HIGH RESOLUTION CLUSTER **COSMOLOGY WITH THE NIKA2 CAMERA**

LPSC-CNRS

Galaxy clusters:

- 85 % dark matter
- 13 % hot gas
- 2% galaxies

Credits : TNG simulations

300 Mpc

E. Artis (LPSC-CNRS)

CLUSTER COUNTS COSMOLOGY

ENIGMASS MEETING

- Cluster number density per unit of mass and redshift dN/dMdz provides information on the cosmological parameters ($\Omega_{\rm M}, \sigma_8$, etc.)
- Clusters surveys are at a turning point: Planck (10^3 objects) — Euclid(10^5 objects)
- However, their mass has to be inferred from physical observables

Inferring cluster mass is the key to get reliable contraints from cluster counts

CLUSTER COUNTS COSMOLOGY

- Cluster number density per unit of mass and redshift dN/dMdz provides information on the cosmological parameters ($\Omega_{\rm M}, \sigma_8$, etc.)
- Clusters surveys are at a turning point: Planck (10^3 objects) — Euclid(10^5 objects)
- However, their mass has to be inferred from physical observables

Inferring cluster mass is the key to get reliable contraints from cluster counts

AIM : Investigating the impact of the systematics affecting cluster counts cosmology

IRAM 30 m telescope, Pico Veleta, Spain

AIM : Investigating the impact of the systematics affecting cluster counts cosmology

The NIKA2 Large Program SZ (LPSZ)

ENIGMASS MEETING

IRAM 30 m telescope, Pico Veleta, Spain

X-RAY/SZ SYNERGIES

X-ray

X-ray surface brightness $S_{\rm X} = \frac{1}{(1+7)^4} \left| n_{\rm e}^2 {\rm d}l \right|$ Direct measurement of the ICM

density

X-ray spectroscopy Measurement of the temperature profile

Millimetre domain

Sunyaev-Zeldovich effect Amplitude $y = \frac{\sigma_{\rm T}}{m_{\rm e}c^2} \int P_{\rm e} dl$

Direct measurement of the ICM pressure integrated along the line of sight

• A common choice of observable is $Y_{500} =$ $y \ \mathrm{d}\Omega \;$ where Θ_{500} is the angular $J_{\Theta_{500}}$ area covered up to R_{500}

ENIGMASS MEETING

Assuming hydrostatic equilibrium

$$M_{\rm HSE}(r) \propto \frac{r^2}{n_{\rm e}(r)} \, \mathrm{d}P(r) \, \mathrm{d}r$$

For SZ surveys, the pressure profile is one of the key ingredients

E. Artis (LPSC-CNRS)

SCALING RELATIONS : LINKING THE MASS AND THE OBSERVABLE

Ruppin al., 2018

- Scaling relations link the observable and the underlying mass
- Cluster may have over-pressured regions
- With or without masking over-pressured regions in clusters, different results are obtained

Astrophysical uncertainties are affecting the scaling relations (scatter or bias)

THE NIKA2 CAMERA AT THE IRAM 30M TELESCOPE

Characteristics of the instrument, Perotto et al., 2020

ENIGMASS MEETING

With such characteristics, the NIKA2 instrument has: A field of view large enough to probe the ICM at R_{500} A spatial resolution that allows us to analyse the substructures of the ICM

THE NIKA2 CAMERA AT THE IRAM 30M TELESCOPE

Characteristics of the instrument, Perotto et al., 2020

150 GHz 260 GHz FOV diameter 6.5' 6.5 Angular resolution: 17.6" ± 0.1" 11.1" ± 0.2" FWHM RMS calibration 6% 3% uncertainties Absolute calibration 5% 5% uncertainties Systematic <1% <1% uncertainties Sensitivity: NEFD $30 \pm 3 \text{ mJy.s}^{1/2}$ $9 \pm 1 \text{ mJy.s}^{1/2}$ Mapping speed arcmin² /mJy² / hours 1388 ± 174 111 ± 11

