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Indirect detection ⇒ depends on the accuracy of EAS modeling

experimental analyses of CR composition:
crucially rely on predictions of hadronic interaction models

e.g. ’tuning’ such models with EAS data = diletant dream

how much one can trust such interaction models?

can one quantify the range of uncertainty for their predictions?

uncertainties may be smaller/larger than the spread of model
predictions (some/all models may be wrong)



QGSJET-III & its EAS results [SO, Phys.At.Nucl. 84 (2021) 1017; arXiv: 2208.05889]

General purpose MC generators necessarily involve both
perturbative (pt > Q0) & nonperturbative physics

Q2
0-cutoff - just a border between the respective treatments

(minimal parton virtuality for pQCD being applicable)

in principle, should be a technical parameter
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General purpose MC generators necessarily involve both
perturbative (pt > Q0) & nonperturbative physics

Q2
0-cutoff - just a border between the respective treatments

(minimal parton virtuality for pQCD being applicable)

in principle, should be a technical parameter

but: choice of Q2
0 impacts strongly the predictions

(e.g. for σtot/inel
pp or for Nch

pp)

(mini)jet production explodes at small pt

but: soft physics knows nothing about this cutoff

⇒ there should be a perturbative mechanism damping jet
production in the small pt limit
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All current MC generators: using leading twist QCD factorization

σjet
pp = ∑

I ,J=g,q,q̄

fI/p⊗σ2→2
IJ ⊗ fJ/p

involves 2→ 2 Born cross section for parton scattering (LO)

1 projectile parton interacts with 1 target parton
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Implementation in QGSJET-III [SO & Bleicher, Universe 5 (2019) 106]

strong damping of hard scattering in the small pt limit

⇒ drastic reduction of the Q0-dependence

single adjustable parameter KHT (overall normalization)



QGSJET-III & its EAS results [SO, Phys.At.Nucl. 84 (2021) 1017; arXiv: 2208.05889]

Higher twist corrections: coherent rescattering on soft gluons
[Qiu & Vitev, PRL 93 (2004) 262301; PLB 632 (2006) 507]

hard scattering involves additional
virtual gluon pairs

⇒ A-enhanced jet suppression
at low pt & low x in pA

q

x p

k
x x| |

k k1 2 3

...
bb

A

p

Implementation in QGSJET-III [SO & Bleicher, Universe 5 (2019) 106]

strong damping of hard scattering in the small pt limit

⇒ drastic reduction of the Q0-dependence

single adjustable parameter KHT (overall normalization)

Additionally - technical improvement: pion exchange process
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EAS predictions: rather similar for QGSJET-III & QGSJET-II

700

750

800

850

10
17

10
18

10
19

10
20

 E 0  (eV)

 X
m

a
x (

g
/c

m
2 ) 

 QGSJET-III-03
 QGSJET-II-04  p 

Xmax: ≤ 5 g/cm2 difference
to QGSJET-II-04

Xµ
max: < 5 g/cm2 difference

≃ 1% difference for Nµ



QGSJET-III & its EAS results [SO, Phys.At.Nucl. 84 (2021) 1017; arXiv: 2208.05889]

EAS predictions: rather similar for QGSJET-III & QGSJET-II

700

750

800

850

10
17

10
18

10
19

10
20

 E 0  (eV)

 X
m

a
x (

g
/c

m
2 ) 

 QGSJET-III-03
 QGSJET-II-04  p 

Xmax: ≤ 5 g/cm2 difference
to QGSJET-II-04

Xµ
max: < 5 g/cm2 difference

≃ 1% difference for Nµ

What is the reason for the stability of EAS predictions?!

EAS predictions sufficiently constrained by accelerator data?



QGSJET-III & its EAS results [SO, Phys.At.Nucl. 84 (2021) 1017; arXiv: 2208.05889]

EAS predictions: rather similar for QGSJET-III & QGSJET-II

700

750

800

850

10
17

10
18

10
19

10
20

 E 0  (eV)

 X
m

a
x (

g
/c

m
2 ) 

 QGSJET-III-03
 QGSJET-II-04  p 

Xmax: ≤ 5 g/cm2 difference
to QGSJET-II-04

Xµ
max: < 5 g/cm2 difference

≃ 1% difference for Nµ

What is the reason for the stability of EAS predictions?!

