

Radio galaxies as UHECR sources

Björn Eichmann

Cosmic Rays in the Multi-Messenger Era Paris, 06.12.2022

The UHECR-radio connection

The UHECR – radio connection

- **CR power** from the jet power: $Q_{cr} \simeq \frac{g_m}{1+k} Q_{jet}$
 - g_m : jet energy found in matter (hadronic and leptonic) \rightarrow min. jet energy cond.: $g_m \simeq \frac{4}{7}$
 - $k = Q_e/Q_{cr}$: ratio of leptonic to hadronic energy \rightarrow for a vanishing lepton fraction $k \ll 1$
- Jet power from extended radio emission: $Q_{jet} \propto L_{151}^{\beta_L}$
- Maximal rigidity from

Björn Eichmann

magn. field energy
$$Q_B = c\beta_{jet}\pi r^2 \frac{B^2}{8\pi} = Q_{jet} - (Q_{cr} + Q_e) = Q_{jet}(1 - g_m)$$

and Hillas criterion $\hat{R} \equiv \frac{E_{max}}{Ze} = \frac{\beta_{sh}}{f_{diff}}Br$
 $\hat{R} \simeq g_{acc}\sqrt{(1 - g_m)Q_{jet}/c}$, with $g_{acc} = \sqrt{\frac{8\beta_{sh}^2}{f_{cres}^2 + g_{jet}}}$

 $\sqrt{\int diff^{p} jet}$

The UHECR – radio connection

- **CR power** from the jet power: $Q_{cr} \simeq \frac{g_m}{1+k} Q_{jet}$
 - g_m : jet energy found in matter (hadronic and leptonic) \rightarrow min. jet energy cond.: $g_m \simeq \frac{4}{7}$
 - $k = Q_e/Q_{cr}$: ratio of leptonic to hadronic energy \rightarrow for a vanishing lepton fraction $k \ll 1$
- Jet power from extended radio emission: $Q_{jet} \propto L_{151}^{\beta_L}$
- Maximal rigidity from

magn. field energy
$$Q_B = c\beta_{jet}\pi r^2 \frac{B^2}{8\pi} = Q_{jet} - (Q_{cr} + Q_e) = Q_{jet}(1 - g_m)$$

and Hillas criterion $\hat{R} \equiv \frac{E_{max}}{Ze} = \frac{\beta_{sh}}{f_{diff}}Br$
 $\hat{R} \simeq g_{acc}\sqrt{(1 - g_m)Q_{jet}/c}$, with $g_{acc} = \sqrt{\frac{8\beta_{sh}^2}{f_{diff}^2\beta_{jet}}}$

$$0.01 \le g_{acc} \le 1;$$
 $g_m < 1 \ (g_m \sim 4/7);$ $\beta_L = ?$

Björn Eichmann

The jet power – radio connection

Björn Eichmann

The jet power – radio connection

Björn Eichmann

The UHECR contribution from radio galaxies

UHECRs from local radio sources

Using the radio flux to estimate the CR contr. of the local sources:

 Only a very limited number of sources can compete with the brightest source (Cen A)

Eichmann+2022

Björn Eichmann

Radio galaxies as UHECR sources

UHECRs from local radio sources

Using the radio flux to estimate the CR contr. of the local sources:

- Only a very limited number of sources can compete with the brightest source (Cen A)
- **Dipole anisotropy** (colored) generally **agrees** with this source distribution
- Most hotpots (black dashed) show associated sources (except for the "TA-HS")
- the majority of sources is aligned with the supergalactic plane

Björn Eichmann

Radio galaxies as UHECR sources

UHECRs from local radio sources

Using rigidity instead of energy

Accounting for the **angular distribution of arrival direction** based on a isotropically turbulent extragalactic magnetic field (Harari+2016) + Galactic (JF12) field

