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Cosmic ray studies with Extensive Air Shower technique

Indirect detection = depends on the accuracy of EAS modeling

@ experimental analyses of CR composition:
crucially rely on predictions of hadronic interaction models

@ e.g. 'tuning’ such models with EAS data = diletant dream

@ how much one can trust such interaction models?

@ can one quantify the range of uncertainty for their predictions?

@ uncertainties may be smaller/larger than the spread of model
predictions (some/all models may be wrong)
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QGSJET-IIl & its EAS results [SO, Phys.At.Nucl. 84 (2021) 1017; arXiv: 2208.05889]

@ General purpose MC generators necessarily involve both
perturbative (p; > Qo) & nonperturbative physics

° Q(Z)—cutoff - just a border between the respective treatments
(minimal parton virtuality for pQCD being applicable)

@ in principle, should be a technical parameter
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@ General purpose MC generators necessarily involve both
perturbative (p; > Qo) & nonperturbative physics

9 Q%—cutoff - just a border between the respective treatments
(minimal parton virtuality for pQCD being applicable)

@ in principle, should be a technical parameter

@ but: choice of Q% impacts strongly the predictions
(e.g. for ot)og/mel or for NSE)

@ (mini)jet production explodes at small py

@ but: soft physics knows nothing about this cutoff

@ = there should be a perturbative mechanism damping jet
production in the small p; limit



QGSJET-IIl & its EAS results [SO, Phys.At.Nucl. 84 (2021) 1017; arXiv: 2208.05889]

All current MC generators: using leading twist QCD factorization

jet 2—2
o= fipeoy ef,
1,J=0,0,q

@ involves 2 — 2 Born cross section for parton scattering (LO)

o 1 projectile parton interacts with 1 target parton
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All current MC generators: using leading twist QCD factorization

jet __ 2—2
Opp= > fip®0i @y
I 7‘]:g7q7q

@ involves 2 — 2 Born cross section for parton scattering (LO)

o 1 projectile parton interacts with 1 target parton

@ but: this is expected to break down at (moderately) small p

Higher twist corrections: coherent rescattering on soft gluons

[Qiu & Vitev, PRL 93 (2004) 262301; PLB 632 (2006) 507]
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Higher twist corrections: coherent rescattering on soft gluons
[Qiu & Vitev, PRL 93 (2004) 262301; PLB 632 (2006) 507]

A
EEEE’
@ hard scattering involves additional

virtual gluon pairs

@ = A-enhanced jet suppression
at low p; & low X in pA

Implementation in QGSJET-III [SO & Bleicher, Universe 5 (2019) 106]
@ strong damping of hard scattering in the small p; limit

e = drastic reduction of the Qg-dependence

@ single adjustable parameter Kyt (overall normalization)
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Higher twist corrections: coherent rescattering on soft gluons
[Qiu & Vitev, PRL 93 (2004) 262301; PLB 632 (2006) 507]

EEEE’
@ hard scattering involves additional

virtual gluon pairs

@ = A-enhanced jet suppression
at low p; & low X in pA

Implementation in QGSJET-IIl [SO & Bleicher, Universe 5 (2019) 106]

@ strong damping of hard scattering in the small p; limit

@ = drastic reduction of the Qg-dependence

@ single adjustable parameter Kyt (overall normalization)

Additionally - technical improvement: pion exchange process




QGSJET-IIl & its EAS results [SO, Phys.At.Nucl. 84 (2021) 1017; arXiv: 2208.05889]

EAS predictions: rather similar for QGSJET-III & QGSJET-II
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o Xhax <5 g/cm? difference
o ~ 1% difference for Ny
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EAS predictions: rather similar for QGSJET-III & QGSJET-II
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What is the reason for the stability of EAS predictions?!

@ EAS predictions sufficiently constrained by accelerator data?
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EAS predictions: rather similar for QGSJET-III & QGSJET-II
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What is the reason for the stability of EAS predictions?!

@ EAS predictions sufficiently constrained by accelerator data?

@ or a mere consequence of a particular model approach?

o some important physics is missing in the model?




