Constraining the Global Structure of the Coherent Galactic Magnetic Field M. Unger (KIT) in collaboration with G.B. Farrar (NYU)

NGC628 M. Krause 2019; T. Stanev ApJ97; JF12 Farrar&Sandstrom

Modeling of the Coherent Galactic Magnetic Field (GMF) Observables:

adapted from Hasegawa+13 and Pelgrims+18

Popular Models in UHECR:

-	S97	PT11	JF12	Planck16	TF17
parameter fit	×	1	1	×	1
extragalactic RMs	×	1	1	×	✓*
polarized synchrotron	×	X	1	1	X
polarized dust	X	X	X	1	X

Jansson& Farrar Global Magnetic Field Model (JF12) R. Jansson & G.F. Farrar, ApJ 757 (2012) 14

three divergence-free components:

- disk field, $(h \leq 0.4 \text{ kpc})$
- toroidal halo field ($h_{\text{scale}} \sim 5.3 \text{ kpc}$)
- "X-field" (halo)
- 21 parameters adjusted to 6605 data points •

- RM and Synchrotron Data
- Thermal Electrons
- Cosmic-Ray Electrons
- Parametric Models
- Preliminary Results

- RM and Synchrotron Data
- Thermal Electrons
- Cosmic-Ray Electrons
- Parametric Models
- Preliminary Results

Extragalactic Rotation Measures used for JF12

 $\theta = \theta_0 + \mathrm{RM}\,\lambda^2$

Polarized

4/21

liaht

agnetic field

Plasma

Extragalactic Rotation Measures 2022

 $\theta = \theta_0 + \mathrm{RM}\,\lambda^2$

Polarized

light

Magnetic field

Plasma

- RM and Synchrotron Data
- Thermal Electrons
- Cosmic-Ray Electrons
- Parametric Models
- Preliminary Results

Thermal Electron Models

15

10

y [kpc]

-10

-15

z [kpc]

112 pulsar DMs

189 pulsar DMs

Cordes&Lazio arXiv:0207156 Yao, Manchester & Wang, ApJ 2017 9/21

Thermal Electron Halo

reasonably well-constrained from DMs of pulsars in globular clusters

YMW16

NE2001

 ΔDM : data-model residual without exponential halo (preliminary)

- RM and Synchrotron Data
- Thermal Electrons
- Cosmic-Ray Electrons
- Parametric Models
- Preliminary Results

DRAGON calculation constrained by local lepton flux and D_0/H from B/C https://github.com/cosmicrays/DRAGON

Cosmic-Ray Electron Model

- $D_0/H = \text{const from B/C}$
- halo half-height *H* currently not well constrained Weinrich+20, Evoli+20, Maurin+22

\rightarrow large uncertainty in vertical $n_{\rm cre}$ profile!

2H

- RM and Synchrotron Data
- Thermal Electrons
- Cosmic-Ray Electrons
- Parametric Models
- Preliminary Results

GMF Model Improvements – Disk Field

smooth spiral disk field:

- divergence-free Fourier-expansion of $B_{\phi}(r)$ at reference radius
- avoids sharp radial discontinuities of JF12
- free pitch angle and "magnetic arms" (number of Fourier modes)

GMF Model Improvements – X-Field

- JF12: discontinuities at z = 0 and transition to $\theta_X = 49^{\circ}$
- smooth FTC X-field model, but $\theta_X = f(r, z)$

GMF Model Improvements – Halo Field

- evolve X-field via ideal induction equation $\partial_t \mathbf{B} = \nabla \times (\mathbf{v}_{rot} \times \mathbf{B})$
- radial and vertical shear of Galactic rotation generates toroidal field

 \rightarrow no separate X- and torodial halo needed!

"Twisted X-field"

- RM and Synchrotron Data
- Thermal Electrons
- Cosmic-Ray Electrons
- Parametric Models
- Preliminary Results

Aim: GMF Model Variations Using Newest Data

• 2+1 GMF models:

- 2 thermal electron models: NE2001, YMW16
- 4 CR electron models: (diffusion height H = 4, 6, 8, 10 kpc)
- \rightarrow 1 (best-fit) "fiducial" model
- ightarrow 23 variations to estimate uncertainties (lower limit)

Example: Influence of Diffusion Height H

$B_X \propto B_0 \exp(-r/r_X), B_T \propto B_T \exp(-z/z_0)$

h/koc

h/kpc

19/21

Deflections: JF12 vs JF22a

Summary and Outlook

Major Overhaul of JF12

- new RM data
- new synchrotron sky maps
- improved auxillary models (n_e and n_{cre})
- smooth disk-field
- unified halo model

Model Variations \rightarrow Uncertainties:

- parametric model choices
- $n_{\rm cre}$ and n_e models

Next up:

Mko 42

• random field, $n_e - B$ correlations, foregrounds: local bubble, spurs,...

JF12 coherent defeflections

Summary and Outlook

Major Overhaul of JF12

- new RM data
- new synchrotron sky maps
- improved auxillary models (n_e and n_{cre})
- smooth disk-field
- unified halo model

Model Variations \rightarrow Uncertainties:

- parametric model choices
- $n_{\rm cre}$ and n_e models

Next up:

• random field, $n_e - B$ correlations, foregrounds: local bubble, spurs,...

JF22a coherent defeflections