
and simulation
@ Bmd  Data exploration
in

Statistics & Machine
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https://gricad-gitlab.univ-grenoble-alpes.fr/talks/fidle/-/wikis/home

Don’t use ML as black box
Don’t use data as abstract input

Machine .
. ! Mathematics
Computer Scienceé Learning o
T Statistics
Data Models
NATURE  |[——>| EXPERIMENT [—) DATA science

Danger Traditional
zone Research

Instrumentation / detectors Data don’t come

Signal and noise from nowhere...
Simulated / real data

Data is link to experimental conditions and application domains
= It is need to understand the data and where they came from
=> It is a prerequisite for applying correctly ML models
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Motivation to use ML

X =

DATA

Let’s say you want to compute a variable y from the experimental data X

The relation between y and X can be seen as a mathematical function f : y = f(X)

It’s probably a good idea to use ML if:
* We have the analytic form of f but it’s highly time consuming to compute
 We don’t have the analytic form



Learn from data and predict

Train a ML model to learn from statistical patterns in data
The model will learn an approximation of the function f
The model will predict a value y which have to be compare to y

y = f(X)
X f 9 =X

DATA |——>  MODEL |——» PREDICTION




Prediction = model inference

y = f(X)
X f
DATA —>| MODEL
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E——)

y=fX)

PREDICTION

12



Estimation of the error between prediction and truth

y = f(X) -
X f y=/&)

Inference v

DATA —>| MODEL |—====ss==)| PREDICTION | —> Loss(y, )

We define a Loss function to evaluate the difference between prediction and truth

Workshop on LISA Data Analysis - November 21-25, Toulouse 13



Loss optimization

y = f(X)

A

/\= ~ X
X f Inference V=7

DATA ——> MODEL |e—ossssss) PREDICTION [— Loss(j;,y)

t Correction I

All ML is here: Correction of the model parameters to minimize the Loss
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Gradient descent

General optimization technique. Can not be applied on all ML algorithms but it can on Neural Nets (hopefully)...

A
loss - - .
s One iterative solution: | loss o is too low: the
loss training is too
slow
<+—»

Oloss repeat:

gradient = 5 _
dp ’ 5; < fQ(X) a is too high:
loss < Loss(y,y) the training do
loss(6) 5loss not converge loss(0)
0 <60—a

09

a = learning rate
Hbest 0 Qbest [ g
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Train the model

A

7

p = FC0)

Inference

XN
y = f(X)
X
DATA

MODEL

E—

PREDICTION

—
—> Loss(y,?)

t Correction I

Ioss
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\ \ 6loss

gradient =

loss

loss(0)

gbest 0

One iterative solution:

repeat:
9« fo(X)
loss « Loss(¥,y)

6loss

00— 5
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Split the data in TRAIN and TEST dataset

An important point of methodology:

It is need to train the model on a train dataset and evaluate the model (after the training) on a test dataset
As we want to evaluate the abilities of the model to generalize the train dataset and the test dataset have to
be strictly different

Doing so we guarantee that the model will make predictions from the test dataset samples it has never seen
during training

DATA

T

TRAINING DATA TEST DATA

Train the model Evaluate the model



General process of model training and evaluation

TRAINING

XN
Vtrain = | Xtrain) R A
Xtrain f Inference Yerain = [ Xerain) i

v A\
TRAINING DATA —=>| MODEL |c———) PREDICTION ——>| Loss(Virain Virain)

t Correction I

TEST (Unseen data during the training)

Vtest = f (Xtest) R ,\
~ — A(x
Xtest f Inference Vtest = [ (Xtest) i

v N\
TESTDATA |—| MODEL |c—) PREDICTION ——>| score(Viest) Viest)

l

EVALUATION
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Metrics

Metric name/Evaluation
method

Accuracy

Precision

Recall

F1-score

Confusion matrix

Classification report

Defintion

Out of 100 predictions, how many does your model get correct? E.g. 95% accuracy
means it gets 95/100 predictions correct.

Proportion of true positives over total number of samples. Higher precision leads to
less false positives (model predicts 1 when it should've been 0).

Proportion of true positives over total number of true positives and false negatives
(model predicts 0 when it should've been 1). Higher recall leads to less false
negatives.

Combines precision and recall into one metric. 1 is best, 0 is worst.

Compares the predicted values with the true values in a tabular way, if 100% correct,
all values in the matrix will be top left to bottom right (diagnol line).

Collection of some of the main classification metrics such as precision, recall and f1-
score.