QGSJET-IIl & its EAS results [SO, Phys.At.Nucl. 84 (2021) 1017; arXiv: 2208.05889]

EAS predictions: rather similar for QGSJET-III & QGSJET-II

850 [ — QGSJET-II-03
o QGSJET-11-04

X (@)

800
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700 |- &5

@ Xmax <5 g/cm2 difference
to QGSJET-II1-04

o Xhax <5 g/cm? difference
o ~ 1% difference for Ny

SIBYLL & EPOS-LHC: of little help [SO, arXiv: 2208.05889; extra slides]

@ EAS predictions: biased by serious deficiences of those models




Main sources of model uncertainties for EAS predictions?

EAS profile: main impact - from the primary CR interaction
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Main sources of model uncertainties for EAS predictions?

EAS profile: main impact - from the primary CR interaction
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Main sources of model uncertainties for EAS predictions?

EAS profile: main impact - from the primary CR interaction

@ 0(Xmax): smallest uncertainties

inel
p—air

(constrained by data on Gkog/el) i I ‘

9 Op(Xmax): mostly from o

showersize Ne
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@ TI— air interactions: small impact on (Xmax)




Main sources of model uncertainties for EAS predictions?

EAS profile: main impact - from the primary CR interaction

@ 0(Xmax): smallest uncertainties

inel

p—air sovetsize N
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N, & Xhax potentially highest uncertainties

@ depend on the whole cascade history = on Trair interactions



Interactions of pions: impact on Xmax, XH ox & Ny

Tt" spectrum for 10 —1*N collisions at 1 PeV

P 10 = X 10 E
< - m+NatlPeV- i 2 - w+Nat1PeV- T
o L o L
e L GSJET-11-04 w L
ol T EEED BROSTLHE <
SIBYLL-23¢ | e
1t 1B
il cen Y, =il
10 | e 10
Lo v b b v b by ool ol L
0 0.2 0.4 0.6 0.8 1 107 10
Xg Xe
@ strong model dependence for xg > 0.5
(diffraction & scaling violations)
@ smallest model differences at xg ~ 0.1




Interactions of pions: impact on Xmax, XH ox & Ny

Let us change production spectra of pions for all Teair collisions

T+N at 1 PeV- 10

Xe dn/dx.
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o 'splitting’ each 10, T with Xg > X into two (with 1/2 energy)

o NB: fraction of energy going into T s remains unchanged!

@ e.g. for Xg close to 1: only diffraction affected




Interactions of pions: impact on Xmax, XH ox & Ny

Let us change production spectra of pions for all Trair collisions

m'+N at 1 PeV-. Tt

X dn/dlx.
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o 'splitting’ each 105, TO with Xg > Xg into two (with 1/2 energy)
o NB: fraction of energy going into T s remains unchanged!

@ e.g. for Xg close to 1: only diffraction affected

@ for Xg — 0: 50% higher multiplicity & much softer spectra
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Interactions of pions: impact on Xmax, XH ox & Ny

Impact on Xmax ('splitting’ pions with Xg > Xg)

g f 9
g - p-induced EAS (=10 eV)
X | QGSJET-II-04/EPOS-LHC/SIBYLL-2.3d
><E B
< o0

_10 — | \\\\\\\‘_ | \\\\\\\‘_ | |
1073 1072 107" 1

%o

@ miserable dependence on pion diffraction (AXmax~ 1 g/cmz)
@ even for extreme changes (Xo — 0): AXax <5 g/cm?

@ = Xmax is strongly dominated by p-air interactions

-



Interactions of pions: impact on Xmax, XH ox & Ny

@ What about N7 Let us neglect contributions of kaons &
(anti)baryons to the hadronic cascade:

AN (Eo,
B(Ep) ~ /d pa” 0X) N, (x Eo).



Interactions of pions: impact on Xmax, XH ox & Ny

@ What about N7 Let us neglect contributions of kaons &
(anti)baryons to the hadronic cascade:

dN™ E,
EO /d p—air 0 )N%(XEO)

o with N& (x,E) DEY, dNT; (Eo,x)/dx 0 x 12 (1 — x)P:

p—air

1
N (Eo) O E§ o dx ¥ 12 (1—-x)P.



Interactions of pions: impact on Xmax, XH ox & Ny

@ What about N7 Let us neglect contributions of kaons &
(anti)baryons to the hadronic cascade:

AN (Eo,
B(Ep) ~ /d e 0 )N;;(xEO).

o with N& (x,E) DEY, dNT; (Eo,x)/dx 0 x 12 (1 — x)P:

p—air

1
N (Eo) O E§ o dx ¥ 12 (1—-x)P.

@ largest contribution comes from (Xp) ~ u+% £ - ~02
(for A~0.3, a~0.9, B~4)