EAS predictions sufficiently constrained by accelerator data?

or a mere consequence of a particular model approach?

some important physics is missing in the model?
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EAS predictions: rather similar for QGSJET-III & QGSJET-II
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Xmax: ≤ 5 g/cm2 difference
to QGSJET-II-04

Xµ
max: < 5 g/cm2 difference

≃ 1% difference for Nµ

SIBYLL & EPOS-LHC: of little help [SO, arXiv: 2208.05889; extra slides]

EAS predictions: biased by serious deficiences of those models



Main sources of model uncertainties for EAS predictions?

EAS profile: main impact - from the primary CR interaction

σ(Xmax): smallest uncertainties

σp(Xmax): mostly from σinel
p−air

(constrained by data on σtot/el
pp )

uncertainties due to diffractive
interactions: < 3 g/cm2

[SO, PRD 89 (2014) 074009]

σA(Xmax): from collision
geometry & nuclear breakup
[SO, AdSR 64 (2019) 2445]
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Main sources of model uncertainties for EAS predictions?

EAS profile: main impact - from the primary CR interaction

σ(Xmax): smallest uncertainties

σp(Xmax): mostly from σinel
p−air

(constrained by data on σtot/el
pp )

uncertainties due to diffractive
interactions: < 3 g/cm2

[SO, PRD 89 (2014) 074009]

σA(Xmax): from collision
geometry & nuclear breakup
[SO, AdSR 64 (2019) 2445]

〈Xmax〉: also from σinel
p−air & σdiffr

p−air

but: importance of the
’inelasticity’ K inel

p−air = 1−E′
lead/E0

π−air interactions: small impact on 〈Xmax〉
Nµ & Xµ

max: potentially highest uncertainties

depend on the whole cascade history ⇒ on π-air interactions



Interactions of pions: impact on Xmax, Xµ
max & Nµ

π+ spectrum for π+−14N collisions at 1 PeV
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Interactions of pions: impact on Xmax, Xµ
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Let us change production spectra of pions for all π-air collisions
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NB: fraction of energy going into π0s remains unchanged!

e.g. for x0 close to 1: only diffraction affected

for x0 → 0: 50% higher multiplicity & much softer spectra



Interactions of pions: impact on Xmax, Xµ
max & Nµ

Impact on Xmax (’splitting’ pions with xE > x0)
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miserable dependence on pion diffraction (∆Xmax≃ 1 g/cm2)

even for extreme changes (x0 → 0): ∆Xmax<∼ 5 g/cm2

⇒ Xmax is strongly dominated by p-air interactions



Interactions of pions: impact on Xmax, Xµ
max & Nµ

What about Nµ? Let us neglect contributions of kaons &
(anti)baryons to the hadronic cascade:

Nµ
p(E0) ≃

Z

dx
dNπ±

p−air(E0,x)

dx
Nµ

π±(xE0).



Interactions of pions: impact on Xmax, Xµ
max & Nµ

What about Nµ? Let us neglect contributions of kaons &
(anti)baryons to the hadronic cascade:

Nµ
p(E0) ≃

Z

dx
dNπ±

p−air(E0,x)

dx
Nµ

π±(xE0).

with Nµ
π±(x,E) ∝ Eα , dNπ±

p−air(E0,x)/dx ∝ x−1−∆ (1−x)β:

Nµ
p(E0) ∝ Eα

0

Z 1

xmin

dx xα−1−∆ (1−x)β.



Interactions of pions: impact on Xmax, Xµ
max & Nµ

What about Nµ? Let us neglect contributions of kaons &
(anti)baryons to the hadronic cascade:

Nµ
p(E0) ≃

Z

dx
dNπ±

p−air(E0,x)

dx
Nµ

π±(xE0).

with Nµ
π±(x,E) ∝ Eα , dNπ±

p−air(E0,x)/dx ∝ x−1−∆ (1−x)β:

Nµ
p(E0) ∝ Eα

0

Z 1

xmin

dx xα−1−∆ (1−x)β.

largest contribution comes from 〈xπ〉 ≃ α−∆
α+β−1−∆ ∼ 0.2

(for ∆ ≃ 0.3, α ≃ 0.9, β ∼ 4)

relevant 〈xπ〉 for π-air interactions follows similarly



Interactions of pions: impact on Xmax, Xµ
max & Nµ

Cross check the impact on Nµ (’splitting’ pions with xE > x0)
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extreme changes (50% higher multiplicity): ∆Nµ/Nµ <∼ 20%

main change of Nµ: for xE ∼ 0.1
pion production at xF ∼ 0.1: well measured at low energies

energy evolution: driven by the rise of gluon density in pion
(yet reasonably constrained for xF ∼ 0.1)



