How uncertain are model predictions for cosmic ray-induced air showers?

Sergey Ostapl henko

Hamburg University, II Institute for Theoretical Physics

Cosmic Rays in the Multi Messinger Era Paris, December 9-6, 2022

Indirect detection \Rightarrow depends on the accuracy of EAS modeling

- experimental analyses of CR composition: crucially rely on predictions of hadronic interaction models
 - e.g. 'tuning' such models with EAS data = diletant dream

Indirect detection \Rightarrow depends on the accuracy of EAS modeling

- experimental analyses of CR composition: crucially rely on predictions of hadronic interaction models
 - $\bullet\,$ e.g. 'tuning' such models with EAS data = diletant dream
- how much one can trust such interaction models?
 - can one quantify the range of uncertainty for their predictions?

Indirect detection \Rightarrow depends on the accuracy of EAS modeling

- experimental analyses of CR composition: crucially rely on predictions of hadronic interaction models
 - $\bullet\,$ e.g. 'tuning' such models with EAS data = diletant dream
- how much one can trust such interaction models?
 - can one quantify the range of uncertainty for their predictions?
 - uncertainties may be smaller/larger than the spread of model predictions (some/all models may be wrong)

- General purpose MC generators necessarily involve both perturbative $(p_t > Q_0)$ & nonperturbative physics
 - Q_0^2 -cutoff just a border between the respective treatments (minimal parton virtuality for pQCD being applicable)

• in principle, should be a technical parameter

- General purpose MC generators necessarily involve both perturbative ($p_t > Q_0$) & nonperturbative physics
 - Q_0^2 -cutoff just a border between the respective treatments (minimal parton virtuality for pQCD being applicable)

(4回) (三) (三)

- in principle, should be a technical parameter
- but: choice of Q_0^2 impacts strongly the predictions (e.g. for $\sigma_{pp}^{\text{tot/inel}}$ or for N_{pp}^{ch})
 - (mini)jet production explodes at small p_{t}
 - but: soft physics knows nothing about this cutoff

- General purpose MC generators necessarily involve both perturbative ($p_t > Q_0$) & nonperturbative physics
 - Q_0^2 -cutoff just a border between the respective treatments (minimal parton virtuality for pQCD being applicable)
 - in principle, should be a technical parameter
- but: choice of Q_0^2 impacts strongly the predictions (e.g. for $\sigma_{pp}^{\text{tot/inel}}$ or for N_{pp}^{ch})
 - (mini)jet production explodes at small p_{t}
 - but: soft physics knows nothing about this cutoff
- \Rightarrow there should be a perturbative mechanism damping jet production in the small p_t limit

All current MC generators: using leading twist QCD factorization

$$\sigma_{pp}^{\text{jet}} = \sum_{I,J=g,q,\bar{q}} f_{I/p} \otimes \sigma_{IJ}^{2 \to 2} \otimes f_{J/p}$$

• involves $2 \rightarrow 2$ Born cross section for parton scattering (LO)

• 1 projectile parton interacts with 1 target parton

All current MC generators: using leading twist QCD factorization

$$\sigma_{pp}^{\text{jet}} = \sum_{I,J=g,q,\bar{q}} f_{I/p} \otimes \sigma_{IJ}^{2 \to 2} \otimes f_{J/p}$$

• involves $2 \rightarrow 2$ Born cross section for parton scattering (LO)

1 projectile parton interacts with 1 target parton

• but: this is expected to break down at (moderately) small p_t

QGSJET-III & its EAS results [SO, Phys.At.Nucl. 84 (2021) 1017; arXiv: 2208.05889]

All current MC generators: using leading twist QCD factorization

$$\sigma_{pp}^{\text{jet}} = \sum_{I,J=g,q,\bar{q}} f_{I/p} \otimes \sigma_{IJ}^{2 \to 2} \otimes f_{J/p}$$

- involves $2 \rightarrow 2$ Born cross section for parton scattering (LO)
 - 1 projectile parton interacts with 1 target parton
- but: this is expected to break down at (moderately) small p_t

Higher twist corrections: coherent rescattering on soft gluons [Qiu & Vitev, PRL 93 (2004) 262301; PLB 632 (2006) 507]

 hard scattering involves additional virtual gluon pairs

QGSJET-III & its EAS results [SO, Phys.At.Nucl. 84 (2021) 1017; arXiv: 2208.05889]

All current MC generators: using leading twist QCD factorization

$$\sigma_{pp}^{\text{jet}} = \sum_{I,J=g,q,\bar{q}} f_{I/p} \otimes \sigma_{IJ}^{2 \to 2} \otimes f_{J/p}$$

- involves $2 \rightarrow 2$ Born cross section for parton scattering (LO)
 - 1 projectile parton interacts with 1 target parton
- but: this is expected to break down at (moderately) small pt