Workshop on LISA Data Analysis - November 21-25, Toulouse
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Underfitting and Overfitting

Degree 1
MSE = 4.08e-01(+/- 4.25e-01)

—— Model
True function

Degree 4
MSE = 4.32e-02(+/- 7.08e-02)

Degree 15
MSE = 1.82e+08(+/- 5.46e+08)

—— Model
- True function
e Samples

—— Model
True function
e Samples

A
loss

e Samples

overfitting valid loss

'Y Y 20 "e\\

d — train loss
x ' ' ~ terations
Underfitting Good fit / robustess Overfitting Loss minima
Model complexity Model complexity ok ~ Model complexity for valid:
too low too high Early stopping

= Split DATA between TRAIN, VAL, TEST datasets
—> VAL datasets is small and use to evaluate the model on non trained-on data during the training

—> Stop the training before overfitting

Workshop on LISA Data Analysis - November 21-25, Toulouse 20



[*-learning]

Machine Learning

Reinforcement Learning
Semi-supervised Learning

-

Supervized Learning
|
| |
Classification Regression

Identifying which category an
object belongs to

Predicting a continuous-
valued attribute associated
with an object

Unsupervized Learning
|

Self-supervized Learning

|
Clustering

Automatic grouping of
similar objects into sets

Workshop on LISA Data Analysis - November 21-25, Toulouse

|
Dimensionality reduction

Reducing the number of
random variables to
consider
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Supervized learning

Data consists of labelled examples : each data point contains features (covariates) and an associated label / target
Learn the mapping function between a sample features and its label

y = f(X) -

X f 9 =FX)
Inference VX
DATA —> MODEL |-—==ssssss) PREDICTION [ —> Loss(y,¥)

t Correction I

— f(x —> We do have the analytic form: Compute directly or via a complete simulation of a complex system
y =fX) —> We do not have the analytic form: Human observation and annotation

Workshop on LISA Data Analysis - November 21-25, Toulouse 22



Supervized learning - Classification

A classification problem involves predicting whether something is one thing or another
Identifying which category an object belongs to => Predict discrete values

Binary classification

10.0
7.5

5.0

Typical loss:

Losspcr = ——Zyl log(9) + (1 = y).log(1 = 9))

Applications: Spam detection, image
recognition...

Algorithms: SVM, nearest neighbors, random
forest, NNs

2.5

0.0

-5.0

Multi Class classification

, y=F() . —
Typlcal loss: 2 f Inference Y=/ )
Sy bn DATA  |—> MODEL | | PREDICTION |—=)  Loss(.9) |

smel T if reduction = ‘mean’; |
LOSS - e(w y) - N , , * Correction I
) CE ’ 271:7 1 ln, if reduction = ‘sum’.

. exp(Zn,c)
lz,y) =L={l,...,In}, l,= welog — L4
: I : ' I Z Ez 1 exp(wn ’L)
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https://scikit-learn.org/stable/modules/svm.html
https://scikit-learn.org/stable/modules/neighbors.html
https://scikit-learn.org/stable/modules/ensemble.html

0.8

0.6 4

0.4

0.21

0.0 1

—0.2 4

—0.4 4

—0.6

Supervized learning - Regression

Predicting a continuous-valued attribute associated with an object.

theorical signal
signal + noise

Typical loss:

Lossysg =

Nnodes

i
Iy +  train prediction
¥ I +  test prediction

T &
£ %
Foi e
4 + { # K
SN %
i + 1 f X
i 1 ; 4+
] { | ®, +F 7 i i :
; ‘ 1 * £ 3 Wy,
] t : 'y : iy
+ ? %
f + t &
} ‘ g
{ i k-
¢
¥4
0 5 10 15 20 25 30

Applications: Drug response, Stock prices.

Algorithms: SVR, nearest neighbors,
random forest, NNs
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Nnodes
— )2
vy—-9)
=0

y=f&) . R
X f Inference y=1 —
DATA ‘u:[>| MODEL ‘—‘ PREDICTION ‘l:i>| Loss(y,9)

Correction
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Unsupervized learning

Uses machine learning algorithms to analyze and cluster unlabeled datasets.
These algorithms discover hidden patterns or data groupings without the need for human intervention

y=fX)=X

A

y=fX)

X ! Inference v X
DATA —> MODEL |m——==) PREDICTION —— Loss(y,¥)

t Correction I
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X1

Unsupervized learning - Clustering

Automatic grouping of similar objects into sets

154

10 A

| ,'A 'y x4 Applications: Customer segmentation, Grouping experiment
] % A | outcomes
. Algorithms: k-Means, spectral clustering, mean-shift, and
Q more...