Gluon density in the pion

Gπ(x,q2) - mostly constrained by the momentum sum rule

[de Téramond et al., arXiv: 2107.01231]

qv
π(x,q

2) - well constrained
by Drell-Yan process studies

but: uncertainties for
〈xg〉 and 〈xqsea〉

Gπ(x,q2) - constrained by
direct photon & J/ψ
production studies

smallest uncertainties at
x∼ 0.1

factor of 2 uncertainties
at x∼ 0.01
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(cascade steps) till that point
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pion diffraction
is irrelevant

main change for
0.01< xE < 0.1

why?

Xµ
max: pion interaction & decay rates become comparable

σinel
π−air & σdiffr

π−air impact the number of ’generations’
(cascade steps) till that point

but: multiplicity controls the speed of pion energy decrease
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Impact on Xµ
max (’splitting’ pions with xE > x0)
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pion diffraction
is irrelevant

main change for
0.01< xE < 0.1

why?

pion production at 0.01< xF < 0.1:
well measured at fixed target energies

energy evolution: gluon density rise in pion

Gπ(x,q2): reasonably constrained for 0.01< xF < 0.1



How constraining are LHC data?

σtot/el/inel
pp (s): varying the strength of higher twist effects by ±30%
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How constraining are LHC data?

dNch
pp/dη in QGSJET-III & for ±30% variation of KHT
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How constraining are LHC data?

EAS predictions: rather similar for QGSJET-III & QGSJET-II
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Larger uncertainties related to diffraction [SO, PRD 89 (2014) 074009]

up to +5/-10 g/cm2
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up to ±3 g/cm2 for
σ(Xp

max)
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EAS predictions: rather similar for QGSJET-III & QGSJET-II
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variation of Nµ: < 1%

all comparable to the QGSJET-III

/ QGSJET-II-04 differences

Another source of uncertainty: inelasticity for ND interactions



Gluon density in the pion: impact on EAS muon content

Let us try extreme changes: ±30% variation of 〈xqv〉
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Let us try extreme changes: ±30% variation of 〈xqv〉
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 Q2 = 2 GeV2 

⇒ large variation of the glue

variation of Nµ: ∼±1%

variation of Xµ
max: up to ±10 g/cm2

⇒ uncertainties related to π-air
interactions: not really high

Clearly, this study of model uncertainties is not comprehensive

yet it demonstrates that there are good reasons for a stability
of model predictions for EAS characteristics

unless one employs approaches which are obviously wrong
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Xmax & σ(Xmax): consistent with pure protons / light mix
(in the energy range characterized by sufficient statistics)



UHECR composition: TA results [H. Sagawa, talk at ISVHECRI-2022]

TA data allow a consistent interpretation of Xmax & σ(Xmax)

Xmax & σ(Xmax): consistent with pure protons / light mix
(in the energy range characterized by sufficient statistics)

main question: can one exclude pure proton composition?

NB: smaller model uncertainties implied by the current analysis



PAO analysis of UHECR composition & implications
[JCAP 04 (2017) 038; arXiv: 2211.02857]

Xmax-data: interpreted with EPOS-LHC, despite its wrong σ(Xmax)

(artificially) small σ(Xmax): crucial for consistent interpretation



PAO analysis of UHECR composition & implications
[JCAP 04 (2017) 038; arXiv: 2211.02857]

Xmax-data: interpreted with EPOS-LHC, despite its wrong σ(Xmax)

(artificially) small σ(Xmax): crucial for consistent interpretation

alternative: higher elongation rate (deeper Xmax)

by how much?!



PAO data: what kind of interaction physics is required?

to be compatible with PAO data,
Xmax of QGSJET-II should be larger by 48±2+9

−12



PAO data: what kind of interaction physics is required?

to be compatible with PAO data,
Xmax of QGSJET-II should be larger by 48±2+9

−12

is it feasible, having σinel
p−air fixed?

what is the cost of this physics-wise?



PAO data: what kind of interaction physics is required?