Higher twist corrections: coherent rescattering on soft gluons [Qiu & Vitev, PRL 93 (2004) 262301; PLB 632 (2006) 507]

- hard scattering involves additional virtual gluon pairs
- ⇒ A-enhanced jet suppression at low p_t & low x in pA

Implementation in QGSJET-III [SO & Bleicher, Universe 5 (2019) 106]

- $\bullet\,$ strong damping of hard scattering in the small $p_{\rm t}$ limit
 - \Rightarrow drastic reduction of the Q_0 -dependence
- single adjustable parameter K_{HT} (overall normalization)

QGSJET-III & its EAS results [SO, Phys.At.Nucl. 84 (2021) 1017; arXiv: 2208.05889]

Implementation in QGSJET-III [SO & Bleicher, Universe 5 (2019) 106]

- $\bullet\,$ strong damping of hard scattering in the small $p_{\rm t}$ limit
 - \Rightarrow drastic reduction of the Q_0 -dependence
- single adjustable parameter K_{HT} (overall normalization)

Additionally - technical improvement: pion exchange process

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = ● ● ●

QGSJET-III & its EAS results [SO, Phys.At.Nucl. 84 (2021) 1017; arXiv: 2208.05889]

What is the reason for the stability of EAS predictions?!

• EAS predictions sufficiently constrained by accelerator data?

QGSJET-III & its EAS results [SO, Phys.At.Nucl. 84 (2021) 1017; arXiv: 2208.05889]

What is the reason for the stability of EAS predictions?!

- EAS predictions sufficiently constrained by accelerator data?
- or a mere consequence of a particular model approach?

• some important physics is missing in the model?

SIBYLL & EPOS-LHC: of little help [SO, arXiv: 2208.05889; extra slides]

• EAS predictions: biased by serious deficiences of those models

- $\sigma(X_{\max})$: smallest uncertainties
 - σ_p(X_{max}): mostly from σ^{inel}_{p-air} (constrained by data on σ^{tot/el}_{pp})
 - uncertainties due to diffractive interactions: < 3 g/cm² [SO, PRD 89 (2014) 074009]
 - σ_A(X_{max}): from collision geometry & nuclear breakup [SO, AdSR 64 (2019) 2445]

- $\sigma(X_{max})$: smallest uncertainties
 - $\sigma_p(X_{\max})$: mostly from $\sigma_{p-\operatorname{air}}^{\operatorname{inel}}$ (constrained by data on $\sigma_{pp}^{\operatorname{tot/el}}$)
 - uncertainties due to diffractive interactions: < 3 g/cm² [SO, PRD 89 (2014) 074009]
 - σ_A(X_{max}): from collision geometry & nuclear breakup [SO, AdSR 64 (2019) 2445]

- $\sigma(X_{\max})$: smallest uncertainties
 - σ_p(X_{max}): mostly from σ^{inel}_{p-air} (constrained by data on σ^{tot/el}_{pp})
 - uncertainties due to diffractive interactions: < 3 g/cm² [SO, PRD 89 (2014) 074009]
 - σ_A(X_{max}): from collision geometry & nuclear breakup [SO, AdSR 64 (2019) 2445]

- $\sigma(X_{\max})$: smallest uncertainties
 - $\sigma_p(X_{\max})$: mostly from $\sigma_{p-\operatorname{air}}^{\operatorname{inel}}$ (constrained by data on $\sigma_{pp}^{\operatorname{tot/el}}$)
 - uncertainties due to diffractive interactions: < 3 g/cm² [SO, PRD 89 (2014) 074009]
 - σ_A(X_{max}): from collision geometry & nuclear breakup [SO, AdSR 64 (2019) 2445]

- $\sigma(X_{max})$: smallest uncertainties
 - $\sigma_p(X_{\max})$: mostly from $\sigma_{p-\operatorname{air}}^{\operatorname{inel}}$ (constrained by data on $\sigma_{pp}^{\operatorname{tot/el}}$)
 - uncertainties due to diffractive interactions: < 3 g/cm² [SO, PRD 89 (2014) 074009]
 - $\sigma_A(X_{\text{max}})$: from collision geometry & nuclear breakup [SO, AdSR 64 (2019) 2445]
- $\langle X_{\max} \rangle$: also from $\sigma_{p-\text{air}}^{\text{inel}}$ & $\sigma_{p-\text{air}}^{\text{diffr}}$
 - but: importance of the 'inelasticity' $K_{p-\text{air}}^{\text{inel}} = 1 - E'_{\text{lead}}/E_0$