Björn Eichmann

Radio galaxies as UHECR sources

UHECRs from non-local radio sources

Including a diffuse contribution from the **bulk of non-local (***z***>0.02) radio galaxies**:

$$\boxed{\text{non-local}} J_{\text{csf}}(R, t_{\text{act}}) = \frac{c}{4\pi} \int \mathrm{d}z \ \left| \frac{\mathrm{d}t}{\mathrm{d}z} \right| \sum_{i} \Psi_{0,i}(R, z) A_{i} \,\bar{\eta}_{\text{csf}}(R, z)$$

Björn Eichmann

Radio galaxies as UHECR sources

UHECRs from local+non-local radio sources

The general approach:

= average enhancement factor due to diffusion and finite source lifetime (Harari+2021)

$$n(R, r, t_{\text{act}}) = \sum_{i} n_i(R, r, t_{\text{act}}) = n_0 \left(\frac{R}{\check{R}}\right)^{-\alpha} \exp\left(-\frac{R}{\hat{R}}\right) \bar{\xi}(R, r, t_{\text{act}}) \bar{\eta}(R, r)$$

$$= \text{average spectral}$$

$$= \text{average spectral}$$

$$= \text{average spectral}$$

$$= \frac{dN_{\text{cr}}}{dR \, dA \, dt \, d\Omega} = \frac{c}{4\pi} n(R, r_s, t_{\text{act}})$$

$$= \frac{S_i(R)}{\eta_i(R, r)} = \frac{S_i(R)}{\sigma_i(R, r)}$$

modification factor with
$$\eta_i(R,r) \equiv \frac{S_i(R,r)}{S_{0,i}(R)} \label{eq:gamma}$$

Using rigidity instead of energy

Accounting for the **angular distribution of arrival direction** based on a isotropically turbulent extragalactic magnetic field (Harari+2016) + Galactic (JF12) field

Including a isotropic contribution from the **bulk of non-local (z>0.02) radio galaxies**:

$$\boxed{\text{non-local}} J_{\text{csf}}(R, t_{\text{act}}) = \frac{c}{4\pi} \int \mathrm{d}z \ \left| \frac{\mathrm{d}t}{\mathrm{d}z} \right| \sum_{i} \Psi_{0,i}(R, z) A_{i} \,\bar{\eta}_{\text{csf}}(R, z)$$

 $> J_R = J_{csf} + \sum_s J_s$

in total

Björn Eichmann

Radio galaxies as UHECR sources

Eichmann+2022 [arXiv:2202.11942]

non-local source

The general approach:

Using the observed compositional data to convert rigidity into (energy, mass):

- a priori agreement with the <lnA> data but not necessarily with Var(lnA)
 - no constraint on the initial elem. abund.
- substantial decrease of the parameter space

...still the energy spectrum and anisotropy data (quadrupole strength is not included in the parameter optimization) needs to be fitted

Björn Eichmann

Radio galaxies as UHECR sources

Using the **five brightest local sources**:

Björn Eichmann

Radio galaxies as UHECR sources

Björn Eichmann

Radio galaxies as UHECR sources

Using the eleven brightest local sources:

Björn Eichmann

Radio galaxies as UHECR sources

Using the eleven brightest local sources:

- > bulk of low-luminous (FR-I) radio galaxies dominants below the ankle
- just a few local sources (such as Fornax A, Virgo A) provide a significant contribution above the ankle

Radio galaxies as UHECR sources

Using the eleven brightest local sources:

Björn Eichmann

Radio galaxies as UHECR sources

Using the eleven brightest local sources:

Björn Eichmann

Radio galaxies as UHECR sources

Using the eleven brightest local sources:

Björn Eichmann

Radio galaxies as UHECR sources

Using the **twenty-six brightest local sources**:

> only small improvements, mostly with respect to the dipole direction:

Björn Eichmann

Radio galaxies as UHECR sources

Using the **twenty-six brightest local sources**:

> only small improvements, mostly with respect to the dipole direction:

Björn Eichmann

Radio galaxies as UHECR sources

The hard spectra of individual UHECR nuclei

Björn Eichmann

Björn Eichmann

Björn Eichmann

Björn Eichmann

Dominance of local sources

The necessary CR luminosity of an **individual local source** (with a finite activity time) **to dominate**—against the large scale, steady state distribution of radio sources—the observed UHECR flux above the ankle:

Björn Eichmann

Radio galaxies as UHECR sources

Dominance of local sources

The necessary CR luminosity of an **individual local source** (with a finite activity time) **to dominate**–against the large scale, steady state distribution of radio sources–the observed UHECR flux above the ankle:

old and close-by (at most a few x 10 Mpc for 1nG rms EGMF strength) sources are needed!

Björn Eichmann

Radio galaxies as UHECR sources

Using:

- $1/E^2$ -source spectrum;
- a single local source (For A or Cen B) that is old (t_{max}~-t_{act});
- about 10x more heavy (i.e. A>4) nuclei ejected by the local source;
- an activity time of 4 Myr (For A) and 10 Myr (Cen A)

Björn Eichmann

Radio galaxies as UHECR sources

2 (qualitative) Examples

Using:

- $1/E^2$ -source spectrum;
- a single local source (For A or Cen B) that is old (t_{max}~-t_{act});
- about 10x more heavy (i.e. A>4) nuclei ejected by the local source;
- an activity time of 4 Myr (For A) and 10 Myr (Cen A)

$$t_{\rm act} \sim \langle t_{\rm del} \rangle \simeq 1.2 \left(\frac{B}{1 \, {\rm nG}} \right)^2 \left(\frac{d_{\rm src}}{10 \, {\rm Mpc}} \right)^2 \left(\frac{l_{\rm coh}}{1 \, {\rm Mpc}} \right) \, {\rm Myr}$$

...to obtain sufficient (but not too much) flux suppression at about Z EeV!

Björn Eichmann

Radio galaxies as UHECR sources

...if:

- a single source dominates at the highest energies (≥40EeV);
- magnetic horizon suppression at about the ankle (~5EeV);
- efficient UHECR production: $g_{\rm acc} \sqrt{(1/g_{\rm m}-1)(1+k)} = 1$

Björn Eichmann

...if:

- a single source dominates at the highest energies (≥40EeV);
- magnetic horizon suppression at about the ankle (~5EeV);
- efficient UHECR production: $g_{\rm acc} \sqrt{(1/g_{\rm m}-1)(1+k)} = 1$

Björn Eichmann

...if:

- a single source dominates at the highest energies (≥40EeV);
- magnetic horizon suppression at about the ankle (~5EeV);
- efficient UHECR production: $g_{\rm acc} \sqrt{(1/g_{\rm m}-1)(1+k)} = 1$

Björn Eichmann

...if:

- a single source dominates at the highest energies (≥40EeV);
- magnetic horizon suppression at about the ankle (~5EeV);
- efficient UHECR production: $g_{\rm acc} \sqrt{(1/g_{\rm m}-1)(1+k)} = 1$

Björn Eichmann

...if:

- a single source dominates at the highest energies (≥40EeV);
- magnetic horizon suppression at about the ankle (~5EeV);
- efficient UHECR production: $g_{\rm acc} \sqrt{(1/g_{\rm m}-1)(1+k)} = 1$

Björn Eichmann

...if:

- a single source dominates at the highest energies (≥40EeV);
- magnetic horizon suppression at about the ankle (~5EeV);
- efficient UHECR production: $g_{\rm acc} \sqrt{(1/g_{\rm m}-1)(1+k)} = 1$

Björn Eichmann

...if:

- a single source dominates at the highest energies (≥40EeV);
- magnetic horizon suppression at about the ankle (~5EeV);
- efficient UHECR production: $g_{\rm acc} \sqrt{(1/g_{\rm m}-1)(1+k)} = 1$