@ relevant (X;) for Trair interactions follows similarly



Interactions of pions: impact on Xmax, XH ox & Ny

Cross check the impact on Ny, ('splitting’ pions with Xg > Xo)

- p-induced EAS (E=10"° eV)
0.3 [ QGSJIET-1I-04/EPOS-LHC/SIBYLL-2.3¢

01 L Ll Lol
1073 1072 10" 1

@ extreme changes (50% higher multiplicity): AN,/N, < 20%
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Cross check the impact on Ny, ('splitting’ pions with Xg > Xo)

- p-induced EAS (E=10"° eV)
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@ extreme changes (50% higher multiplicity): AN,/N, < 20%
@ main change of N;: for xg ~ 0.1




Interactions of pions: impact on Xmax, XH ox & Ny

Cross check the impact on Ny, ('splitting’ pions with Xg > Xo)

- p-induced EAS (E=10"° eV)
0.3 [ QGSJIET-1I-04/EPOS-LHC/SIBYLL-2.3¢
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@ extreme changes (50% higher multiplicity): AN,/N, < 20%
@ main change of N: for xg ~ 0.1
@ pion production at Xg ~ 0.1: well measured at low energies




Interactions of pions: impact on Xmax, XH ox & Ny

Cross check the impact on Ny, ('splitting’ pions with Xg > Xo)

- p-induced EAS (E=10"° eV)
0.3 [ QGSJIET-1I-04/EPOS-LHC/SIBYLL-2.3¢

01 L] Ll
107° 107 10" 1
@ extreme changes (50% higher multiplicity): AN,/N, < 20%
@ main change of N: for xg ~ 0.1
@ pion production at Xg ~ 0.1: well measured at low energies

@ energy evolution: driven by the rise of gluon density in pion
(yet reasonably constrained for xg ~ 0.1)




Gluon density in the pion

Gn(X,0?) - mostly constrained by the momentum sum rule

o q%(x,g?) - well constrained
by Drell-Yan process studies

. xFitterP| o but: uncertainties for
JAM20
and
,g J B This work <Xg> <xqsea>
5 .
S o Gr(x,0?) - constrained by

direct photon & J/y
production studies

@ smallest uncertainties at
x~0.1

o factor of 2 uncertainties
at x~ 0.01

4
0=t

[de Téramond et al., arXiv: 2107.01231]




Gluon density in the pion

Gn(X,0?) - mostly constrained by the momentum sum rule

xFitterPl
10 JAM20
— B This work
B
>

107

1077

[de Téramond et al., arXiv: 2107.01231]

o 0%(x,?) - well constrained
by Drell-Yan process studies

o but: uncertainties for

(Xg) and (Xgsen)

@ Gr(x,g?) - constrained by
direct photon & J/{
production studies

o smallest uncertainties at
x~0.1

o factor of 2 uncertainties
at x~ 0.01




Interactions of pions: impact on Xmax, XH ox & Ny

Impact on Xhax ('splitting’” pions with Xg > Xo)
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Impact on Xhax ('splitting’” pions with Xg > Xo)
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o XHax pion interaction & decay rates become comparable
o gl & oM. impact the number of 'generations’
(cascade steps) till that point
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Impact on Xhax ('splitting’” pions with Xg > Xo)

e 10 [
% - p-induced EAS (g:1019 eV)
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1o @ pion diffraction
20 [ is irrelevant
B @ main change for
=0 = . 0.01<xg <01
,
-40 Ll | L. ... 9 why?
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@ Xhax pion interaction & decay rates become comparable
o gl & oM. impact the number of 'generations’
(cascade steps) till that point
@ but: multiplicity controls the speed of pion energy decrease

ot



Interactions of pions: impact on Xmax, XH ox & Ny

Impact on Xhax ('splitting’” pions with Xg > Xo)

e 10
% - p-induced EAS (g:1019 eV)
5 o [ QGSJET-I-04/EPOS-LHC/SIBYLL-2.3d
£ -
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-10 [— . . a
- @ pion diffraction
20 | is irrelevant
B @ main change for
-30 |- 001<xe <01
s ?
a0 L . - L. ... 9 why?
10 10 10 1