- $\sigma(X_{max})$: smallest uncertainties
 - $\sigma_p(X_{\max})$: mostly from $\sigma_{p-\operatorname{air}}^{\operatorname{inel}}$ (constrained by data on $\sigma_{pp}^{\operatorname{tot/el}}$)
 - uncertainties due to diffractive interactions: <3 g/cm² [SO, PRD 89 (2014) 074009]
 - σ_A(X_{max}): from collision geometry & nuclear breakup [SO, AdSR 64 (2019) 2445]
- $\langle X_{\max} \rangle$: also from $\sigma_{p-\mathrm{air}}^{\mathrm{inel}}$ & $\sigma_{p-\mathrm{air}}^{\mathrm{diffr}}$
 - but: importance of the 'inelasticity' $K_{p-\text{air}}^{\text{inel}} = 1 - E'_{\text{lead}}/E_0$

EAS profile: main impact - from the primary CR interaction

- $\sigma(X_{\max})$: smallest uncertainties
 - $\sigma_p(X_{\max})$: mostly from $\sigma_{p-\operatorname{air}}^{\operatorname{inel}}$ (constrained by data on $\sigma_{pp}^{\operatorname{tot/el}}$)
 - uncertainties due to diffractive interactions: < 3 g/cm² [SO, PRD 89 (2014) 074009]
 - $\sigma_A(X_{\text{max}})$: from collision geometry & nuclear breakup [SO, AdSR 64 (2019) 2445]
- $\langle X_{\max} \rangle$: also from $\sigma_{p-\mathrm{air}}^{\mathrm{inel}}$ & $\sigma_{p-\mathrm{air}}^{\mathrm{diffr}}$
 - but: importance of the 'inelasticity' $K_{p-\text{air}}^{\text{inel}} = 1 - E'_{\text{lead}}/E_0$

• $\pi - air$ interactions: small impact on $\langle X_{max} \rangle$

EAS profile: main impact - from the primary CR interaction

- $\sigma(X_{max})$: smallest uncertainties
 - $\sigma_p(X_{\max})$: mostly from $\sigma_{p-\operatorname{air}}^{\operatorname{inel}}$ (constrained by data on $\sigma_{pp}^{\operatorname{tot/el}}$)
 - uncertainties due to diffractive interactions: < 3 g/cm² [SO, PRD 89 (2014) 074009]
 - $\sigma_A(X_{\text{max}})$: from collision geometry & nuclear breakup [SO, AdSR 64 (2019) 2445]
- $\langle X_{\max} \rangle$: also from $\sigma_{p-\mathrm{air}}^{\mathrm{inel}}$ & $\sigma_{p-\mathrm{air}}^{\mathrm{diffr}}$
 - but: importance of the 'inelasticity' $K_{p-\text{air}}^{\text{inel}} = 1 - E'_{\text{lead}}/E_0$

shower size Ne

 $N_{\mu} \& X_{\max}^{\mu}$: potentially highest uncertainties

• depend on the whole cascade history \Rightarrow on π -air interactions

- strong model dependence for $x_E \gtrsim 0.5$ (diffraction & scaling violations)
- smallest model differences at $x_E \sim 0.1$

Let us change production spectra of pions for all π -air collisions

• 'splitting' each π^{\pm} , π^{0} with $x_{E} > x_{0}$ into two (with 1/2 energy)

- NB: fraction of energy going into π^0 s remains unchanged!
- e.g. for x_0 close to 1: only diffraction affected
- for $x_0 \rightarrow 0$: 50% higher multiplicity & much softer spectra

Impact on X_{max} ('splitting' pions with $x_E > x_0$)

- miserable dependence on pion diffraction ($\Delta X_{
 m max} \simeq 1 \ {
 m g/cm^2}$)
- even for extreme changes $(x_0 \rightarrow 0)$: $\Delta X_{\text{max}} \lesssim 5 \text{ g/cm}^2$
- $\Rightarrow X_{\text{max}}$ is strongly dominated by *p*-air interactions

 What about N_μ? Let us neglect contributions of kaons & (anti)baryons to the hadronic cascade:

$$N_p^{\mu}(E_0) \simeq \int dx \, \frac{dN_{p-\mathrm{air}}^{\pi^{\pm}}(E_0,x)}{dx} \, N_{\pi^{\pm}}^{\mu}(xE_0).$$

□ > < E >

 What about N_μ? Let us neglect contributions of kaons & (anti)baryons to the hadronic cascade:

$$N_p^{\mu}(E_0) \simeq \int dx \, \frac{dN_{p-\text{air}}^{\pi^{\pm}}(E_0, x)}{dx} \, N_{\pi^{\pm}}^{\mu}(xE_0).$$

• with $N^{\mu}_{\pi^{\pm}}(x,E) \propto E^{\alpha}$, $dN^{\pi^{\pm}}_{p-\operatorname{air}}(E_0,x)/dx \propto x^{-1-\Delta} (1-x)^{\beta}$:

$$N_p^{\mu}(E_0) \propto E_0^{\alpha} \int_{x_{\min}}^1 dx \, x^{\alpha - 1 - \Delta} \, (1 - x)^{\beta}.$$