Björn Eichmann

...if:

- a single source dominates at the highest energies (≥40EeV);
- magnetic horizon suppression at about the ankle (~5EeV);
- efficient UHECR production: $g_{\rm acc} \sqrt{(1/g_{\rm m}-1)(1+k)} = 1$

Björn Eichmann

Summing up

- Radio galaxies (especially of FR-I type) are the most promising sources of the UHECRs
- UHECR sources are:
 ... not standard candles
 ... predominantly just a few that are close-by
 ... having finite life-time (which may harden the spectra)
- ✤ A possible scenario:
 - \succ bulk of FR-Is dominates in the "shin region";
 - a few individual local sources (e.g. Fornax A, Virgo A, ...) dominate above the ankle.

RUB

The UHECR – radio connection

Why radio instead of gamma-ray brightness?

• Gamma-ray flux:

- *depends* on the additional presence of *a sufficiently dense target* population that is not in a simple relation with the CR density;
- can also be produced by non-hadronic processes like inverse Compton scattering;
- is observed in the GeV-TeV regime, while UHECRs are above EeV

• Radio flux:

- radio luminosity is in a simple relation to the non-thermal power of an object, which in turn is a plausible scaling quantity for the power in CRs;
- is *related to the magnetic field strength*, so that it sets a limit to the highest energy attainable in electromagnetic acceleration

Details on the parameter space

The parameter space

Accounting for individuality:

- jet power radio correlation has a huge uncertainty with respect to individual sources (using individual measurements if available)
- jet power CR is not uniform
- acceleration efficiency is not uniform

• individual values for g_m needed

• individual values for g_{acc} needed

• individual activity time t_{act} of high-luminous (FR-II) sources, but a uniform t_{act} for the others

The parameter space

Accounting for individuality:

- jet power radio correlation has a huge uncertainty with respect to individual sources (using individual measurements if available)
- jet power CR is not uniform
- acceleration efficiency is not uniform

• individual values for g_m needed

individual values for g_{acc} needed

- individual activity time t_{act} of high-luminous (FR-II) sources, but a uniform t_{act} for the others
- ...even more in general, but with a smaller impact

Parameter	Value(s)	Per Source	Description
$g_{ m m}$	$[0.001,\ldots,0.9]$	yes	matter-to-jet power ratio
$g_{ m acc}$	$[0.001,\ldots,1]$	yes	acceleration efficiency
α	$[1.5,\ldots,2.5]$	no	source spectral index
k	[0.1,0.5,1,5]	no	leptonic-to-hadronic energy density ratio
$t_{\rm act}$ [Gyr]	[0.01, 0.05, 0.1, 0.5, 1, 5, 10]	no	low luminosity source lifetime
$B_{\rm rms}$ [nG]	[0.1,0.5,1,5]	no	rms EGMF strength
$l_{\rm c} [{ m Mpc}]$	1	no	EGMF coherence length
\check{R} [GV]	1	no	minimal CR rigidity
β_L	0.89	no	radio–jet power correlation index

Björn Eichmann

The parameter space ... is huge

Accounting for individuality:

- ind a activity time t_{act} of high-luminous (FR-II) sources, but a uniform t_{act} for the others
- ...even more in general, but with a smaller impact

Parameter	Value(s)	Per Source	Description
$g_{ m m}$	$[0.001,\ldots,0.9]$	yes	matter-to-jet power ratio
$g_{ m acc}$	$[0.001,\ldots,1]$	yes	acceleration efficiency
α	$[1.5,\ldots,2.5]$	no	source spectral index
k	[0.1,0.5,1,5]	no	leptonic-to-hadronic energy density ratio
$t_{\rm act}$ [Gyr]	[0.01, 0.05, 0.1, 0.5, 1, 5, 10]	no	low luminosity source lifetime
$B_{\rm rms}$ [nG]	[0.1,0.5,1,5]	no	rms EGMF strength
$l_{\rm c} [{ m Mpc}]$	1	no	EGMF coherence length
\check{R} [GV]	1	no	minimal CR rigidity
eta_L	0.89	no	radio–jet power correlation index