~10

-10 -5 0 5
X0
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https://scikit-learn.org/stable/modules/clustering.html
https://scikit-learn.org/stable/modules/clustering.html
https://scikit-learn.org/stable/modules/clustering.html
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Unsupervized learning — Dimension reduction

Reducing the number of random variables to consider.

Transformation of data from a high-dimensional space into a low-dimensional space
low-dimensional representation retains some meaningful properties of the original data

True Independent Sources Observations

I"

Variational Auto Encoders (VAEs)

. ICA

-2 0 2 =2 0 2

X X
PCA recovered signals ICA recovered signals

3 3
2- ‘;. 21
1 % 1
0 0

Applications: Visualization, Increased efficiency
Algorithms: PCA, feature selection, non-negative matrix
factorization, NNs

-2 0 2 -2 0 2

Independexnt component analysis (ICA)Xvs
Principal component analysis (PCA)

FastICA on 2D point clouds

Authors: Alexandre Gramfort, Gael Varoquaux
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https://scikit-learn.org/stable/modules/decomposition.html
https://scikit-learn.org/stable/modules/decomposition.html
https://scikit-learn.org/stable/auto_examples/decomposition/plot_ica_vs_pca.html
https://scikit-learn.org/stable/modules/decomposition.html
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Non linearity

55 Support Vector Regression

+ | — RBF model

2.0} — Linear model

— Polynomial model
15 eee data

1.0t

0.5F

target

0.0}

-1.0}

_15 L L L L L
-1 0 1 2 3 4 5
data

Projection of data in a higher dimentional space where samples are lineray separabable (classification) or can fit linearly
(regression)

* Polynomial model: X1, X, = X1, X, X1 X5, X2, X5, .29 = 0(b + wix; + Woxy + Wax Xy + Wex? + wexs + ...)

e Radial Basis Function model

—> Huge time computation cost for high dimension

Here’s come the powerness of Neural Nets !
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Introduction to Neural Networks and Deep Learning



Deep learning

Artificial Intelligence (Al)

Deep Learning (DL)
Based on Neural Networks

Machine Learning (ML)

Workshop on LISA Data Analysis - November 21-25, Toulouse
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Deep learning

Linear Algebra

Probability

and
Statistic

Optimization

S

Deep Learning

Workshop on LISA Data Analysis - November 21-25, Toulouse
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X

DATA

—

f is an approximation of f
f isimplemented as a model which is a (Deep) Neural Networks

y =fX)
f‘

MODEL

Inference

E—

y=fX)

PREDICTION

Workshop on LISA Data Analysis - November 21-25, Toulouse
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Perceptron: the first artificial neuron

Weights

Constant

Weighted
Sum

inputs — )
Step Function

19 17

Bio inspired:

Weights correction Synaptic plasticity
Threshold for activation
Computing power comes from connexions with other neurons

Huge simplification of real neurons...
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Perceptron and logistic regression

5; = O'(b + W1 X1 + szz)

o(z)=1/(1+e7%)

b+ wixs+ wyxy >0
y>0.5

b +W1X1 + WoXo <0
y<0.5

X1

Generalization to m dimension:

XT
w, b
% w,
i
X3 :
| w
: m
X S _
m t=Zx,—-W,-+b o(t) =
1

Input Bias / Weight

y=0(0T-X+b)

y

gy JO 9 <05
Y=11 ifp>05

1
1+et

€ [0,1]

Activation function  OQutput

X e o(t) y

Workshop on LISA Data Analysis - November 21-25, Toulouse
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Perceptron: the first artificial neuron
data: X = [¥o = Xin_features—1]

WO

weight: W = l ‘ bias: b

Wm_features—l

in_features—1

Frank Rosenblatt, left, and Charles W. Wightman work on part of the unit

y — O- é xi X Wl + b —_ O-(WX + b) that became the first perceptron in December 1958.

Workshop on LISA Data Analysis - November 21-25, Toulouse
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Neural Network Linear layer

data: X = [¥o *° Xin_features—1]

Generalization of the perceptron to out_features dimension:

0 0

Wo " Wout_features—1

weights: W = : : bias: b =
in_features—1 in_features—1
0 out_features—1

Lh out_features—1 |

o : Activation function
(ReLU, tanh, Sigmoid...)