<ロ> (四) (四) (三) (三)

 What about N_µ? Let us neglect contributions of kaons & (anti)baryons to the hadronic cascade:

$$N_p^{\mu}(E_0) \simeq \int dx \, \frac{dN_{p-\text{air}}^{\pi^{\pm}}(E_0, x)}{dx} \, N_{\pi^{\pm}}^{\mu}(xE_0).$$

• with $N^{\mu}_{\pi^{\pm}}(x,E) \propto E^{\alpha}$, $dN^{\pi^{\pm}}_{p-\operatorname{air}}(E_0,x)/dx \propto x^{-1-\Delta} (1-x)^{\beta}$:

$$N_p^{\mu}(E_0) \propto E_0^{\alpha} \int_{x_{\min}}^1 dx \, x^{\alpha - 1 - \Delta} \, (1 - x)^{\beta}.$$

- largest contribution comes from $\langle x_{\pi} \rangle \simeq \frac{\alpha \Delta}{\alpha + \beta 1 \Delta} \sim 0.2$ (for $\Delta \simeq 0.3$, $\alpha \simeq 0.9$, $\beta \sim 4$)
- relevant $\langle x_{\pi} \rangle$ for π -air interactions follows similarly

Cross check the impact on N_{μ} ('splitting' pions with $x_E > x_0$)

• extreme changes (50% higher multiplicity): $\Delta N_{\mu}/N_{\mu} \lesssim 20\%$

Cross check the impact on N_{μ} ('splitting' pions with $x_E > x_0$)

extreme changes (50% higher multiplicity): ΔN_μ/N_μ ≤ 20%
main change of N_μ: for x_E ~ 0.1

Cross check the impact on N_{μ} ('splitting' pions with $x_E > x_0$)

• extreme changes (50% higher multiplicity): $\Delta N_{\mu}/N_{\mu} \leq 20\%$

- main change of N_{μ} : for $x_E \sim 0.1$
 - pion production at $x_{\rm F} \sim 0.1$: well measured at low energies
Interactions of pions: impact on X_{max} , X_{max}^{μ} & N_{μ}

Cross check the impact on N_{μ} ('splitting' pions with $x_E > x_0$)

• extreme changes (50% higher multiplicity): $\Delta N_{\mu}/N_{\mu} \lesssim 20\%$

- main change of N_{μ} : for $x_E \sim 0.1$
 - pion production at $x_{\rm F} \sim 0.1$: well measured at low energies
 - energy evolution: driven by the rise of gluon density in pion (yet reasonably constrained for $x_{\rm F} \sim 0.1$)

Gluon density in the pion

$G_{\pi}(x,q^2)$ - mostly constrained by the momentum sum rule

[de Téramond et al., arXiv: 2107.01231]

q^v_π(*x*,*q*²) - well constrained by Drell-Yan process studies

- but: uncertainties for $\langle x_g
 angle$ and $\langle x_{q_{
 m sea}}
 angle$
- $G_{\pi}(x,q^2)$ constrained by direct photon & J/ψ production studies
 - smallest uncertainties at $x \sim 0.1$
 - factor of 2 uncertainties at $x \sim 0.01$

Gluon density in the pion

$G_{\pi}(x,q^2)$ - mostly constrained by the momentum sum rule

[de Téramond et al., arXiv: 2107.01231]

 q^v_π(x,q²) - well constrained by Drell-Yan process studies

• but: uncertainties for $\langle x_g
angle$ and $\langle x_{q_{
m sea}}
angle$

• $G_{\pi}(x,q^2)$ - constrained by direct photon & J/ψ production studies

- smallest uncertainties at $x \sim 0.1$
- factor of 2 uncertainties at $x \sim 0.01$

Interactions of pions: impact on X_{max} , X_{max}^{μ} & N_{μ}

Interactions of pions: impact on X_{\max} , X_{\max}^{μ} & N_{μ}

• X_{max}^{μ} : pion interaction & decay rates become comparable

• $\sigma_{\pi-air}^{inel} \& \sigma_{\pi-air}^{diffr}$ impact the number of 'generations' (cascade steps) till that point

Interactions of pions: impact on X_{\max} , X_{\max}^{μ} & N_{μ}

• X_{\max}^{μ} : pion interaction & decay rates become comparable

- $\sigma_{\pi-air}^{inel} \& \sigma_{\pi-air}^{diffr}$ impact the number of 'generations' (cascade steps) till that point
- but: multiplicity controls the speed of pion energy decrease

Interactions of pions: impact on X_{\max} , X_{\max}^{μ} & N_{μ}

- pion production at 0.01 < x_F < 0.1: well measured at fixed target energies
- energy evolution: gluon density rise in pion
- $G_{\pi}(x,q^2)$: reasonably constrained for $0.01 < x_{\rm F} < 0.1$

How constraining are LHC data?