Björn Eichmann

Details on the UHECR contribution by *individual local sources*

The general approach:

lifetime (Harari+2021)

nn Radio galaxies as UHECR sources

Björn Eichmann

The general approach:

lifetime (Harari+2021)

Björn Eichmann

The general approach:

Björn Eichmann

The general approach:

$$n(R, r, t_{\text{act}}) = \sum_{i} n_{i}(R, r, t_{\text{act}}) = n_{0} \left(\frac{R}{\check{R}}\right)^{-\alpha} \exp\left(-\frac{R}{\hat{R}}\right) \bar{\xi}(R, r, t_{\text{act}}) \bar{\eta}(R, r)$$
$$\underbrace{= \frac{Q_{\text{cr}}}{2\pi c r^{2}} \frac{\check{R}^{\alpha} \left(2-\alpha\right)}{(\hat{R}^{2-\alpha}-\check{R}^{2-\alpha})}}_{(\hat{R}^{2-\alpha}-\check{R}^{2-\alpha})}$$

Using rigidity instead of energy:

• CR transport depends predominantly on the particle's rigidity

Björn Eichmann

The general approach:

$$n(R, r, t_{\text{act}}) = \sum_{i} n_i(R, r, t_{\text{act}}) = n_0 \left(\frac{R}{\check{R}}\right)^{-\alpha} \exp\left(-\frac{R}{\hat{R}}\right) \bar{\xi}(R, r, t_{\text{act}}) \bar{\eta}(R, r)$$
$$\underbrace{-\frac{Q_{\text{cr}}}{2\pi c r^2} \frac{\check{R}^{\alpha} \left(2-\alpha\right)}{(\hat{R}^{2-\alpha}-\check{R}^{2-\alpha})}}_{(\hat{R}^{2-\alpha}-\check{R}^{2-\alpha})}$$

Using rigidity instead of energy

Accounting for the **angular distribution of arrival direction** based on a isotropically turbulent extragalactic magnetic field (Harari+2016) as characterized by the concentration parameter κ of the Fisher distr.:

Björn Eichmann

The general approach:

$$n(R, r, t_{\text{act}}) = \sum_{i} n_i(R, r, t_{\text{act}}) = n_0 \left(\frac{R}{\check{R}}\right)^{-\alpha} \exp\left(-\frac{R}{\hat{R}}\right) \bar{\xi}(R, r, t_{\text{act}}) \bar{\eta}(R, r)$$
$$\underbrace{-\frac{Q_{\text{cr}}}{2\pi c r^2} \frac{\check{R}^{\alpha} \left(2-\alpha\right)}{(\hat{R}^{2-\alpha}-\check{R}^{2-\alpha})}}_{(\hat{R}^{2-\alpha}-\check{R}^{2-\alpha})}$$

Using rigidity instead of energy

Accounting for the **angular distribution of arrival direction** based on a isotropically turbulent extragalactic magnetic field (Harari+2016) + Galactic (JF12) field

using the "lensing approach" (Bretz+2014, Eichmann+2020)