Xo

@ pion production at 0.01 < xg < 0.1:

well measured at fixed target energies
@ energy evolution: gluon density rise in pion
@ Gp(x,G%): reasonably constrained for 0.01 < xg < 0.1 )




How constraining are LHC data?

tot/el/inel
o/e/me (S): varying the strength of higher twist effects by +30%
-
§ B0 e o
S L
g L
2 I —— QGSJET-II-03
S [ ===+ QGSJIET-II-03 (K,;*0.7)
100 .. - QGSJET-NI-03 (K*1.3) ,
50
i S Ot,og/mel. up to
0 | \\\HH‘Z\ \\\\\\\\3\ Lol L 5 is% Variation
10 10 0
c.m. energy, GeV




How constraining are LHC data?

dNCh/dr] in QGSJET-III & for 230% variation of Kyt

=y B - -
§ , [P0- CATLAS) 3 g
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n n n
@ +10% variation at \/s= 13 TeV
@ smaller impact on Trair interactions (lower energies relevant)




How constraining are LHC data?

EAS predictions: rather similar for QGSJET-III & QGSJET-II

@ variation of X0hax <5 g/cm2

= QGSJET-III-03
=== QGSJET-III-03 (K;;*0.7)
QGSJET-III-03 (K1*1.3)
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X oy (0/CNT)

800
@ variation of Xhax <5 g/cm2

= @ variation of Ny < 1%




How constraining are LHC data?

EAS predictions: rather similar for QGSJET-III & QGSJET-II

@ variation of Xhax <5 g;/cm2

= QGSJET-III-03
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QGSJET-III-03 (K1*1.3)
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750

o variation of Ny < 1%

@ all comparable to the QGSJET-III
il o,/ QGSJET-11-04 differences




How constraining are LHC data?

EAS predictions: rather similar for QGSJET-III & QGSJET-II
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J [ oseETes s variation of 6(Xfax): <1 g/cm?
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variation of Xhax <5 g/cm?

750

variation of Ny < 1%

all comparable to the QGSJET-III
/ QGSJET-1-04 differences
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Larger uncertainties related to diffraction [SO, PRD 89 (2014) 074009]
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How constraining are LHC data?

EAS predictions: rather similar for QGSJET-III & QGSJET-II

— QGSJET-II-03 variation of Xr'%ax <5 g/sz
--+ QGSJET-III-03 (K,*0.7)

QGSJET-III-03 (K1*1.3)

p

variation of 6(Xfax): <1 g/cm?

X oy (0/CNT)

800

750

°
°
@ variation of Xhax <5 g/cm?
o variation of Ny < 1%

°

all comparable to the QGSJET-III
s,/ QGSJET-11-04 differences

Another source of uncertainty: inelasticity for ND interactions




Gluon density in the pion: impact on EAS muon content

Let us try extreme changes: £30% variation of (Xg,)

8
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= F ., Q=2GeV
x 6 -
[o>=022, @ => large variation of the glue
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Gluon density in the pion: impact on EAS muon content

Let us try extreme changes: £30% variation of (Xg,)

b<x,>=0.29

x g (x.Q)

Q=2GeV
@ => large variation of the glue

@ variation of Ny: ~ £1%

@ variation of Xhax up to £10 g/cm?

@ = uncertainties related to Trair
interactions: not really high

Clearly, this study of model uncertainties is not comprehensive

@ yet it demonstrates that there are good reasons for a stability
of model predictions for EAS characteristics




Gluon density in the pion: impact on EAS muon content

Let us try extreme changes: £30% variation of (Xg,)

b<x,>=0.29

x g (x.Q)

Q=2GeV
@ => large variation of the glue

@ variation of Ny: ~ £1%

@ variation of Xhax up to £10 g/cm?

@ = uncertainties related to Trair
interactions: not really high

Clearly, this study of model uncertainties is not comprehensive

@ yet it demonstrates that there are good reasons for a stability
of model predictions for EAS characteristics

@ unless one employs approaches which are obviously wrong




UHECR composition: TA results [H. Sagawa, talk at ISVHECRI-

TA data allow a consistent interpretation of Xmax & 0(Xmax)
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® Xmax & 0(Xmax): consistent with pure protons / light mix
(in the energy range characterized by sufficient statistics)




UHECR composition: TA results [H. Sagawa, talk at ISVHECRI-

TA data allow a consistent interpretation of Xmax & 0(Xmax)

