Refine Cut Strategy

- > Everything has been moved into the framework
 - Branch: TPrimeLeptonOS
- Focus on 1 signal process for now
 - T'->tH; t->Wb->qqb; H->WW->|+|-vv (1 lepton pair, 3 jets and at least 1 b jet)
- Basic cuts
 - Cuts for muons
 - Tight ID cut: Muon_tightId
 - Pt(mu) > 20GeV
 - |eta| < 2.4
 - Tight isolation cut: goodMuons_miniPFRelIso_all < 0.05
 - Cuts for jets
 - Tight jet ID cut: Jet_jetId: 6
 - Pt(jet) > 30GeV
 - |eta| < 2.5
 - Cuts for events
 - 1 OS muon pair
 - At least 3 jets
 - At least 1 b jet
 - Loose b-tag jet: goodJets_btagDeepFlavB>0.049

Refine Cut Strategy

- > Cuts to select case1 from all 3 processes in signal
 - deltaR(mu+, mu-) < 1 (This cut is got from GEN information study)
 - Not in Z mass window cut: mu pair mass∉[80, 100] (plot)
 - Should I replace Z mass wondow with Chi2 sorting algorithm?
 - Where to get mean and sigma of Z peak? (Signal MC or Dataset)
- > Pt related cuts from Punzi optimization
 - mu pair pt > 140 (Sum as vector)
 - HT > 300 (Sum as scalar)
- Cut related to muons and b jet
 - deltaR(mu+, loose b jet) > 1.5 && deltaR(mu+, loose b jet) > 1.5
- Cuts from Jets reconstruction
- Remove this weird cut: 70 < non-b (medium) jet pair mass < 100</p>
 - Apply Chi2 sorting algorithm in AN-21-140
 - Chi2 < 15 (maybe too big) Loose

$$\chi_w^2 = \frac{(M_W - M_{jj})^2}{\sigma_W^2}$$
 $\chi_{top}^2 = \frac{(M_t - M_{bjj})^2}{\sigma_t^2}$
 $\chi^2 = \chi_w^2 + \chi_{top}^2$

Chi2 Sorting Algorithm for Jets

- Apply Chi2 sorting algorithm described in AN-21-140 (line 210- 231)
 - Reconstruct top->Wb->qqb with 3 good jets
 - Loop on all selected jets, select two jets, make a W candidate and evaluate the Chi2_w part
 - Loop on all selected b-tag jets, reject the jets used for the W candidate, select one b-tag jet and combine
 it with the W candidate and evaluate the Chi2_top part. The sum of Chi2_w and Chi2_top is then minimised
 - Cut on Chi2 or Chi2_top

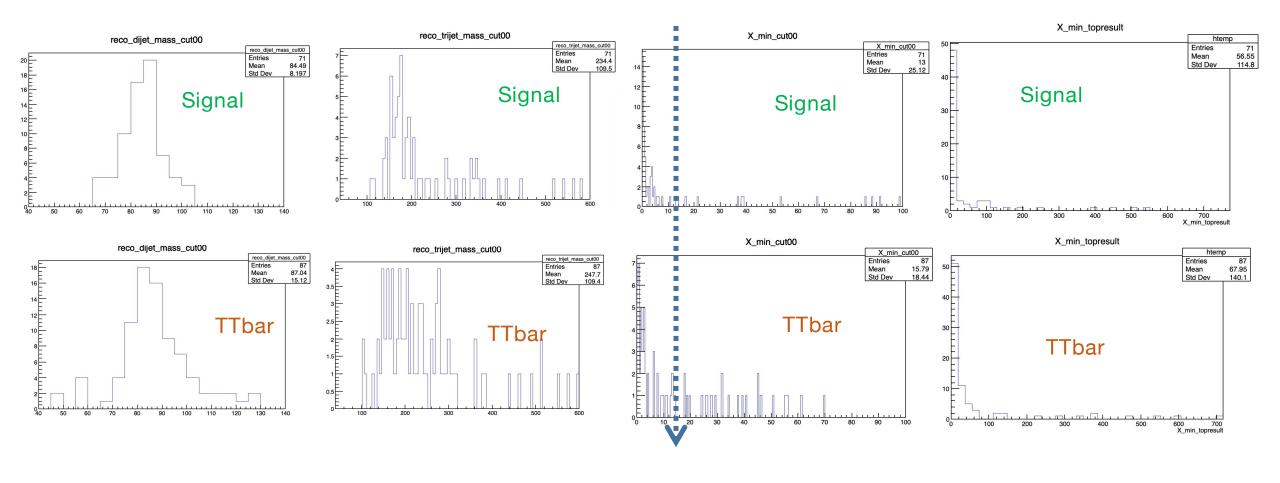
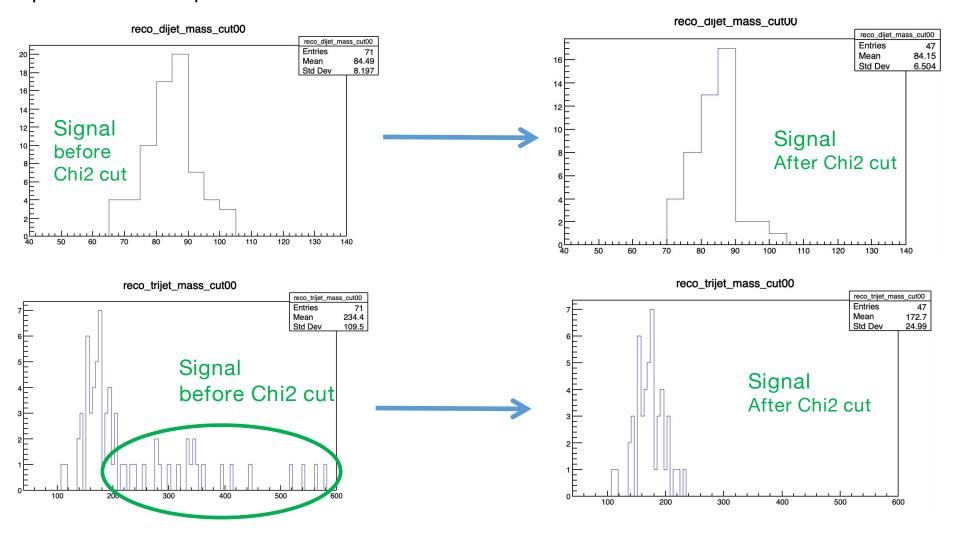