=>Project input as linear combination of its features in a new latent space of dimension out_f eatures

r in_features—1

2 Xl'x Wé

i=0
X' = ocWX+b)=

in_features—1

- =0

Workshop on LISA Data Analysis - November 21-25, Toulouse

— bO —

§ [
XX Wout_features—l

b out_features—1 |
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Neural Network Linear layer (N samples)

in_features—1

0 0
X0 xin_features—l
X=| : : w =
N-1 N-1
X0 Xin_features—1 0
- in_features—1
Z xPx wg
I __ _ i=0
X = WX+b= :
in_features—1
Z x{v_lx w§

i=0

Why several samples ?

Wo

0
Wout_features— 1

in_features—1
out_features—1

in_features—1

2

i=0

0 i
Xi X Wout_features—l

in_features—1

2

i=0

N—-1 i
Xi X Wout_ features—1

—> Structured data : we want the neural net to capture structural patterns
(typically CNNs in images, RNN in time series, Transformers in text, GNNs in graph)

and / or

=> Give in input a batch of samples to optimize GPU parallelization

Lh out_features—1

bO

| pout_ features—1



Multi Layer Perceptron (MLP)
y = f(X)

AN
e , A
fo = Linear fi= Lmea?: fn = Linear fn+1 = Linear finai

X, X, > | X, | Y=Xna

Xnt1

= Sequence of Linear layers: Sucessive layers project the data features in successive latent spaces

= BUT VERY IMPORTANT: without non-linear activation function, the combination of Linear Layers will be
linear so f will be linear, doesn’t matter how deep is the Network

A

os f

3 Linear Layers with no activation
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Induce non linearity with (non-linear) activation function

9= F(0)

4 A
= Linear fi = ReLU fn = Linear fn+1 = ReLU frinal
0 1 +1 f ~
Xo X1 // g Xn b g Xn+1 : / S I XN-1

= Non linearity is induced by non-linear activation functions, typically ReLU, tanh, etc

The Neural Network is now able to learn a non-linear function f by non linearly projecting features in non
successive latent spaces. In the last latent space the sample are linearly separable.

10 PN

os f

0.0 ' | > 0.0

o Linear Layer + non-linear activation

-10 -05 00 05 10



Last layer latent space representation

y =fX)

fO f ffinal
Xp=foXo) | = = | Xn |7 " Xp1 =fulX) = o(WpXp +by) | » =+ >

Xo
O >

So that's it? A succession of linear projection and simple non linear activation function, that's
the secret of Deep Learning ?

h 4

That's the beauty and the strangeness of the thing that something so simple is so powerful.

That’s one of the secret but not the only one...

In particular the strength of DL come also from other architectures of Neural Networks which
can learn from patterns in structured data
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Final projection and loss computation

y=fX)

AN
. N
fO fn ffmal "
Xo | X1 =fo (Xo) | = = Xn Xnv1 = (X)) = oW Xy +by) | = Y =Xna

Depending on the task we want, we can then apply different final activation and compute specific Loss function

Binary classification Multiclass classification Regression

Final activation: sigmoid Final activation: sofmax Final activation: no activation
Loss: Binary Cross Entropy Loss Loss: Cross Entropy Loss Loss: MSE Loss | e

o g ffina1 = Linear
ffinal = Stgmotl Nnodes

N\

y—9)°

N 1
1 LOSSMSE =

Losspcr = _Nz yi-log(P:) + (1 — y;).log(1 = 3) Nnodes 4

i=0



Loss optimization thanks to backpropagation

forward: computeX,Vn

fo

A 4

X1 = fo (Xo)

v

fn ffinal -
Xn Xny1 = fn(Xn) = O'(VVan + bn) = = Y= XN_l
A oL
backward: updatef,,¥n W = W = @y

__E L = Loss(y,y)

oL | [ oL

OXnt1 | | 9o (WnXn +by) _

ow,, oW, Xn

OWn | |0Xn+1

upstream gradient
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Neural Network training: repeat on all TRAIN dataset

Ioss

N

XN

fo

5

| X1 = fo (Xo)

\ 6loss
) loss

gradient =

9

loss(0)

v

forward: computeX,Vn

repeat:

9« fo(0)

upstream gradient

loss < Loss(3,y)

00—

aloss
8¢

y=Xn1

a Analysis - November 21-25, Toulouse

L = Loss(3,y)

fn ffinal
Xn Xny1 = fnXp) = o(WpXy +by) | >
2 oL
backward: updatef,Vn Wo < Wo = “ﬁ‘
oL | [_OL [Xn41 | | do(W,X, +by)
OWn 0Xn+1| OWp oW, B
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Neural Networks training challenge:
Find (the best?) local minima in the model’s parameters space

XN

forward: computeX,,Vn

Xo

fo

y

X1 = fo (Xo)

v

fn ffinal =
Xn Xnt1 = fa(Xn) = oW Xy +by) | » = XN_1
] oL
: Wy, «W, —ap—
backward: updatef,Vn oW, L = Loss(§,y)

loss
\\ I Sioss

repeat:

9« fo(X)
loss < Loss(3,y)

00—

Sloss
8¢

aL _ 6L aXn+1 aO'(Wan + bn) B X
OWn | |0Xn41| OWy ow, -~ on
74
upstream gradient
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Let’s play a little
> @ »

DATA

Which dataset do
you want to use?