Björn Eichmann

Details on the UHECR contribution by the large-scale population

Constraining the non-local source contribution

 10^{-2} Using the *radio luminosity* FRI 10^{-5} FRII $\Phi / Mpc^{-3} (dlogP_{151})^{-1}$ function (RLF) Φ_{RG} from W01 10^{-6} MS07 Willott+2001 to obtain 10^{-7} $\frac{\mathrm{d}N}{\mathrm{d}V\,\mathrm{d}Q_{\mathrm{cr}}} = \frac{\Phi_{\mathrm{RG}}(L_{151},\,z)}{2.3\,\beta_L\,Q_{\mathrm{cr}}}$ 10^{-8} 10^{-9} 10^{-10} Continuous CR source function 10^{-11} 22 25 27 28 23 24 26 29 of radio galaxies (Eichmann 2019): $\log(P_{151} / W Hz^{-1} sr^{-1})$ $\Psi_i(R, z) \equiv \frac{\mathrm{d}N_{\mathrm{cr}}(Z_i)}{\mathrm{d}V\mathrm{d}R\,\mathrm{d}t} = \int_{\check{O}}^{Q_{\mathrm{cr}}} S_i(R, \hat{R}(Q_{\mathrm{cr}})) \frac{\mathrm{d}N}{\mathrm{d}V\,\mathrm{d}Q_{\mathrm{cr}}} \,\mathrm{d}Q_{\mathrm{cr}}$ $\Psi_{i}(R,z) \simeq \begin{cases} \frac{\rho_{\rm lo} f_{i} \nu_{a} c}{2.3 e \bar{Z}} \left[g_{\rm acc}^{2} \left(\frac{1}{g_{\rm m}} - 1 \right) (1+k) \right]^{-1} \left(\frac{R}{R_{\star}} \right)^{-a} \frac{f_{I}(z)}{z+1} \\ \times \left[\Gamma \left(\xi_{a}^{I}, \left(\frac{R}{R_{\star}} \right)^{2/\beta_{L}} \right) - \Gamma \left(\xi_{a}^{I}, \left(\frac{\hat{Q}_{\rm cr}(k+1)}{g_{\rm m} Q_{\star}} \right)^{1/\beta_{L}} \right) \right] \right], \\ \frac{\rho_{\rm ho} f_{i} \nu_{a} c}{2.3 e \bar{Z}} \left[g_{\rm acc}^{2} \left(\frac{1}{g_{\rm m}} - 1 \right) (1+k) \right]^{-1} \left(\frac{R}{R_{\star}} \right)^{-a} \frac{f_{II}(z)}{z+1} \\ \times \left[\Gamma \left(\xi_{a}^{II}, \left(\frac{g_{\rm m} Q_{\star}}{\hat{Q}_{\rm cr}(k+1)} \right)^{1/\beta_{L}} \right) - \Gamma \left(\xi_{a}^{II}, \left(\frac{R_{\star}}{R} \right)^{2/\beta_{L}} \right) \right], \end{cases}$ for FR-I,

Björn Eichmann

Constraining the non-local source contribution

- Using the radio luminosity function (RLF) Φ_{RG} from Willott+2001 to obtain $\frac{dN}{dV dQ_{cr}} = \frac{\Phi_{RG}(L_{151}, z)}{2.3 \beta_L Q_{cr}}$
- Continuous CR source function of radio galaxies (Eichmann 2019):

 $\Psi_i(R, z) \equiv \frac{\mathrm{d}N_{\mathrm{cr}}(Z_i)}{\mathrm{d}V\mathrm{d}R\,\mathrm{d}t} = \int_{\check{Q}_{\mathrm{cr}}}^{\hat{Q}_{\mathrm{cr}}} S_i\big(R, \hat{R}(Q_{\mathrm{cr}})\big) \,\frac{\mathrm{d}N}{\mathrm{d}V\,\mathrm{d}Q_{\mathrm{cr}}} \,\mathrm{d}Q_{\mathrm{cr}}$

$$\Psi_{i}(R \ll R_{\star}, z) \propto \left\{ \frac{R}{R_{\star}} \right\}^{-a},$$

$$\Psi_{i}(R \gg R_{\star}, z) \propto \left\{ \frac{\left(\frac{R}{R_{\star}}\right)^{-a+2\xi_{a}^{I}/\beta_{L}-2/\beta_{L}}}{\left(\frac{R}{R_{\star}}\right)^{-a-2\xi_{a}^{II}/\beta_{L}}} \exp \left(-\left(\frac{R}{R_{\star}}\right)^{2/\beta_{L}}\right) \quad \text{for FR-II}, \quad \text{for F$$

