





# Observation of Cosmic Ray Anisotropy with Eleven Years of Data

Juan Carlos Díaz Vélez\*, Rasha Abbasi, Paolo Desiati, Frank McNally

Timothy Aguado, Katherine Gruchot, Andrew Moy, Alexander Simmons, Andrew Thorpe, and Hannah Woodward

On behalf of the IceCube Collaboration



6 Dec. 2022 Cosmic Rays in the Multi-Messenger Era APC Laboratory (Paris)



### History

- Six years of data <u>ApJ 2016</u> (~3.2 x 10<sup>11</sup> events)
  - In-ice and surface (IceTop) events
  - Includes two years of partial detector configurations (IC59, IC79)

**ICRC 2021** 

#### • Topics considered:

- Large- and small-scale structure
- Energy dependence
- Angular power spectrum
- Time dependence
- Nine year update (~5.4 x 10<sup>11</sup> events)



Aartsen et al., "Anisotropy in Cosmic-Ray Arrival Directions in the Southern Hemisphere based on Six Years of Data from the IceCube Detector", Astrophys.J. **826** (2016) no.2, 220

### **Objective:** Update Paper

- Improved statistics: Eleven years of data in a consistent detector configuration (IC86) (~6.9 x 10<sup>11</sup> events)
- 2. Improved simulation: Newer, dataset-specific, increased statistics
- 3. Improved systematics: Shift from detector to calendar years



Energy dependence of large-scale anisotropy

(Created from Astrophys.J. 826 (2016) no.2, 220 (arXiv:1603.01227))

#### Method for measuring CR anisotropy



### How to Read a Map

- Mollweide projections in equatorial coordinates
  - Background (reference) map produced using time-scrambling
  - 5° radius top-hat smoothing
  - Small-scale map created by subtracting dipole and quadrupole terms from a fit using spherical harmonics
  - Galactic plane and center indicated by dashed line and triangle, respectively



0

Relative Intensity  $[x \ 10^{-4}]$ 

1

2

3

Δ

-3

-4

-5

-2

-1

#### Increased Statistics: Large- and Small-Scale Structure



#### Increased Statistics: Large- and Small-Scale Structure



#### **Increased Statistics:** Angular Power Spectrum



#### **Increased Statistics:** Angular Power Spectrum



Angular power spectrum for large- and small-scale structure maps. Error bars represent the spread of calculated  $C_l$  values for maps randomly generated from the observed  $C_l$  values. The bands at the bottom represent 68%, 95%, and 99.7% containment of power spectra produced from an isotropic signal. Shown for 11 years of in-ice data: 2011-05-13 – 2022-05-13 C. Cochling ('23)

# **Improved Simulation:** Energy Estimation

- Simulation binned based on number of digital optical modules hit and cosine of reconstructed zenith angle
- Median value for each bin shown in plot
- Given hits and reconstructed zenith of event, use splined version to determine median energy value
- Previous concern: limited detector-specific simulation



# **Improved Simulation:** Energy Estimation

- Simulation binned based on number of digital optical modules hit and cosine of reconstructed zenith angle
- Median value for each bin shown in plot
- Given hits and reconstructed zenith of event, use splined version to determine median energy value
- Previous concern: limited detector-specific simulation



#### IC79 (6-Year Analysis)

# **Improved Simulation:** Energy Estimation

- Simulation binned based on number of digital optical modules hit and cosine of reconstructed zenith angle
- Median value for each bin shown in plot
- Given hits and reconstructed zenith of event. use splined version to determine median energy value
- Previous concern: limited detector-specific simulation
- New simulation: events that pass SMT08 trigger, IC86 only (splined version shown)

#### IC86 (11-Year Analysis)







































### Improved Statistics/Simulation: High-Energy Significance





### Improved Statistics/Simulation: High-Energy Significance





#### Improved Statistics/Simulation: Dipole Phase & Amplitude



23

### Improved Statistics/Simulation: Dipole Phase & Amplitude



Best-fit dipole phase and amplitude as a function of energy. Relative intensity maps were projected along right ascension, then fit with a sinusoidal series up to octupole terms. Horizontal error bars represent 68% containment of each reconstructed energy bin (from simulation). Vertical error bars are statistical. Shown for 11 years of in-ice data: 2011-05-13 – 2022-05-13

#### Improved Statistics/Simulation: Angular Power Spectrum



Angular power spectra for low (19 TeV) and high (300 TeV) energy bins. Error bars represent the spread of calculated *C*<sub>l</sub> values for maps randomly generated from the observed *C*<sub>l</sub> values. The noise bands represent 68%, 95%, and 99.7% containment of power spectra produced from an isotropic signal, and differ due to the differences in event statistics. Shown for 11 years of in-ice data: 2011-05-13 – 2022-05-13 **C. Cochling ('23)** 