Epoch

000,635

FEATURES

Which properties do
you want to feed in?

Learning rate

0.

03

+ -

4 neurons

Activation Regularization
v RelLU v None
+ — 3 HIDDEN LAYERS
+ (=
4 neurons

Regularization rate

v 0

+ -

2 neurons

AN
X > 77
\,‘ \\\ X X&I\\
Ss v /L |
Ratio of training to AN AL 5
N\ s
test data: 50% A RS /’, l/
12 RS —— /
—e N\ /
\\ / N
A\ /
Noise: 15 \\\\\ s
X22 \~:B” D
—e L < .
" \ The outputs are
Batch size: 10 XIX2 \ This is the output mixed with varying
—e from one neuron. weights, shown by
Hover to see it the thickness of
larger. the lines.
REGENERATE S0
sin(X2)
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TensorFlow Playground website

Problem type

v Classification

OUTPUT

Test loss 0.022
Training loss 0.068

Colors shows
data, neuron and F |
weight values. '

[ Show test data

—

1

[ Discretize output


https://playground.tensorflow.org/

Deep learning Neural Networks architectures

e Convolutional Neural Networks (CNNs)

* Recurrent Neural Networks (RNNs), Long Short Term Memory
* Transformers

* VVariational Auto Encoders (VAEs)

e Generative Adversial Networks (GANSs)

* Graph Neural Networks (GNNs)

* Diffusion models



Deep Learning in practice: introduction to pytorch



Classification of non-linearly separable data

# Make 1000 samples
n_samples = 1000

# Create circles

X, y = make_circles(n_samples,
noise=0.03,
random_state=42)

print(y[:10])

11110111

print(X[:10])

[[ 0.75424625
[-0.75615888
[-0.81539193
[-0.39373073

[

[-0.
[-0.01364836 0.
[ 0.77151327 o.
[-0.16932234 -0.
[-0.

1214858

[SIS NSNS

1.

1 0]

.23148074]
.15325888]
.17328203]
.69288277]
0.44220765 -0.

47964637 0.

89672343]
676434771
80334872]
147759591
79345575]
02150905] ]

1.0

: "!’“w,.k

LB

101 %%W

-1.0 -0.5 0.0 0.5 1.0

0.5

X = DATA

y = f(X) f: Classification function

Train a model to approximate f and classify between the first circle and the second one
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Define the model

input_size, n_layers, hidden = 2, 2, 10

# Build model with non-linear activation function
from torch import nn

A

class Classifier(nn.Module): f?
def __init__ (self, input_size, n_layers, hidden): MODEL
super().__init__ ()
layers = []
layers.append(nn.Linear(in_features=input_size, out_features=hidden))
layers.append(nn.ReLU()) Design the
for i in range(n_layers): Neural Network

layers.append(nn.Linear(in_features=hidden, out_features=hidden))

layers.append(nn.ReLU())
layers.append(nn.Linear(in_features=hidden, out_features=1))
self.layers = nn.Sequential(xlayers)

def forward(self, x):
return self,layers(x)
model = Classifier(input_size, n_layers, hidden).to(device) Instanciate the model (call the init function of
print(model) the class Classifier)
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Inference

input_size, n_layers, hidden = 2, 2, 10

# Build model with non-linear activation function
from torch import nn
class Classifier(nn.Module):

def

def

model =

y_pred =

__init__ (self, input_size, n_layers, hidden):

super().__init__ ()
layers = []
layers.append(nn.Linear(in_features=input_size, out_features=hidden))
layers.append(nn.ReLU())
for i in range(n_layers):
layers.append(nn.Linear(in_features=hidden, out_features=hidden))
layers.append(nn.ReLU())
layers.append(nn.Linear(in_features=hidden, out_features=1))
self.layers = nn.Sequential(xlayers)

forward(self, x): Once instantiated the model can be call to compute inference
return self.layers(x) The method forward of the object is called

