Propagation of UHECRs from sources

Alexander Korochkin, ULB Brussels & K. Dolgikh, G. Rubtsov, D. Semikoz, I. Tkachev

UHECR anisotropies

Auger Coll. 2017

Auger Coll. 2022

UHECR anisotropies

Satisfactory UHECR model should explain the observed level of isotropy and the absence of obvious sources

Deflections of UHECRs in magnetic fields can significantly complicate the picture

UHECR deflections by magnetic fields

IGME

UHECR source

If the magnetic field in the source located in a galaxy cluster or supercluster is strong enough it may randomize the directions of UHECR particles in energy-dependent way and change observational appearance of a source and it's spectrum, *Dolag+09*, *Hussain+21* Deflection of the UHECR can be divided into three stages:

Deflection in our Galaxy

Intergalactic Magnetic Fields (IGMF)

Low redshift IGMF constraints: 1e-16 G < B < 1e-9 G, MAGIC+21, Fermi/LAT+16, Blasi+99, Pshirkov+16

High redshift data (CMB) give stronger upper bounds Jedamzik+18

Neronov+21

MHD simulations

Simulations: Sigl+04, Dolag+06, Ryu+09, Vazza+16, Rafael Batista+17, Hackstein+17...

Simulations do not unambiguously predict the magnitude of IGMF

MHD simulations

Pic from Hackstein+17

Kotera & Lemoine 07

see Klaus Dolag talk

Galactic magnetic field

see Michael Unger talk

Regular component displaces the source image from its original position on the sky, lansson & Farrar 12 Turbulent component broadens the source extent, Pshirkov+13

UHECR lensing by GMF

Deflections of the cosmic ray trajectories can lead to amplification or deamplification of the cosmic ray fluxes by lensing effects

Harari+99,01,02...

Unger & Farrar UHECR 2018

Case of strong IGMF: B = 1 nG, L = 1 Mpc

Strongest possible IGMF

Consider UHECR with E=10 EeV

$$\theta \sim 4^{\circ} Z \frac{B}{nG} \frac{10 \text{ EeV}}{E} \sqrt{\frac{D}{Mpc}} \sqrt{\frac{\lambda_C}{Mpc}}$$

Diffusion and anisotropy from extragalactic sources: Globus+07, Harari+14,15,21

Looking for the 2D picture

Harari+99,02, Dolgikh+22

 $R_{obs} = 100 \, kpc$ $D = 500.0 \, kpc$ $\theta_{min} = 1.2 \, deg$ $\theta_{max} = 1.8 \, deg$ $\alpha_{obs} = 2 \operatorname{arctg}(R/D) = 22.62 \, deg$ $flux_{naive} = 0.97097 \, \%$ $flux_{real} = 1.0080923076923087 \, \%$ $N_{in \, target} = 32763$ $N_{run} = 125000$

Work in progress: K.Dolgikh et al.

Summary

In strong IGMF trajectories of UHECRs form a non-trivial caustic-like pattern with strong deviation from isotropy

Measurements of the flux from a source at a given distance will depend on the position of the observer.

see arXiv:2212.01494, K.Dolgikh et al.