Resolution of the Planck satellite : 5' at 217 GHz

LARGE PROGRAM SZ OF THE NIKA2 COLLABORATION

Distribution of the LPSZ clusters (credits : F. Ruppin)

The Large Program SZ (LPSZ) aims at observing a representative sample of galaxy clusters with highresolution SZ observation from NIKA2

300 hours of guaranteed time at the IRAM 30 m telescope

P.I.: Frédéric Mayet and co. P.I.: Laurence Perotto

Investigate systematic effects related to cluster counts cosmology

- Departure from the universal pressure profile
- Scaling relations
- Properties of low-mass and high-z clusters

The case of PSZ2G091

Smoothed y-map of PSZ2G091 observed by Planck

Credits : Planck collaboration

ENIGMASS MEETING

- Massive object detected by Planck
- **Redshift** : $z \sim 0.822$
- $Y_{500} = 0.63 \times 10^{-3} \text{ arcmin}^2$
- $M_{500} = 7.43 \times 10^{14} M_{\odot}$
- $\theta_{500} = 2.2'$

Nothing can be said about the structure of the cluster from Planck's observations

ANALYSIS: PSZ2G091 **E.A.** et al.,2111.05082 From the LPSZ analysis pipeline, we get the 1 mm and 2 mm maps of PSZ2G091 NIKA2 150 GHz map NIKA2 260 GHz map PLANCK 62°1 62 ss [mJy/beam] :000) [degree] L5' 16'

ENIGMASS MEETING

Surface brightn

brightness [mJy/beam]

Surface

2

30^m50^s

00^s

Right ascension (J2000) [hr]

SZ	tSZ decrement peak	
h	14.9 <i>σ</i>	

18^h31^m20^s 10^s

20

Declination (L3' 14'

30^m50^s

00^s

Infer the impact of point sources

ANALYSIS: PSZ2G091

The NIKA2 150 GHz map shows structures that are hints of bimodality The 260 GHz map shows point sources that are to be considered in the analysis, before moving on to the thermodynamical quantity reconstruction software PANCO2, Kéruzoré et al., 2021

Infer the impact of point sources

Galaxy density contours (Canary Island telescopes)

- **Colour selected galaxies (**r z > 2.1**)**
- **16** spectroscopic redshifts
- **2D galaxy distribution from an adaptative** kernel procedure (Pisani et al., 1993)

PSZ2G091 : DYNAMICAL ANALYSIS

Courtesy: R. Barrena

Galaxy density contours (Canary Island telescopes)

12'

Declination (J2000) [degree] $14_{,}$

ENIGMASS MEETING

Courtesy: I. Bartalucci

X-ray surface brightness (XMM-Newton), Bourdin & Mazzotta, 2008

Disturbed structure Optictical BCG (blue star) and X-ray peak compatible (black crosses) White star : center of the galaxy distribution of the northern shallower clump

The bimodal structure is outlined even better in the X-ray data

ENIGMASS MEETING

The temperature map obtained from X-ray spectroscopy shows a region with a high temperature, perpendicular to the axis of the merger

Overall, this dynamical structure will affect how the thermodynamical quantities are recovered

STANDARD ANALYSIS : PRESSURE PROFILE WITH A SPHERICAL MODEL

As a first test case, we first fit a single spherical model to the NIKA2 150 GHz map. The numerous point sources are fitted jointly in the analysis

CONCLUSION

Cluster counts cosmology is at a cross-road with upcoming large surveys

With a large field of view and a high angular resolution, the NIKA2 camera is the perfect instrument to study cluster structures in detail

High-resolution SZ observations (combined with X-ray and optical follow-up) fondamental to probe the systematics related to cluster counts

Cluster morphology has to be taken into account in future cluster surveys, as it strongly impact cluster related quantities

Thank you for your attention !