Extreme case - Feynman scaling: same σ(Xmax), much deeper Xmax
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Scaling model is dead since > 50 years

Since it misses the observed rise of the ’rapidity plato’ dNch
pp/dη
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Scaling model is dead since > 50 years

More important: LHCf data on forward neutrons - measure of K inel
pp

0

0.05

0.1

0.15

x 10
-2

 dσ
/dE

, m
b/G

eV

 p+p at 13 TeV c.m. → n    
 η > 10.75   

 QGSJET-III-03
 scaling

10.06 < η < 10.75    9.65 < η < 10.06   

0

0.2

0.4

0.6

0.8

x 10
-3

2000 4000 6000
 E, GeV

 dσ
/dE

, m
b/G

eV 8.99 < η < 9.21    

2000 4000 6000
 E, GeV

8.80 < η < 8.99   

2000 4000 6000
 E, GeV

8.65 < η < 8.80    

scaling: energy loss of leading nucleons is underestimated



Most general warning for ’deep Xmax dreamers’

Changing Xmax implies equal or larger changes for Xµ
max
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impacts only the initial stage of EAS development
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Most general warning for ’deep Xmax dreamers’

Changing Xmax implies equal or larger changes for Xµ
max

any change of the primary interaction (σinel
p−air, σdiffr

p−air, K inel
p−air)

impacts only the initial stage of EAS development

⇒ parallel up/down shift of the
cascade profile (same shape)

⇒ same effect on Xmax & Xµ
max

the corresponding physics change
impacts also π-air interactions
(at all the steps of the cascade)

⇒ cumulative effect on Xµ
max



Most general warning for ’deep Xmax dreamers’

Changing Xmax implies equal or larger changes for Xµ
max

400

500

600

700

800

10
20

 E 0  (eV)

 X
µm

a
x  
(g

/c
m

2 ) 

 QGSJET-II-04
 scaling  p

 Fe

 p

 Fe

e.g. using Feynman scaling:
UHECRs are transuraniums



Perhaps one ’makes an elephant out of a fly’?

Measurement of muon density by the AMIGA detector of PAO
[A. Aab et al., Eur. Phys. J. C 80 (2020) 751]

energy-dependence: as
predicted by the models

but: normalization
differs (by less than 3σ)



Perhaps one ’makes an elephant out of a fly’?

Measurement of muon density by the AMIGA detector of PAO
[A. Aab et al., Eur. Phys. J. C 80 (2020) 751]

energy-dependence: as
predicted by the models

but: normalization
differs (by less than 3σ)

is < 3σ discrepancy
sufficient to expect
barn-level BSM physics
at LHC energies?!



Perhaps one ’makes an elephant out of a fly’?

NB: no ’muon deficit’ seen by Ice-Top & KASCADE-Grande



Perhaps one ’makes an elephant out of a fly’?

Decreasing σ(Xmax) (with small systematic errors) ⇒ many effects

Fe-dominance at the
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(very) hard injection
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scaling



Perhaps one ’makes an elephant out of a fly’?

Decreasing σ(Xmax) (with small systematic errors) ⇒ many effects

Fe-dominance at the
end of the CR spectrum

(very) hard injection
spectra (γ< 0)

hints toward Feynman
scaling

would they dissappear if systematic uncertainties were higher?
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Summary

1 QGSJET-II/QGSJET-III: small differences for EAS properties

stability of Xmax predictions:

Xmax position governed by p-air interactions

LHC data seem to constrain enough the treatment of p-air

Nµ & Xµ
max: governed by hadron production at 10−2 < xE < 10−1

10−2 < xF < 10−1 - well measured at fixed target energies

energy evolution: gluon density rise in pion

variations of 〈xg〉: small impact on Nµ & Xµ
max

2 Overall, the era of model development for EAS simualtions
seems to come to a successful finish...

3 Perhaps, it is the right time to critically re-access systematic
uncertainties of UHECR measurements?
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high energies ⇒ high pt parton production important
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small αs(p2
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/p2
ti )

Why (mini)jet production is important for EAS predictions?

hadron jets: typically produced in
central region (y∼ 0) in c.m.s.

small impact on forward spectra

but: hardest scattering preceeded by
parton cascade (smaller pt & higher x)