Class}fier(input_size, n_layers, hidden).to(device)

mode1(X)| y = f(X)
X

DATA

—

A

f

MODEL
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Define Loss

Binary classification task => Binary Cross Entropy Loss With logits means sigmoid have not been
apply as last activation of the model. It

loss_fn = nn.BCEWithLogitsLoss() # BCEWithLogitsLoss = sigmoid built-in _ S .
will be applied inside the Loss function

N
1
LOSSBCEWithLogitsLoss - - Nz Vi log(“()’i)) + (1 - :Vi)- 108(1 _ U()’i))
i=0
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Define Optimizer

optimizer = torch.optim.Adam(params=model.parameters(), 1r=0.001)

Model parameters Learning rate

It’s the optimizer which will update model parameters
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y=fX)

One step of training

# 1. Forward pass

y_pred = model(X)

# 2. Calculate loss

loss = loss_fn(y_pred, y_train_batch)
# 3. Optimizer zero grad
optimizer.zero_grad()

# 4. Loss backwards

loss.backward()

# 5. Optimizer step

optimizer.step()

1.Forward pass - The model goes through all of the training data once,
performing its forward() function calculations

2.Calculate the loss - The model's outputs (predictions) are compared
to the ground truth and evaluated to see how wrong they are

3.Zero gradients - The optimizers gradients are set to zero (they are
accumulated by default) so they can be recalculated for the specific
training step

4.Perform backpropagation on the loss - Computes the gradient of the
loss with respect for every model parameter to be updated (each
parameter with requires_grad=True). This is known as
backpropagation, hence "backwards"

5.Step the optimizer (gradient descent) - Update the parameters with
requires_grad=True with respect to the loss gradients in order to
improve them

~

f 9 =fX)

Inference

DATA

|
—>  MODEL |— PREDICTION [——> Loss(y,9)

v

t Correction I

Workshop on LISA Data Analysis - November 21-25, Toulouse 53



Training loop

Loop on number of epochs. For each epoch all the sample of the train dataset is given as

for epoch in range(epochs): jnp5ut to the model

model.train()
for X_train_batch, y_train_batch in train_dataloader: Loop on all the train dataset

+ 7T Cmsi smma] omemmm~
m AL rviwailru pyaoo

y_pred = model(X)

# 2. Calculate loss

loss = loss_fn(y_pred, y_train_batch)
# 3. Optimizer zero grad
optimizer.zero_grad()

# 4. Loss backwards

loss.backward()

# 5. Optimizer step

optimizer.step() xN

y=fX) - -
X f y=rX)

Inference —
DATA —> MODEL [m=========)| PREDICTION [=——)  Loss(y,9)

%
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Tips: model improvement techniques

Model improvement technique

Add more layers

Add more hidden units

Fitting for longer (more epochs)

Changing the activation functions

Change the learning rate

Change the loss function

What does it do?

Each layer potentially increases the learning capabilities of the model with each
layer being able to learn some kind of new pattern in the data, more layers is often
referred to as making your neural network deeper.

Similar to the above, more hidden units per layer means a potential increase in
learning capabilities of the model, more hidden units is often referred to as making
your neural network wider.

Your model might learn more if it had more opportunities to look at the data.

Some data just can't be fit with only straight lines (like what we've seen), using
non-linear activation functions can help with this (hint, hint).

Less model specific, but still related, the learning rate of the optimizer decides how
much a model should change its parameters each step, too much and the model
overcorrects, too little and it doesn't learn enough.

Again, less model specific but still important, different problems require different
loss functions. For example, a binary cross entropy loss function won't work with a
multi-class classification problem.



A lot more to learn

* Methodology
* Hyperparameters search
 Visualization tools



Science and Deep Learning

* Interpretability
* Reproductibilty
* Convergence

* Ethics



Good questions to ask yourself

* What are my data ?

* What is my problem ?

* Dol need ML ?

* Dolneed DL?

* What do | want the model to learn ?

* What task | want to train the model for ?



A few recent (sucess?) stories of Deep Learning



Explainable Al and uncertainty quantification in CV

Grad CAM++ algorithm applied to a CNN. Colors represent filter activations. A hotter
color means more emphasis was given on those pixels by the model.
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Natural Language Processing

Revolution since 2018 and the use of Transformers architecture based on attention mecanism

Google's BERT and OpenAl's GPT-2 and GPT-3.