EAS predictions: rather similar for QGSJET-III & QGSJET-II

• variation of X_{\max}^p : $\leq 5 \text{ g/cm}^2$

• variation of
$$\sigma(X_{\max}^p)$$
: $\leq 1 \text{ g/cm}^2$

• variation of
$$X_{\max}^{\mu}$$
: $\leq 5 \text{ g/cm}^2$

• variation of
$$N_{\mu}$$
: $< 1\%$

▲ロ ▶ ▲圖 ▶ ▲ 圖 ▶ ▲ 圖 ▶ ● 圖 ● ���?

How constraining are LHC data?

EAS predictions: rather similar for QGSJET-III & QGSJET-II

- variation of X^p_{\max} : $\leq 5 \text{ g/cm}^2$
- variation of $\sigma(X^p_{\max})$: $\leq 1 \text{ g/cm}^2$
- variation of X_{\max}^{μ} : $\leq 5 \text{ g/cm}^2$
- variation of N_{μ} : < 1%
- all comparable to the QGSJET-III / QGSJET-II-04 differences

How constraining are LHC data?

EAS predictions: rather similar for QGSJET-III & QGSJET-II

• variation of X_{\max}^p : $\leq 5 \text{ g/cm}^2$

• variation of
$$\sigma(X^p_{\max})$$
: $\leq 1 \text{ g/cm}^2$

• variation of
$$X^{\mu}_{
m max}$$
: \leq 5 g/cm²

• variation of
$$N_{\mu}$$
: < 1%

 all comparable to the QGSJET-III / QGSJET-II-04 differences

Larger uncertainties related to diffraction [SO, PRD 89 (2014) 074009]

• up to +5/-10 g/cm² for X_{max}^p

• up to
$$\pm 3 \text{ g/cm}^2$$
 for $\sigma(X_{\max}^p)$

EAS predictions: rather similar for QGSJET-III & QGSJET-II

• variation of X_{\max}^p : $\leq 5 \text{ g/cm}^2$

- variation of $\sigma(X_{\max}^p)$: $\leq 1 \text{ g/cm}^2$
- variation of X_{\max}^{μ} : $\leq 5 \text{ g/cm}^2$
- variation of N_{μ} : < 1%
- all comparable to the QGSJET-III / QGSJET-II-04 differences

Another source of uncertainty: inelasticity for ND interactions

Gluon density in the pion: impact on EAS muon content

Gluon density in the pion: impact on EAS muon content

Let us try extreme changes: $\pm 30\%$ variation of $\langle x_{q_v} \rangle$

- $\bullet \ \Rightarrow \ {\rm large} \ {\rm variation} \ {\rm of} \ {\rm the} \ {\rm glue}$
- variation of N_{μ} : ~ $\pm 1\%$
- variation of X_{\max}^{μ} : up to $\pm 10 \text{ g/cm}^2$

Let us try extreme changes: $\pm 30\%$ variation of $\langle x_{q_v} \rangle$

- $\bullet \ \Rightarrow \ {\rm large} \ {\rm variation} \ {\rm of} \ {\rm the} \ {\rm glue}$
- variation of N_{μ} : $\sim \pm 1\%$
- variation of X_{\max}^{μ} : up to $\pm 10 \text{ g/cm}^2$
- → uncertainties related to π-air interactions: not really high

Gluon density in the pion: impact on EAS muon content

Let us try extreme changes: $\pm 30\%$ variation of $\langle x_{q_v} \rangle$

- $\bullet \ \Rightarrow \ {\rm large} \ {\rm variation} \ {\rm of} \ {\rm the} \ {\rm glue}$
- variation of N_{μ} : $\sim \pm 1\%$
- variation of X_{\max}^{μ} : up to $\pm 10 \text{ g/cm}^2$
- → uncertainties related to π-air interactions: not really high

Clearly, this study of model uncertainties is not comprehensive

 yet it demonstrates that there are good reasons for a stability of model predictions for EAS characteristics

Gluon density in the pion: impact on EAS muon content

Let us try extreme changes: $\pm 30\%$ variation of $\langle x_{q_v} \rangle$

- $\bullet \ \Rightarrow \ \mathsf{large} \ \mathsf{variation} \ \mathsf{of} \ \mathsf{the} \ \mathsf{glue}$
- variation of N_{μ} : $\sim \pm 1\%$
- variation of X^{μ}_{\max} : up to $\pm 10 \text{ g/cm}^2$
- → uncertainties related to π-air interactions: not really high

Clearly, this study of model uncertainties is not comprehensive

- yet it demonstrates that there are good reasons for a stability of model predictions for EAS characteristics
 - unless one employs approaches which are obviously wrong

UHECR composition: TA results [H. Sagawa, talk at ISVHECRI-2022]

 X_{max} & σ(X_{max}): consistent with pure protons / light mix (in the energy range characterized by sufficient statistics)

UHECR composition: TA results [H. Sagawa, talk at ISVHECRI-2022]

- X_{max} & σ(X_{max}): consistent with pure protons / light mix (in the energy range characterized by sufficient statistics)
- main question: can one exclude pure proton composition?