Björn Eichmann

Spectral behaviour constraints

Bulk of FR-I and FR-II sources have a different critical rigidity:

$$\begin{aligned} R_* &= g_{acc} \sqrt{(1 - g_m)Q_*/c}, \text{ with } Q_* \propto L_{I,II}^{\beta_L}, \\ 0.01 &\leq g_{acc} \leq 1; \quad g_m < 1 \ (g_m \sim 4/7); \quad 0.4 \leq \beta_L \leq 1.4 \end{aligned}$$

Björn Eichmann

Spectral behaviour constraints

Bulk of FR-I and FR-II sources have a different critical rigidity:

$$\begin{aligned} R_* &= g_{acc} \sqrt{(1 - g_m)Q_*/c}, \text{ with } Q_* \propto L_{I,II}^{\beta_L}, \\ 0.01 &\leq g_{acc} \leq 1; \quad g_m < 1 \ (g_m \sim 4/7); \quad 0.4 \leq \beta_L \leq 1.4 \end{aligned}$$

Björn Eichmann

Spectral behaviour constraints

Bulk of FR-I and FR-II sources have a different critical rigidity:

Björn Eichmann

UHECRs from the large-scale population

Björn Eichmann

UHECRs from the large-scale population

Björn Eichmann

Details on possible UHECR sources

Active Galactic Nuclei (AGNs) are the most likely (steady) sources of UHECRs

Björn Eichmann

Observational constraints:

Minimal CR emissivity: $L_{CR}n_{src} \approx 6x10^{44} \text{ erg}/(Mpc^{3} \text{ yr}) \text{ for } E>5EeV$ $L_{CR}n_{src} \approx 10^{46} \text{ erg}/(Mpc^{3} \text{ yr}) \text{ for } E>0.3EeV$

Björn Eichmann

Observational constraints:

Minimal CR emissivity:
 L_{CR}n_{src} ~6x10⁴⁴ erg/(Mpc³ yr) for E>5EeV
 L_{CR}n_{src} ~10⁴⁶ erg/(Mpc³ yr) for E>0.3EeV

➤ Absence of small-scale clustering: Large source density or magnetic field defl. $n_{src}^{>} \ge 10^{-5} Mpc^{-3}$

Björn Eichmann

- Theoretical constraints:
 - ➤ Hillas condition:

$$r_{L} = E / (ZeB) \le r_{src} \rightarrow E_{max} = \Gamma ZeBr_{src}$$

Björn Eichmann

Theoretical constraints:

Hillas condition:

$$r_{L} = E / (ZeB) \le r_{src} \rightarrow E_{max} = \Gamma ZeBr_{src}$$

Blandford (-Lovelace) condition:
 CR Power/Luminosity L = UI=U²/R;
 using a (vacuum) impedance R≈1000Ω
 & including bulk motion (Γ) effects:

$$L \gtrsim 3 \times 10^{42} \,\mathrm{erg/s} \,\frac{\Gamma^2}{\beta} \left(\frac{E/Z}{5 \times 10^{18} \mathrm{eV}}\right)^2$$

Björn Eichmann

Theoretical constraints:

Hillas condition:

$$r_{L} = E / (ZeB) \le r_{src} \rightarrow E_{max} = \Gamma ZeBr_{src}$$

Blandford (-Lovelace) condition:
 CR Power/Luminosity L = UI=U²/R;
 using a (vacuum) impedance R~1000Ω
 & including bulk motion (Γ) effects:

$$L \gtrsim 3 \times 10^{42} \,\mathrm{erg/s} \, \frac{\Gamma^2}{\beta} \, \left(\frac{E/Z}{5 \times 10^{18} \mathrm{eV}}\right)^2$$

Large scale population or individual (local) sources? Possible sub-contribution from other populations?

Björn Eichmann