Simulating the evolution of Magnetic Fields and CRs in large scale structures

Klaus Dolag

Universitäts-Sternwarte, Fakultät für Physik, Ludwig-Maximilians-Universität München

Ludwig Böss, Tirso Marin, Frederick Groth & Ulrich Steinwandel

Motivation

Open Questions in Cosmic-Ray Research at Ultrahigh Energies, Batista et al. 2019 (F. Oikonomou & K. Fang)

Open Questions in Cosmic-Ray Research at Ultrahigh Energies, Batista et al. 2019 (F. Oikonomou & K. Fang)

What Galaxy Clusters tell us

ICM is the hot Atmosphere of Massive Galaxies

Measured in large details
 X-ray (temperature, velocities)
 SZ (pressure)

Right ascension

PLANCK (SZ), Planck 2012

ICM is the hot Atmosphere of Massive Galaxies

- Measured in large details
 X-ray (temperature, velocities)
 SZ (pressure)
- Non-thermal components give additional insights (magnetic fields, CRs)

ICM is the hot Atmosphere of Massive Galaxies

Dynamo in Galaxies

A turbulent dynamo amplifying B is common prediction of all simulations ...

Ulrich Steinwandel

log IBI [G]

Dynamo in Galaxies

Dynamo in Galaxies

... but first to prove the different dynamo actions far beyond simple power spectrum ...

Dynamo/outflows in Galaxies

First MHD galaxy simulation with fully resolved, two phase dynamo and magnetic driven outflows, triggered by bar instability !

... and first to find a B driven galactic outflow! (interplay between bar / dynamo!)

Magnetic Field and CRs in Galaxy Cluster

What do CR (electrons) tell us?

What do CR (electrons) tell us?

Numerical Challenges

Do simulations reproduce Turbulence?

Simulations of turbulent dynamo in the ICM

Observational inferred Turbulence in Galaxy Clusters

Simulations seems not to produce "relaxed" systems ...

Decaying Turbulence in Simulations and different methods (I)

Decaying Turbulence in Simulations and different methods (II)

Sijacki & Springel 2006

Role of viscosity in Simulations and different methods (I)

For a fully ionized plasma

Tirso Marin

Developing a Fokker-Planck solver for CRs

Shocks in Galaxy Clusters

Galaxy clusters, the hot atmosphere of massive galaxies

>5 C·O·M·P·A·S·S

Can we still learn something from this?

When clusters form, they are heated by internal shocks!

Virial shock is pushed back through collisions with internal shocks!

Or even explain some observations?

Perseus Cluster

t = 13 Gyr

5

2

r (Mpc)

Walker+ 2020

Are the simulations matching the observed morphologies?

What to choose for the (re-)acceleration efficiency?

The new Frontier for Galaxies

Radio shocks on galaxy scale ?

Discovery of a new extragalactic circular radio source with ASKAP: ORC J0102–2450

Bärbel S. Koribalski,^{1,2*} Ray P. Norris,^{2,1} Heinz Andernach,³ Lawrence Rudnick,⁴ Stanislav Shabala,⁵ Miroslav Filipović,² and Emil Lenc¹ ¹Australia Telescope National Facility, CSIRO Astronomy and Space Science, P.O. Box 76, Epping, NSW 1710, Australia

²School of Science, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia

³Departmento de Astronomía, Universidad de Guanajuato, Callejón de Jalisco s/n, Guanajuato, C.P. 36023, GTO, Mexico

⁴Minnesota Institute for Astrophysics, University of Minnesota, 116 Church St. SE, Minneapolis, MN 55455, USA

⁵School of Natural Sciences, University of Tasmania, Private Bag 37, Hobart 7001, Australia