• NB: smaller model uncertainties implied by the current analysis

PAO analysis of UHECR composition & implications [JCAP 04 (2017) 038; arXiv: 2211.02857]

• (artificially) small $\sigma(X_{max})$: crucial for consistent interpretation

PAO analysis of UHECR composition & implications [JCAP 04 (2017) 038; arXiv: 2211.02857]

- (artificially) small $\sigma(X_{max})$: crucial for consistent interpretation
- alternative: higher elongation rate (deeper X_{max})
 - by how much?!

PAO data: what kind of interaction physics is required?

Adjustments to Model Predictions of Depth of Shower Maximum and Signals at Ground Level using Hybrid Events of the Pierre Auger Observatory

Jakub Vícha^{a,*} on behalf of the Pierre Auger^b Collaboration

• to be compatible with PAO data, X_{max} of QGSJET-II should be larger by $48 \pm 2^{+9}_{-12}$

PAO data: what kind of interaction physics is required?

<ロ> (四) (四) (三) (三)

Adjustments to Model Predictions of Depth of Shower Maximum and Signals at Ground Level using Hybrid Events of the Pierre Auger Observatory

Jakub Vícha^{a,*} on behalf of the Pierre Auger^b Collaboration

- to be compatible with PAO data, X_{max} of QGSJET-II should be larger by $48 \pm 2^{+9}_{-12}$
- is it feasible, having σ_{p-air}^{inel} fixed?

• what is the cost of this physics-wise?

PAO data: what kind of interaction physics is required?

• $\sigma_{p-\text{air}}^{\text{inel}}$, $\sigma_{A-\text{air}}^{\text{inel}}$, $\sigma_{\pi-\text{air}}^{\text{inel}}$ - all kept unchanged

- nonlinear effects & hard scattering switched off (K-factor=0, G_{PPP} = 0, K_{HT} = 0)
- production spectra frosen at 100 GeV lab.

Scaling model is dead since > 50 years

More important: LHCf data on forward neutrons - measure of K_{pp}^{inel}

• scaling: energy loss of leading nucleons is underestimated

Changing X_{max} implies equal or larger changes for X_{max}^{μ}

 any change of the primary interaction (σ^{inel}_{p-air}, σ^{diffr}_{p-air}, K^{inel}_{p-air}) impacts only the initial stage of EAS development

Changing X_{max} implies equal or larger changes for X_{max}^{μ}

- any change of the primary interaction $(\sigma_{p-\text{air}}^{\text{inel}}, \sigma_{p-\text{air}}^{\text{diffr}}, K_{p-\text{air}}^{\text{inel}})$ impacts only the initial stage of EAS development
- ⇒ parallel up/down shift of the cascade profile (same shape)

() < </p>

Э

Changing X_{max} implies equal or larger changes for X_{max}^{μ}

- any change of the primary interaction $(\sigma_{p-\text{air}}^{\text{inel}}, \sigma_{p-\text{air}}^{\text{diffr}}, K_{p-\text{air}}^{\text{inel}})$ impacts only the initial stage of EAS development
- ⇒ parallel up/down shift of the cascade profile (same shape)
- \Rightarrow same effect on X_{max} & X_{max}^{μ}

Changing X_{max} implies equal or larger changes for X_{max}^{μ}

- any change of the primary interaction $(\sigma_{p-\text{air}}^{\text{inel}}, \sigma_{p-\text{air}}^{\text{diffr}}, K_{p-\text{air}}^{\text{inel}})$ impacts only the initial stage of EAS development
- ⇒ parallel up/down shift of the cascade profile (same shape)
- \Rightarrow same effect on X_{\max} & X_{\max}^{μ}
- the corresponding physics change impacts also π-air interactions (at all the steps of the cascade)
 - \Rightarrow cumulative effect on X_{\max}^{μ}

Э

Measurement of muon density by the AMIGA detector of PAO [A. Aab et al., Eur. Phys. J. C 80 (2020) 751]

- energy-dependence: as predicted by the models
- but: normalization differs (by less than 3σ)

Measurement of muon density by the AMIGA detector of PAO [A. Aab et al., Eur. Phys. J. C 80 (2020) 751]

- energy-dependence: as predicted by the models
- but: normalization differs (by less than 3σ)
- is < 3σ discrepancy sufficient to expect barn-level BSM physics at LHC energies?!