### **Improved Systematics**

#### Goal: look for time-dependence of sidereal signal

- One-dimensional projection of relative intensity along right ascension, by detector year
- Six-year sample, all events included



#### **Improved Systematics:** Sidereal 1D Projection



One-dimensional projection of relative intensity as a function of right ascension, split by calendar year. Solid error bars are statistical. Shaded error bars are systematic and calculated from the anti-sidereal anisotropy for each year. Because the annual anti-sidereal distributions appear random, the rms value is used.

#### **Improved Systematics:** Sidereal 1D Projection



### Summary

#### Results

- Analysis has improved statistics, simulation, and systematics
- Structures in large-scale, small-scale, and energysplit maps appear consistent, with higher significance
- Better agreement between dipole phase and amplitude at highest energies
- Time-dependent trend possible in some right ascension bins

#### Upcoming Work

- Time modulation, anti- and extendedsidereal frames
- Anisotropy in IceTop
- Joint IceTop / TALE analysis
- Joint in-ice / HAWC analysis
- Spectral anisotropy

### **Coauthors: Undergraduate Personnel**

#### Mercer

Christina CochlingAngular power spectrumAlexis HardyEvent rate analysisEmily SchmidtTime gap analysisAlex SimmonsSystematic checks across detector seasonsAndrew ThorpeEnergy estimation and true energy distributions

#### Loyola

Katherine "Jo" GruchotAnisotropy tAndrew MoyAnisotropy tWill HaysEvents livetiJoe SummersIceTop simuGrace BratudeIceTop Data

#### UW-Madison

Hannah Woodward (Summer 2020 REU) (University of Virginia) Anisotropy time dependence Anisotropy time/energy dependence Events livetime/rates IceTop simulation/Data comparison IceTop Data processing/analysis

Extended- and anti-sidereal distributions Comparing detector and calendar years

# Backup Slides

### **Improved Systematics**

#### **Review:** Yearly Variation

• Consider four time frames:

|   | (hrs/day)         | (days/year) |       |       |
|---|-------------------|-------------|-------|-------|
| 0 | Anti-sidereal     |             | 24:04 |       |
|   |                   | 364         |       |       |
| 0 | Solar             |             |       | 24:00 |
|   |                   |             | 365   |       |
| 0 | Sidereal          |             | 23:56 |       |
|   |                   | 366         |       |       |
| 0 | Extended-sidereal |             | 23:52 |       |
|   |                   | 377         |       |       |

- What is the mutual influence of the signals in the solar and sidereal frames?
- Anti-sidereal: effect of solar on sidereal
- Extended-sidereal: effect of sidereal on solar



- Signal due to annual orbit should cancel out over a solar year
  - Systematic uncertainty in sidereal signal derived from anti-sidereal frame
- "Detector years" inconsistent in size
- Consistent detector configuration: systematic uncertainty calculated using calendar years
  - o Shown: IC86-2011
  - Amplitude ~100x smaller than sidereal



One-dimensional projection of anti-sidereal relative intensity as a function of right ascension. Parameters for the best-fit dipole (*blue*) and flat line (*orange*) are shown. Shown for 2011-05-13 – 2012-05-13

- Anti-sidereal: measures influence of solar signal on sidereal anisotropy
  - Systematic uncertainty in sidereal signal derived from anti-sidereal frame

- Best-fit to a flat line at 0 (orange)
- Best-fit to a dipole (blue)



- Anti-sidereal: measures influence of solar signal on sidereal anisotropy
  - Systematic uncertainty in sidereal signal derived from anti-sidereal frame

- Best-fit to a flat line at 0 (orange)
- Best-fit to a dipole (blue)



- Anti-sidereal: measures influence of solar signal on sidereal anisotropy
  - Systematic uncertainty in sidereal signal derived from anti-sidereal frame

- Best-fit to a flat line at 0 (orange)
- Best-fit to a dipole (blue)



- Anti-sidereal: measures influence of solar signal on sidereal anisotropy
  - Systematic uncertainty in sidereal signal derived from anti-sidereal frame

- Best-fit to a flat line at 0 (orange)
- Best-fit to a dipole (blue)



- Anti-sidereal: measures influence of solar signal on sidereal anisotropy
  - Systematic uncertainty in sidereal signal derived from anti-sidereal frame
- Shown:
  - Best-fit to a flat line at 0 (orange)
  - Best-fit to a dipole (blue)