$$\chi_w^2 = \frac{(M_W - M_{jj})^2}{\sigma_W^2}$$
 $\chi_{top}^2 = \frac{(M_t - M_{bjj})^2}{\sigma_t^2}$
 $\chi^2 = \chi_w^2 + \chi_{top}^2$

Table 1: Value of masses/ σ used to build the χ^2 in the case of using the value from observed reconstructed masses in 2016, in 2017 UL and in 2018 UL.

Particles	Reconstructed Masses			Reconstructed σ		
	2016	2017 UL	2018 UL	2016	2017 UL	2018 UL
M_Z	$90.9 \pm 0.4 \text{ GeV}/c^2$	$89.2 \pm 0.3 \text{ GeV/}c^2$	$90.9 \pm 0.3 \text{ GeV/}c^2$	$11.4 \pm 0.4 \text{ GeV/}c^2$	$12.0 \pm 0.3 \text{ GeV/}c^2$	$11.3 \pm 0.2 \text{ GeV}/c^2$
M_H	$121.9 \pm 1.1 \text{ GeV/}c^2$	$118.9 \pm 0.2 \text{ GeV/}c^2$	$120.2 \pm 0.3 \text{ GeV/}c^2$	$13.5 \pm 1.1 \text{ GeV/}c^2$	$14.7 \pm 0.2 \text{ GeV}/c^2$	$14.3 \pm 0.2 \text{ GeV}/c^2$
M_W	$83.8 \pm 0.8 \text{ GeV}/c^2$	$82.5 \pm 0.2 \text{ GeV}/c^2$	$83.9 \pm 0.2 \text{ GeV/}c^2$	$10.9 \pm 0.2 \text{ GeV/}c^2$	$12.6 \pm 0.2 \text{ GeV}/c^2$	$10.8 \pm 0.2 \text{ GeV/}c^2$
M_t	$173.8 \pm 1.3 \text{ GeV/}c^2$	$172.8 \pm 0.3 \text{ GeV/}c^2$	$175.9 \pm 0.4 \text{ GeV/}c^2$	$16.0 \pm 1.0 \text{ GeV/}c^2$	$18.9 \pm 0.3 \text{ GeV/}c^2$	$17.2 \pm 0.3 \text{ GeV}/c^2$


Chi2 Sorting Algorithm for Jets

- The following plots are after these cuts: basic cuts && deltaR(mu+, mu-) < 1 && mu pair mass∉[80, 100] && mu pair pt > 140 && HT > 300 && deltaR(mu+, loose b jet) > 1.5 && deltaR(mu+, loose b jet) > 1.5
 - Add cut: Chi2 < 15 (maybe tighter?)</p>

Chi2 Sorting Algorithm for Jets

- Before and after Chi2 < 15</p>
 - Improvement of top reconstruction

Muon Pair Strategy

- Cuts related to muon pairs: N_goodMuon >=2 && OS && deltaR (mu+, mu-) < 1 && mu pair mass∉[80, 100] && mu pair pt > 140
- > To select muon pair candidates, loop over all good (Tight ID && Pt(mu) > 20GeV) muons and get all OS pairs
- > Then apply muon pair cuts to the OS pair candidates
- > For each event, require at least 1 qualified muon pair

- Compare with another strategy: N_goodMuon ==2 && Charge of mu1 + charge of mu2 == 0 && deltaR (mu+, mu-) < 1 && mu pair mass∉[80, 100] && mu pair pt > 140
 - No big difference according to MC study, both are ok

	TT	Signal
N_goodMuon >=2 (Loop)	310.42	1.62 -2%
N_goodMuon ==2 (No Loop)	308.67	1.58

To do list

- > Refine cut strategy
 - Too many signal events are removed
 - Make cut flow table
 - Remove/ Optimize/loosen some cuts

	TTbar	Signal	TTZ	TTH
Events number after all cuts	308	1.58	33	10

- > 25th July to 5th August will be my summer break!
 - See you after the break!