⇒ most important are first (’softest’)
partons in the cascade

tlower p , higher x

higher p , lower xt
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Hard scattering: importance of the parton cascade

high energies ⇒ high pt parton production important

small αs(p2
t ) - compensated by infrared and collinear logs

(arising from parton cascading): ln(xi/xi+1), ln(p2
ti+1

/p2
ti )

General pathology of the SIBYLL model

parton cascade completely neglected

minijet contribution ≡ hardest
gg-scattering (high pt & small x)

⇒ weak impact on K inel
p−air ⇒ on Xmax

wrong from 1st priciples: it is the parton
cascade that enhances hard scattering
(producing large pt & x logs)

at variance with LHC data on dNch
pp/dη
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Energy-dependence of (anti)nucleon production

π−N : (anti)nucleon production in QGSJET-III & EPOS-LHC
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no viable theoretical mechanism
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π−N : (anti)nucleon production in QGSJET-III & EPOS-LHC
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artificial ’hardening’ of the baryon yield with energy in EPOS:
no viable theoretical mechanism

violation of the isospin invariance - obviously wrong
(yields of p+ p̄ & n+ n̄ should coincide)



Technical improvement in QGSJET-III: pion exchange

Pion exchange process in π-air: important for Nµ predictions
(due to forward ρ production) [SO, EPJ Web Conf. 52 (2013) 02001]
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Technical improvement in QGSJET-III: pion exchange
Pion exchange process in π-air: important for Nµ predictions
(due to forward ρ production) [SO, EPJ Web Conf. 52 (2013) 02001]
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Nµ (> 10 GeV)

Nµ (> 100 GeV)

 p-induced EAS ∼ 20% higher Nµ (> 1 GeV)
(relative to QGSJET-II-03)

the enhancement weakly
depends on E0

nearly same Nµ excess up to
Eµ ∼ 100 GeV

Check/tune the mechanism with forward neutron production in pp?

Born cross section for π-exchange - well
known [e.g. Kaidalov et al., EPJC 47 (2006) 385]

main challenge: absorptive corrections

⇒ energy-dependence!
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π-exchange process in pion-nucleus collisions

Energy-dependence of ρ0 production in π−N collisions

10
-1

0 0.5
 xE

 x
E
 d

n
/d

x E

 π-+N → ρ0 (102 GeV)  

 QGSJET-III-03

all

π-exchange

0 0.5
 xE

 π-+N → ρ0 (104 GeV)  

 QGSJET-III-03

all

π-exchange

0 0.5
 xE

 π-+N → ρ0 (106 GeV)  

 QGSJET-III-03

all

π-exchange

forward ρ0 yield: dominated by π-exchange process

higher energies: absorptive corrections damp the π-exchange
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forward ρ0 yield: dominated by π-exchange process

higher energies: absorptive corrections damp the π-exchange

ρ0 production in SIBYLL-2.3 & EPOS-LHC (102, 104 & 106 GeV)
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σ(Xmax) is very robust theoretically
[Aloisio, Berezinsky, Blasi & SO, PRD 77 (2008) 025007; SO, AdSR 64 (2019) 2445]

But: small σ(Xmax) of EPOS for A-induced EAS?!
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σ(Xmax) is very robust theoretically
[Aloisio, Berezinsky, Blasi & SO, PRD 77 (2008) 025007; SO, AdSR 64 (2019) 2445]

Two extreme scenarios for nuclear break-up ⇒ factor 2 difference
for σ(Xmax) [Kalmykov & SO, Phys.At.Nucl. 56 (1993) 346]

1 complete break up of
nuclear spectator part
(into separate nucleons)
⇒ smallest RMS(Xmax)

2 no break up (single
secondary fragment)
⇒ largest RMS(Xmax)
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σ(Xmax) is very robust theoretically
[Aloisio, Berezinsky, Blasi & SO, PRD 77 (2008) 025007; SO, AdSR 64 (2019) 2445]

Two extreme scenarios for nuclear break-up ⇒ factor 2 difference
for σ(Xmax) [Kalmykov & SO, Phys.At.Nucl. 56 (1993) 346]

1 complete break up of
nuclear spectator part
(into separate nucleons)
⇒ smallest RMS(Xmax)

2 no break up (single
secondary fragment)
⇒ largest RMS(Xmax)

EPOS results: close to
the full break up option
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Caused by incorrect matching between the interaction and nuclear
fragmentation procedures in EPOS