Mean Xmax o (Xmax)
;E~340 + (7] data sys. £ * data »
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@ Xmax & 0(Xmax): consistent with pure protons / light mix
(in the energy range characterized by sufficient statistics)
@ main question: can one exclude pure proton composition?
o NB: smaller model uncertainties implied by the current analysis
v




PAQO analysis of UHECR composition & implications
[JCAP 04 (2017) 038; arXiv: 2211.02857]

Xmax-data: interpreted with EPOS-LHC, despite its wrong 0(Xmax)
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o (artificially) small o(Xmax): crucial for consistent interpretation




PAQO analysis of UHECR composition & implications
[JCAP 04 (2017) 038; arXiv: 2211.02857]

Xmax-data: interpreted with EPOS-LHC, despite its wrong 0(Xmax)
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o (artificially) small 0(Xmax): crucial for consistent interpretation
@ alternative: higher elongation rate (deeper Xmax)
¢ by how much?!



PAQO data: what kind of interaction physics is required?

PS PROCEEDINGS
. oF SCIENCE

ICRC 2021
N T g

Adjustments to Model Predictions of Depth of Shower
Maximum and Signals at Ground Level using Hybrid
Events of the Pierre Auger Observatory

Jakub Vrchga”-* on behalf of the Pierre Auger” Cullabora_llon

@ to be compatible with PAO data,
Xmax of QGSJET-II should be larger by 48+2"3,



PAQO data: what kind of interaction physics is required?

PROCEEDINGS

CESCIENCE

JE [cRCzom:

s H'

Adjustments to Model Predictions of Depth of Shower
Maximum and Signals at Ground Level using Hybrid
Events of the Pierre Auger Observatory

Jakub Vrchga”-* on behalf of the Pierre Auger” Cullabora_llon

@ to be compatible with PAO data,

Xmax of QGSJET-II should be larger by 48+2"3,
@ is it feasible, having Gi’;‘f;ir fixed?
o what is the cost of this physics-wise?



PAQO data: what kind of interaction physics is required?

Extreme case - Feynman scaling: same 0(Xmax), much deeper Xmax

€
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| Fe }
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E, (eV) E, (eV)
inel inel inel
® 0p%ir Oacair Orair - all kept unchanged
@ nonlinear effects & hard scattering switched off
(K—factorzO, Gppp =0, Kyt = 0)
@ production spectra - frosen at 100 GeV lab.




Scaling model is dead since > 50 years

Since it misses the observed rise of the 'rapidity plato’ ngP,/dr]

[ p+pat8TeVc.m- C(CMS-TOTEM)
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F H

— QGSJET-III-03 hCH
...... Scaling Q ngB/dr] at small n: of weak
0 T importance for EAS (small xg)




Scaling model is dead since > 50 years

More important: LHCf data on forward neutrons - measure of K;,”pe'
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do/dE, mb/GeV
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n > 10.75

p+p at 13 TeV c.m.- n

— QGSJET-III-03

scaling

10.06<n < 10.75]

9.65<n < 10.06

x 10
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E, GeVv

6000

@ scaling: energy loss of leading nucleons is underestimated




Most general warning for 'deep Xmax dreamers’

Changing Xmax implies equal or larger changes for Xhax

@ any change of the primary interaction (Og‘eglr, Og'ﬂ;”, K'nel air)

impacts only the initial stage of EAS development
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Most general warning for 'deep Xmax dreamers’

Changing Xmax implies equal or larger changes for Xhax

@ any change of the primary interaction (Og‘eglr, Og'ﬂ;”, K'nel air)

impacts only the initial stage of EAS development

Xy

00

@ = parallel up/down shift of the
cascade profile (same shape)

@ = same effect on Xmax & Xhax

V4
T (vomur o ¥

0

@ the corresponding physics change
impacts also Trair interactions
(at all the steps of the cascade)

1000

o = cumulative effect on Xhax




Most general warning for 'deep Xmax dreamers’

Changing Xmax implies equal or larger changes for Xhax

pi=s (g/cmz)
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9 e.g. using Feynman scaling:
UHECRSs are transuraniums




Perhaps one 'makes an elephant out of a fly'?

Measurement of muon density by the AMIGA detector of PAO

[A. Aab et al., Eur. Phys. J. C 80 (2020) 751]

@ energy-dependence: as
predicted by the models

@ but: normalization
differs (by less than 30)

© AMIGA data
wen QGSJetII-04
-=--EPOS-LHC

0.6L
2-10'7




Perhaps one 'makes an elephant out of a fly'?