Perhaps one 'makes an elephant out of a fly'?

NB: no 'muon deficit' seen by Ice-Top & KASCADE-Grande

Perhaps one 'makes an elephant out of a fly'?

Decreasing $\sigma(X_{max})$ (with small systematic errors) \Rightarrow many effects

- Fe-dominance at the end of the CR spectrum
- (very) hard injection spectra ($\gamma < 0$)
- hints toward Feynman scaling
Perhaps one 'makes an elephant out of a fly'?

Decreasing $\sigma(X_{\text{max}})$ (with small systematic errors) \Rightarrow many effects

• would they dissappear if systematic uncertainties were higher?

QGSJET-II/QGSJET-III: small differences for EAS properties

- stability of X_{max} predictions:
 - X_{\max} position governed by *p*-air interactions
 - LHC data seem to constrain enough the treatment of *p*-air

<日</th><</th><</th>

Summary

QGSJET-II/QGSJET-III: small differences for EAS properties

- stability of X_{max} predictions:
 - X_{max} position governed by *p*-air interactions
 - LHC data seem to constrain enough the treatment of p-air
- N_{μ} & X_{\max}^{μ} : governed by hadron production at $10^{-2} < x_E < 10^{-1}$
 - $10^{-2} < x_F < 10^{-1}$ well measured at fixed target energies

イロン イヨン イヨン ・

- energy evolution: gluon density rise in pion
- variations of $\langle x_g \rangle$: small impact on $N_{\mu} \& X_{\max}^{\mu}$

Summary

QGSJET-II/QGSJET-III: small differences for EAS properties

- stability of X_{max} predictions:
 - X_{max} position governed by *p*-air interactions
 - LHC data seem to constrain enough the treatment of p-air
- N_{μ} & $X^{\mu}_{\rm max}$: governed by hadron production at $10^{-2} < x_E < 10^{-1}$
 - $10^{-2} < x_F < 10^{-1}$ well measured at fixed target energies
 - energy evolution: gluon density rise in pion
 - variations of $\langle x_g \rangle$: small impact on N_{μ} & X_{\max}^{μ}
- Overall, the era of model development for EAS simulations seems to come to a successful finish...

Summary

QGSJET-II/QGSJET-III: small differences for EAS properties

- stability of X_{max} predictions:
 - X_{\max} position governed by *p*-air interactions
 - LHC data seem to constrain enough the treatment of p-air
- N_{μ} & $X^{\mu}_{\rm max}$: governed by hadron production at $10^{-2} < x_E < 10^{-1}$
 - $10^{-2} < x_{\rm F} < 10^{-1}$ well measured at fixed target energies
 - energy evolution: gluon density rise in pion
 - variations of $\langle x_g \rangle$: small impact on N_{μ} & X_{\max}^{μ}
- Overall, the era of model development for EAS simulations seems to come to a successful finish...
- Perhaps, it is the right time to critically re-access systematic uncertainties of UHECR measurements?

Extra slides

◆□ → ◆□ → ◆三 → ◆三 → ● ● ● ● ●

- high energies \Rightarrow high p_t parton production important
 - small $\alpha_s(p_t^2)$ compensated by infrared and collinear logs (arising from parton cascading): $\ln(x_i/x_{i+1})$, $\ln(p_{t_{i+1}}^2/p_{t_i}^2)$

- high energies \Rightarrow high p_t parton production important
 - small $\alpha_s(p_t^2)$ compensated by infrared and collinear logs (arising from parton cascading): $\ln(x_i/x_{i+1})$, $\ln(p_{t_{i+1}}^2/p_{t_i}^2)$

- high energies \Rightarrow high p_t parton production important
 - small $\alpha_s(p_t^2)$ compensated by infrared and collinear logs (arising from parton cascading): $\ln(x_i/x_{i+1})$, $\ln(p_{t_{i+1}}^2/p_{t_i}^2)$

- high energies \Rightarrow high $p_{\rm t}$ parton production important
 - small $\alpha_s(p_t^2)$ compensated by infrared and collinear logs (arising from parton cascading): $\ln(x_i/x_{i+1})$, $\ln(p_{t_{i+1}}^2/p_{t_i}^2)$

- high energies \Rightarrow high $p_{\rm t}$ parton production important
 - small $\alpha_s(p_t^2)$ compensated by infrared and collinear logs (arising from parton cascading): $\ln(x_i/x_{i+1})$, $\ln(p_{t_{i+1}}^2/p_{t_i}^2)$