The text-encoder is responsible for capturing the complexity and semantic meaning of an arbitrary input sentence.
It captures these features by projecting the text sequence in a high dimensional embedding space

Automatic Text Generation

Text Generation API

Automatic Translation

T faceson W foer e
eIre soeies °"°ushJus=ﬁ'sbm"““,.,gllkes°".'m

e Deepl Translator ~ DeepL Pro  For Business ~ Why Deepl? APl Plansand pricing  Apps (B2 Logn — p - .
ey vog e whous NOW 5houghbaskedsse: "9';
™hand french kﬂg&’;lﬂ;somebhlng Onelookedge“ wel ":::
im Y dentiy aiready lesSeemedCa
ol wggnabasha lgok"elprlncessrosliov

aiso|

ey prln ] e
loy

@ Translate text B Translate files
29 language -pdf, .docx, .pptx
moscow headOld v
erwhng backllbblee"e""“'
French (detected) v : English (US) v Glossar: y mcer
ave "V words

Gravitational waves allow us to see to the ends of the universe




10 best [anguage models in 2022

BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding
GPT2: Language Models Are Unsupervised Multitask Learners

XLNet: Generalized Autoregressive Pretraining for Language Understanding
RoBERTa: A Robustly Optimized BERT Pretraining Approach

ALBERT: A Lite BERT for Self-supervised Learning of Language Representations

T5: Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer
GPT3: Language Models Are Few-Shot Learners

ELECTRA: Pre-training Text Encoders as Discriminators Rather Than Generators
DeBERTa: Decoding-enhanced BERT with Disentangled Attention

PaLM: Scaling Language Modeling with Pathways
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Automatic code generation

Al assistant for software developers

roé;;;;;;;Aoffse;Left (D
R Code faster with whole-line & full-function code completions

text.style.top =
.body . appendChild(text
T (function() {

rocketship.offsetTop + 'px';
xSpeed = 5;

.body.removeChild(text
):
}, 250);

b Get Tabnine

/* Now add an image of an

asteroid
https://d.newsweek .com/en/fyll
/1721338/asteroid. jpg? numpy np
w=1600&h=1600&q=88&=9d8: sklearn.model_selection train_test_split
de96a82b3fcaf7705eb325b * sklearn.ensemble RandomForestRegressor
var asteroid = sklearn.metrics mean_squared_error, r2_score
.createElement('img');
Make it be the size of the rocketship times 0.75 Seeiolo Sichs I : : IR
I https://d.newsweek.com/en/ful train_df - pd.read_csv(’data/train.csv’)

1/1721338/asteroid. jpg? train_df[’target’ train_df[’target’].astype(int)
w=1600&h=1600&q=88&f=9d82d35c9

@ de96a82b3fcaf7705eb325b" ;
.body.appendChild( aste

X_train, X_test, y_train, y_test - train_test_split(train_df,
roid);

[-f = RandonForestRegressor()
rf.fit(X_train, y_train)

CodeT5: The Code-aware Encoder-Decoder based Pre- L. G
trained Programming Language Models Fepred e

. # calculate mean squared error
YueWang  Steven Hoi

September 03,2021 - 7 min read

["Summarize Python: def inc_value(x):..."]w
[ "Generate Python: increment value" ]_Lt 1j-b["def inc_value(x):..."]
] |-

Defeot; ifx20i x += 1) Soon computer science engineer useless ? ©

("Refine: if x=0: x += 1"]—)’_":

("Transiate Python to C: if x==0: x += 1" |- | i (x==0) {x += 13}’

"if x==0:x +=1"
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Text-to-Image with Diffusion Models

“Gravitational waves allow us to see to the ends of the universe, But what will we see ?”

Danger of (stupid or serious) deep fake
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The rise of geometric ML and representation learning

—> Geometric and graph-based ML methods have become one of the hottest fields of Al research
—> Graph Neural Networks (GNNs) capture deep geometric and structural patterns in data represented as graph

What does 2022 hold for Geometric & Graph ML?

Michael Bronstein
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CNNs can be seen
as a specific use
case of GNN on
regular grid graph

/ / /
« Graphs » « represents » « relations » « between » « entities »

Transformers architectures in
Natural Language Processing
operate on fully connected graph

14eme Journées Informatiques IN2P3/IRFU (novembre 2022) 65


https://towardsdatascience.com/predictions-and-hopes-for-geometric-graph-ml-in-2022-aa3b8b79f5cc

Bioactive molecule design with geometric deep learning

Geometric deeplearning is a promising direction in molecular design and drug screening.

www.nature.com/natmachintell / December 2021 Vol. 3 No. 12

Probability
s e o o
- A g & & &
PR S . 1 P
2o o oo
§ £
3 i H
o °
F o Palmm———
g £
- 5
5 =54 z2.]
Prabability
e o o o
g 28 &8 &
- R
o
° H
g 1 o
l v
g
3 81 E

DeepDock: a deep learning approach to
predict ligand binding conformations

Art credit: Multiplex immunofluorescence

staining of lung cells allows precise

A 2 i anatomic localization of protein targets in

Oscar Méndez Lucio, Mazen Ahmad' histologic sections of target organs.