Measurement of muon density by the AMIGA detector of PAO

[A. Aab et al., Eur. Phys. J. C 80 (2020) 751]

@ energy-dependence: as
1 predicted by the models

1 @ but: normalization
differs (by less than 30)

@ is < 30 discrepancy
£ " i sufficient to expect
= AMIGA data .
QB IREEOL barn-level BSM physics

AT o 2107 at LHC energies?!




Perhaps one 'makes an elephant out of a fly'?

NB: no 'muon deficit’ seen by Ice-Top & KASCADE-Grande

e KASCADE-Grande --- GSF model —MC: H —MC: Fe
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Perhaps one 'makes an elephant out of a fly'?

Decreasing 0(Xmax) (with small systematic errors) = many effects

@ Fe-dominance at the

! end of the CR spectrum

o (very) hard injection
spectra (y< 0)

N
s @ hints toward Feynman
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Perhaps one 'makes an elephant out of a fly'?

Decreasing 0(Xmax) (with small systematic errors) = many effects

W @ Fe-dominance at the
: " end of the CR spectrum

@ (very) hard injection
spectra (y < 0)

% o hints toward Feynman

| | |
80 85 90 195 200 180 185 190 195 00 T
Iogzl ‘(E/\‘V) lngw(ﬁ/w) SCa | I ng

@ would they dissappear if systematic uncertainties were higher?




O QGSJET-1I/QGSJET-III: small differences for EAS properties
@ stability of Xmax predictions:

@ Xmax position governed by p-air interactions

@ LHC data seem to constrain enough the treatment of p-air
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9 1072 < xg < 1071 - well measured at fixed target energies
@ energy evolution: gluon density rise in pion

@ variations of (Xg): small impact on Ny & XM ax
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o Ny & XHax: governed by hadron production at 102 < xg < 10~
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@ energy evolution: gluon density rise in pion
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© Overall, the era of model development for EAS simualtions
seems to come to a successful finish...



QO QGSJET-1I/QGSJET-III: small differences for EAS properties

@ stability of Xmax predictions:

@ Xmax position governed by p-air interactions

@ LHC data seem to constrain enough the treatment of p-air

o Ny & XHax: governed by hadron production at 102 < xg < 10~

9 1072 < xg < 1071 - well measured at fixed target energies
@ energy evolution: gluon density rise in pion

@ variations of (Xg): small impact on Ny & XM ax

© Overall, the era of model development for EAS simualtions
seems to come to a successful finish...

© Perhaps, it is the right time to critically re-access systematic
uncertainties of UHECR measurements?



Extra slides



Hard scattering: importance of the parton cascade

@ high energies = high p; parton production important

o small ag(p?) - compensated by infrared and collinear logs
(arising from parton cascading): In(X/Xi;1), In(ptziﬂ/ptzi)
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Why (mini)jet production is important for EAS predictions?

lower g , higher x

@ hadron jets: typically produced in
central region (y ~ 0) in c.m.s.
@ small impact on forward spectra

higher g , lower 3
NS




Hard scattering: importance of the parton cascade

@ high energies = high p; parton production important

o small ag(p?) - compensated by infrared and collinear logs
(arising from parton cascading): In(Xi/Xi+1), In(ptziﬂ/ptzi)

Why (mini)jet production is important for EAS predictions?

lower g , higher x

@ hadron jets: typically produced in
central region (y ~ 0) in c.m.s.
@ small impact on forward spectra

higher g , lower 3
NS

@ but: hardest scattering preceeded by
parton cascade (smaller py & higher X)

@ = most important are first ('softest’)
partons in the cascade




Hard scattering: importance of the parton cascade

@ high energies = high p; parton production important

o small ag(p?) - compensated by infrared and collinear logs
(arising from parton cascading): In(X/Xi+1), In(ptziﬂ/ptzi)

General pathology of the SIBYLL model

@ parton cascade completely neglected

@ minijet contribution = hardest
gg-scattering (high p; & small x)

high o9 low x
LTATTATYYY
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cascade that enhances hard scattering
(producing large p; & X logs)




Hard scattering: importance of the parton cascade

@ high energies = high p; parton production important

o small ag(p?) - compensated by infrared and collinear logs
(arising from parton cascading): In(X/Xi+1), In(ptziﬂ/ptzi)