- high energies \Rightarrow high $p_{\rm t}$ parton production important
 - small $\alpha_s(p_t^2)$ compensated by infrared and collinear logs (arising from parton cascading): $\ln(x_i/x_{i+1})$, $\ln(p_{t_{i+1}}^2/p_{t_i}^2)$

General pathology of the SIBYLL model parton cascade completely neglected • minijet contribution \equiv hardest gg-scattering (high p_t & small x) eccee high pt low x • \Rightarrow weak impact on $K_{n-\operatorname{air}}^{\operatorname{inel}} \Rightarrow$ on X_{\max} • wrong from 1st priciples: it is the parton cascade that enhances hard scattering (producing large $p_t \& x \log x$)

• high energies \Rightarrow high $p_{\rm t}$ parton production important

• small $\alpha_s(p_t^2)$ - compensated by infrared and collinear logs (arising from parton cascading): $\ln(x_i/x_{i+1})$, $\ln(p_{t_{i+1}}^2/p_{t_i}^2)$

General pathology of the SIBYLL model

- parton cascade completely neglected
- minijet contribution \equiv hardest gg-scattering (high p_t & small x)
 - \Rightarrow weak impact on $K_{p-\mathrm{air}}^{\mathrm{inel}} \Rightarrow$ on X_{max}
- wrong from 1st priciples: it is the parton cascade that enhances hard scattering (producing large pt & x logs)
- at variance with LHC data on $dN_{pp}^{ch}/d\eta$

Energy-dependence of (anti)nucleon production

 π^-N : (anti)nucleon production in QGSJET-III & EPOS-LHC

 artificial 'hardening' of the baryon yield with energy in EPOS: no viable theoretical mechanism

Energy-dependence of (anti)nucleon production

 $\pi^- N$: (anti)nucleon production in QGSJET-III & EPOS-LHC

- artificial 'hardening' of the baryon yield with energy in EPOS: no viable theoretical mechanism
- violation of the isospin invariance obviously wrong (yields of $p + \bar{p} \& n + \bar{n}$ should coincide)

Pion exchange process in π -air: important for N_{μ} predictions (due to forward ρ production) [SO, EPJ Web Conf. 52 (2013) 02001]

- $\sim 20\%$ higher N_{μ} (> 1 GeV) (relative to QGSJET-II-03)
- the enhancement weakly depends on *E*₀
- nearly same N_{μ} excess up to $E_{\mu} \sim 100 \ {\rm GeV}$

∂ ► < ∃

Technical improvement in QGSJET-III: pion exchange

Pion exchange process in π -air: important for N_{μ} predictions (due to forward ρ production) [SO, EPJ Web Conf. 52 (2013) 02001]

- $\sim 20\%$ higher N_{μ} (> 1 GeV) (relative to QGSJET-II-03)
- the enhancement weakly depends on *E*₀
- nearly same N_{μ} excess up to $E_{\mu} \sim 100~{\rm GeV}$

Check/tune the mechanism with forward neutron production in pp?

- Born cross section for π-exchange well known [e.g. Kaidalov et al., EPJC 47 (2006) 385]
- main challenge: absorptive corrections
 - \Rightarrow energy-dependence!

π -exchange process in pion-nucleus collisions

Energy-dependence of ρ^0 production in $\pi^- N$ collisions

$\sigma(X_{\text{max}})$ is very robust theoretically

[Aloisio, Berezinsky, Blasi & SO, PRD 77 (2008) 025007; SO, AdSR 64 (2019) 2445]

$\sigma(X_{\text{max}})$ is very robust theoretically

[Aloisio, Berezinsky, Blasi & SO, PRD 77 (2008) 025007; SO, AdSR 64 (2019) 2445]

Two extreme scenarios for nuclear break-up \Rightarrow factor 2 difference for $\sigma(X_{max})$ [Kalmykov & SO, Phys.At.Nucl. 56 (1993) 346]

- Complete break up of nuclear spectator part (into separate nucleons)
 ⇒ smallest RMS(X_{max})
- ② no break up (single secondary fragment)
 ⇒ largest RMS(X_{max})

$\sigma(X_{\text{max}})$ is very robust theoretically

[Aloisio, Berezinsky, Blasi & SO, PRD 77 (2008) 025007; SO, AdSR 64 (2019) 2445]

Two extreme scenarios for nuclear break-up \Rightarrow factor 2 difference for $\sigma(X_{max})$ [Kalmykov & SO, Phys.At.Nucl. 56 (1993) 346]

- Complete break up of nuclear spectator part (into separate nucleons)
 ⇒ smallest RMS(X_{max})
- o break up (single secondary fragment)
 ⇒ largest RMS(X_{max})
 - EPOS results: close to the full break up option

Caused by incorrect matching between the interaction and nuclear fragmentation procedures in EPOS