Figure 2. ASKAP radio continuum contours of ORC J0102-2450 overlaid onto a WISE RGB colour image (red: 12 µm (W3), green: 4.6 µm (W2), and 3.4 µm (W1)

source name		discovery telescope	central host galaxy	galaxy redshift	ring dia [arcsec]	meter [kpc]	spectral index	Ref.
ORC J2103-6200	(ORC 1)	ASKAP	WISE J210258.15-620014.4	0.55	80	510	-1.17 ± 0.04	Norris et al. 2021a
ORC J1555+2726	(ORC 4)	GMRT	WISE J155524.65+272633.7	0.39	70	370	-0.92 ± 0.18	Norris et al. 2021a
ORC J0102-2450	(ORC 5)	ASKAP	DES J010224.33-245039.5	0.27	70	300	-0.8 ± 0.2	this paper

Ring like features beyond R_{vir} (300 kpc – 500 kpc) in several (5) galaxies found!

Suggested to be AGN, but could be just merger shocks ?

ORC centre galaxies

(from DES DR9 via the *legacyserver.org/viewer* – not to scale)

ORC 1

 $M_{*} \sim 10^{11} M_{sol}$

Are galaxies different (MW like halo at 25000x)

Shocks in the simulated galaxy

Simulated Galaxy

 $M_{vir} \sim 1.2 \times 10^{12} M_{sol}$

several shocks

Shock structures are matching the observed ORCs

Towards our Local Universe

SLOW 2.0_9100, 3072³

Coma (MHD+CRs)

Not. R. Astron. Soc. 412, 2-12 (2011)

doi:10.1111/j.1365-2966.2010.17738.x

CR Electron Pressure $P_{CR,e}$ [erg cm⁻³] Synchr. Intensity $I_{\nu, 144\text{MHz}}$ [erg cm⁻² s⁻¹ Hz⁻¹] Synchr. Intensity $I_{\nu, 1.4\text{GHz}}$ [erg cm⁻² s⁻¹ Hz⁻¹]

Diffuse radio emission in/around the Coma cluster: beyond simple accretion

Shea Brown^{1*†} and Lawrence Rudnick²

¹CSIRO, Australia Telescope National Facility, PO Box 76, Epping, NSW 1710, Australia ²Department of Astronomy, University of Minnesota, Minneapolis, MN 55455, USA

Accepted 2010 September 20. Received 2010 August 31; in original form 2010 May 21

Giant radio halo!

SLOW 2.0_9100, 3072³

Perseus (MHD+CRs)

CR Electron Pressure $P_{CR,e}$ [erg cm⁻³]

Synchr. Intensity $I_{\nu, 144\text{MHz}}$ [erg cm⁻² s⁻¹ Hz⁻¹] Synchr. Intensity $I_{\nu, 1.4\text{GHz}}$ [erg cm⁻² s⁻¹ Hz⁻¹]

JVLA Details the Structure of the Mini-Halo in the Perseus Cluster

TOPICS: Astronomy Astrophysics Cosmology Harvard-Smithsonian Center For Astrophysics

Karl G. Jansky Very Large Array

By HARVARD-SMITHSONIAN CENTER FOR ASTROPHYSICS SEPTEMBER 22, 2017

radio mini halo!

A&A 423, 57–64 (2004) DOI: 10.1051/0004-6361:20035783 © ESO 2004

Astronomy Astrophysics

Virgo (MHD+CRs)

Synchr. Intensity $I_{\nu, 144\text{MHz}}$ [erg cm⁻² s⁻¹ Hz⁻¹] Synchr. Intensity $I_{\nu, 1.4\text{GHz}}$ [erg cm⁻² s⁻¹ Hz⁻¹]

SLOW 2.0_9100, 3072³

CR Electron Pressure $P_{CR,e}$ [erg cm⁻³]

Detection of a radio halo in the Virgo cluster*

B. Vollmer^{1,2}, W. Reich², and R. Wielebinski²

- 1. We do not detect a bright, large-scale radio halo, as is observed in the Coma cluster.
- 2. We detect a radio halo around the elliptical galaxy M 86 with an estimated radial extent of $\sim 2^{\circ}$ and an estimated total flux density of 5 ± 1.5 Jy.

No radio emission!

The End

velocity

Radius (R_{200m})

0.0 x [kpc]

Conclusions

Conclusions