General pathology of the SIBYLL model

@ parton cascade completely neglected

p+p— C(8TeVcm)

dn/ch

@ minijet contribution = hardest
gg-scattering (high p; & small x)

o = weak impact on K"l — on Xmax

10 |-

p—air L
@ wrong from 1st priciples: it is the parton | — qossErilos
. L * EPOS-LHC
cascade that enhances hard scattering SBYLL23
(producing large p; & X logs) e

@ at variance with LHC data on dNCh/dr]




i)nucleon production in QGSJET-IIl & EPOS-LHC
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@ artificial "hardening’ of the baryon yield with energy in EPOS:
no viable theoretical mechanism




Energy-dependence of (anti)nucleon production

Xe dndx.
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@ artificial "hardening’ of the baryon yield with energy in EPOS:
no viable theoretical mechanism

@ violation of the isospin invariance - obviously wrong
(yields of p+p & n+n should coincide)




Technical improvement in QGSJET-III: pion exchange

Pion exchange process in Trair: important for N, predictions
(due to forward p production) [SO, EPJ Web Conf. 52 (2013) 02001]

1.4

p-induced EAS o ~ 200/0 h|gher Np (> 1 GeV)
(relative to QGSJET-I1-03)

@ the enhancement weakly
depends on Eg

N, (QGSJET-II-04/QGSJET-II-03)

@ nearly same N, excess up to
Ey~ 100 GeV




Technical improvement in QGSJET-III: pion exchange

Pion exchange process in Trair: important for N, predictions

(due to forward p production) [SO, EPJ Web Conf. 52 (2013) 02001]
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p-induced EAS o ~ 2(}%) h|gher Nu (> 1 GeV)
(relative to QGSJET-I1-03)

@ the enhancement weakly
depends on Eg

@ nearly same N, excess up to
Ey~ 100 GeV

. n
@ Born cross section for Teexchange - well p
=

known [e.g. Kaidalov et al., EPJC 47 (2006) 385] T

@ main challenge: absorptive corrections

¢ = energy-dependence! p




Teexchange process in pion-nucleus collisions

Energy-dependence of p° production in TN collisions

| m+N - p° (1 GeV) | m+N - p°(10° GeV) | 1N - p° (1 Gev)
QGSJET-II-0B QGSJET-III-0| QGSJET-III-08

X dn/dx.
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o forward p° yield: dominated by Teexchange process

@ higher energies: absorptive corrections damp the Teexchange

4




Teexchange process in pion-nucleus collisions

Energy-dependence of p® production in TN collisions

[ TN - pO (106 GeV)

[ m+N - pO (102 GeV) [ T+N - p° (104 GeV)
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0(Xmax) is very robust theoretically

[Aloisio, Berezinsky, Blasi & SO, PRD 77 (2008) 025007; SO, AdSR 64 (2019) 2445]

But: small 0(Xmax) of EPOS for A-induced EAS?!
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0(Xmax) is very robust theoretically

[Aloisio, Berezinsky, Blasi & SO, PRD 77 (2008) 025007; SO, AdSR 64 (2019) 2445]

Two extreme scenarios for nuclear break-up = factor 2 difference
for 0(Xmax) [Kalmykov & SO, Phys.At.Nucl. 56 (1993) 346]

© complete break up of 50

Fe-induced EAS
nuclear spectator part

€
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0(Xmax) is very robust theoretically

[Aloisio, Berezinsky, Blasi & SO, PRD 77 (2008) 025007; SO, AdSR 64 (2019) 2445]

Two extreme scenarios for nuclear break-up = factor 2 difference
for 0(Xmax) [Kalmykov & SO, Phys.At.Nucl. 56 (1993) 346]

© complete break up of 50
nuclear spectator part
(into separate nucleons)
= smallest RMS(Xmax)

Q no break up (single »
secondary fragment) 20 Pl
= largest RMS(Xmax)

Fe-induced EAS
40

/

no breaku
30

RMS(X,,) (g/cnt)

e e e e |
full breakup

— QGSJET-II-04
10 ... EPOS-LHC (default fragm.)
... SIBYLL-23
@ EPOS results: close to P T R R
the full break up option 10 10 10 10® 1

10
E, (eV)

Caused by incorrect matching between the interaction and nuclear
fragmentation procedures in EPOS