- Anti-sidereal: measures influence of solar signal on sidereal anisotropy
  - Systematic uncertainty in sidereal signal derived from anti-sidereal frame

- Best-fit to a flat line at 0 (orange)
- Best-fit to a dipole (blue)



- Anti-sidereal: measures influence of solar signal on sidereal anisotropy
  - Systematic uncertainty in sidereal signal derived from anti-sidereal frame

- Best-fit to a flat line at 0 (orange)
- Best-fit to a dipole (blue)



- Anti-sidereal: measures influence of solar signal on sidereal anisotropy
  - Systematic uncertainty in sidereal signal derived from anti-sidereal frame

- Best-fit to a flat line at 0 (orange)
- Best-fit to a dipole (blue)



- Anti-sidereal: measures influence of solar signal on sidereal anisotropy
  - Systematic uncertainty in sidereal signal derived from anti-sidereal frame
- Shown:
  - Best-fit to a flat line at 0 (orange)
  - Best-fit to a dipole (blue)



- Anti-sidereal: measures influence of solar signal on sidereal anisotropy
  - Systematic uncertainty in sidereal signal derived from anti-sidereal frame

- Best-fit to a flat line at 0 (orange)
- Best-fit to a dipole (blue)



- Anti-sidereal: measures influence of solar signal on sidereal anisotropy
  - Systematic uncertainty in sidereal signal derived from anti-sidereal frame

- Best-fit to a flat line at 0 (orange)
- Best-fit to a dipole (blue)



- **Sidereal:** one-dimensional projection along right ascension
  - Systematic uncertainty in sidereal signal derived from rms value of corresponding anti-sidereal frame
- Shown:
  - Best-fit line with  $\ell$  = 3
  - Best-fit phase and amplitude for dipole component



- **Sidereal:** one-dimensional projection along right ascension
  - Systematic uncertainty in sidereal signal derived from rms value of corresponding anti-sidereal frame
- Shown:
  - Best-fit line with  $\ell$  = 3
  - Best-fit phase and amplitude for dipole component



- **Sidereal:** one-dimensional projection along right ascension
  - Systematic uncertainty in sidereal signal derived from rms value of corresponding anti-sidereal frame
- Shown:
  - Best-fit line with  $\ell$  = 3
  - Best-fit phase and amplitude for dipole component



- **Sidereal:** one-dimensional projection along right ascension
  - Systematic uncertainty in sidereal signal derived from rms value of corresponding anti-sidereal frame
- Shown:
  - Best-fit line with  $\ell$  = 3
  - Best-fit phase and amplitude for dipole component



- **Sidereal:** one-dimensional projection along right ascension
  - Systematic uncertainty in sidereal signal derived from rms value of corresponding anti-sidereal frame
- Shown:
  - Best-fit line with  $\ell$  = 3
  - Best-fit phase and amplitude for dipole component



- **Sidereal:** one-dimensional projection along right ascension
  - Systematic uncertainty in sidereal signal derived from rms value of corresponding anti-sidereal frame
- Shown:
  - Best-fit line with  $\ell$  = 3
  - Best-fit phase and amplitude for dipole component



- **Sidereal:** one-dimensional projection along right ascension
  - Systematic uncertainty in sidereal signal derived from rms value of corresponding anti-sidereal frame
- Shown:
  - Best-fit line with  $\ell$  = 3
  - Best-fit phase and amplitude for dipole component



- **Sidereal:** one-dimensional projection along right ascension
  - Systematic uncertainty in sidereal signal derived from rms value of corresponding anti-sidereal frame
- Shown:
  - Best-fit line with  $\ell$  = 3
  - Best-fit phase and amplitude for dipole component



- **Sidereal:** one-dimensional projection along right ascension
  - Systematic uncertainty in sidereal signal derived from rms value of corresponding anti-sidereal frame

- Best-fit line with  $\ell$  = 3
- Best-fit phase and amplitude for dipole component



- **Sidereal:** one-dimensional projection along right ascension
  - Systematic uncertainty in sidereal signal derived from rms value of corresponding anti-sidereal frame
- Shown:
  - Best-fit line with  $\ell$  = 3
  - Best-fit phase and amplitude for dipole component



- **Sidereal:** one-dimensional projection along right ascension
  - Systematic uncertainty in sidereal signal derived from rms value of corresponding anti-sidereal frame
- Shown:
  - Best-fit line with  $\ell$  = 3
  - Best-fit phase and amplitude for dipole component

![](_page_55_Figure_6.jpeg)