Antonio Ehecatl del Rio-Chanona, J6rg Kurt Wegner

geometricdeeplearning

b — mace A wies oF
janssen J | feimen-golowen
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Prediction of 3D folding structures of proteins

In 2021 triumph of Geometric ML and a paradigm shift in structural biology
—> Breakthrough in prediction of the 3D folding structure of a protein by AlphaFold 2 (deepmind)

The international journal of science / 26 August 2021

PREDICTING

STRUCTURES
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Learn Neural Nets Algorithmic and

P

Processor Abstract outputs

9
z )
Natural inputs Natural outputs
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Abstract inputs

% Machinelearning e

«’ inspiremathematicia

to ire?cwr

FormeENIH hea

e callfordepartment: ptic transmission in
sciénceand technol wCOVID-19 spread

outline

Mathematics!

ing KL pol ial i A dingly, we designed our MPNI

algorithmically align to this ion*?. The model is bi-directional, it

width of 128, four pr ion steps and skip i We treat the pre
of the KL pol; ial as a sep: lassil ion problem.

NEWSLETTERS

Sign up to read our regular email newsletters

NewsScientist

News Podcasts Video Technology Space Physics Health More ¥ Shop Courses Events
—_—

DeepMind Al collaborates with
humans on two mathematical
breakthroughs

Humans and Al working together can reveal new areas of mathematics where
data sets are too large to be comprehended by mathematicians

000000

TECHNOLOGY 1 December 2021

By Matthew Sparkes

49, Velickovic, P., Ying, R., Padovano, M., Hadsell, R. & Blundell, C. Neural execution of graph
algorithms. Preprint at https://arxiv.org/abs/1910.10593 (2019).
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Retrieve fundamentals physic laws ?

=] I‘Xiv > ¢s > arXiv:2005.07724

Computer Science > Machine Learning

[Submitted on 15 May 2020]

Learning the gravitational force law and other analytic functions
Atish Agarwala, Abhimanyu Das, Rina Panigrahy, Qiuyi Zhang

Large neural network models have been successful in learning functions of importance in many branches of science, incluc
wide networks and kernel methods on some simple classes of functions, but not on more complex functions which arise ir
sphere for any kernel method or equivalent infinitely-wide network with the corresponding activation function trained witf
number of samples proportional to the derivative of a related function. Many functions important in the sciences are there'
gravitational force function given by Newton's law of gravitation. Our theoretical bounds suggest that very wide ReLU netw
kernel learning with Gaussian kernels. We present experimental evidence that the many-body gravitational force function i

Subjects: Machine Learning (cs.LG); Machine Learning (stat.ML)
Cite as:  arXiv:2005.07724 [cs.LG]
(or arXiv:2005.07724v1 [cs.LG] for this version)
https://doi.org/10.48550/arXiv.2005.07724 o

Soon theorical physicist useless ?? ©
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Graph-based ML for HEP @ CERN LHC

Since 2020 becoming increasingly popular for a large number of LHC physics tasks

—>Collaboration L2IT ATLAS team & ExatTrkX Project to construct a GNN-based track ARTIFICIAL

INTELLIGENCE

reconstruction algorithm for ATLAS ITk (futur Inner Tracker of ATLAS for HL-LHC)
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—>GNN-based algorithms now appear as a very competitive solution for the next generation track reconstruction algorithms

—>Now working to integrate these GNN-based algorithms in production for in-line and off-line data processing systems
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reference

* Deep Learning course
* MIT Introduction to Deep Learning | 6.5191
 MIT OpenCourseWare : Course Introduction of 18.065 by Professor Strang
* FIDLE Formation (videos in french, slides and supports in english) @ rp(F

e pytorch tutorial
* Learn pytorch from examples

 Learn PyTorch for Deep Learning: Zero to Mastery book
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https://www.youtube.com/watch?v=7sB052Pz0sQ&list=PLtBw6njQRU-rwp5__7C0oIVt26ZgjG9NI
https://www.youtube.com/watch?v=Cx5Z-OslNWE&list=PLUl4u3cNGP63oMNUHXqIUcrkS2PivhN3k&index=2
https://gricad-gitlab.univ-grenoble-alpes.fr/talks/fidle/-/wikis/home
https://pytorch.org/tutorials/beginner/pytorch_with_examples.html
https://www.learnpytorch.io/

