Selected Highlights of the Pierre Auger

Ralph Engel, for the Pierre Auger Collaboration

(picture curtesy S. Saffi)

Observatory

Air shower observables (hybrid observation)

100% duty cycle

Phase I: more than 15 equivalent years of data

Staff in Malargue

Jan 2004

The Auger Collaboration in Malargue – November 2022

Exposure and calibration of Auger data enter

Individual and combined energy spectra

Auger ICRC 2021, PoS(ICRC2021)691

 $-2 \le A \le 4$

PIERRE AUGER **Declination dependence of spectrum** OBSERVATORY 1.1 IU $J_{_{\Delta}\delta}(E)/J(E)$ $-90.0^{\circ} \le \delta < -42.5^{\circ}$ 0.9 $-42.5^{\circ} \le \delta < -17.3^{\circ}$ $-17.3^{\circ} \leq \delta < +24.8^{\circ}$ 10²⁰ 10¹⁹ E [eV] *E* [eV] 10²⁰ 10¹⁸ 10¹⁶ 10¹⁷ 10¹⁹ ectation from observed dipole preliminary 10³⁸ Uncertainty dominated by 14% sys. energy scale $y_2 = 2.54 \pm 0.03 \pm 0.05$ 10³⁷ – Auger combined $E_{_{34}} = (1.4 \pm 0.1 \pm 0.2) \times 10^{19} \text{ eV}$ $\gamma_4 = 3.03 \pm 0.05 \pm 0.10$ ★ ----- fit $E_{45} = (4.7 \pm 0.3 \pm 0.6) \times 10^{19} \text{ eV}$ $\gamma_5 = 5.3 \pm 0.3 \pm 0.1$ $J_0 = (8.34 \pm 0.04 \pm 3.40) \times 10^{-11} \text{ km}^{-2} \text{ sr}^{-1}$ — Total 19 19.5 20 20.5 18.5 yr-1 eV-1 $\log_{10}(E/eV)$ --- A = 1

Energy spectrum – comparison with other data

- Other experiments shown without sys. uncertainties
- Auger has smallest sys. uncertainty on energy scale (14%)

Phys. Rev. Lett. 125 (2020) 121106 Phys. Rev. D102 (2020) 062005 Eur. Phys. J. C81 (2021) 966

Mass composition results (i)

(Phys. Rev. D90 (2014), 122005 & 122005, updated ICRC 2019)

(Phys. Rev. D96 (2017), 122003)

 $(E \sim 10^{18} \,\mathrm{eV})$

10

Auger Engineering Radio Array (AERA)

Independent confirmation of earlier Aug

Interpretati

Weaksoninvestigate Haenimaacton Hae

Auger-TA comparison of X_{max} distributions

This representation agrees with TA < X_{max} > measurements well, but there is disagreement at some energies in $\sigma(X_{max})$. This disagreement is plausibly due to the handling of X_{max} resolution due to varying aerosols at TA A robust difference between the Auger and TA X_{max} measurements **has not been found**

Auger-TA comparison of Xmax distributions (i)

14

Auger-TA comparison of Xmax distributions (i)

Surface detector data and machine learning

Simulated signal trace of one station

Shower-by shower Xmax resolution

 \bigcirc

16

What could be the origin of the problem?

 $E = 10^{17.5} \,\mathrm{eV}.$

(Eur. Phys. J. C80 (2020) 751)

Discrepancy in number of muons Relative fluctuations in agreement

PMT analogy of air shower

Muon fluctuations driven by first interactions

(Phys. Rev. Lett. 126 (2021) 152002)

Test: modification of hadronic interaction models

2297 high-quality showers for $\log_{10}(E_{FD} [eV]) = 18.5-19.0, \theta < 60^{\circ}$

Test: 2D fit without any adjustments

Gideon-Hollister correlation coeficient [J. Am. Stat. Assoc. 82 (1987) 656]

Test: 2D fit with rescaling hadronic component

Test: 2D fit with rescaling had. component and shifting Xmax

Test: modification of hadronic interaction models (ii)

Assumption: relative fluctuations not changed Main improvement by re-scaling muon component (attenuation, more muons at ground) Further improvement by shifting Xmax of models to larger depth (heavier composition)

Anisotropy on large angular scales – di

(Ding, Globus & Farrar 2101.04564)

	4-8	106, 290	$0.01^{+0.004}_{-0.004}$	
	8-16	32, 794	$0.055^{+0.011}_{-0.009}$	
	16-32	9, 156	$0.072^{+0.021}_{-0.016}$	
	≥ 8	44, 398	$0.059^{+0.009}_{-0.008}$	
	≥32	2, 448	$0.11^{+0.04}_{-0.03}$	

$$p \sim 5 \times 10^{-1}$$

Fundamental observation: - magnetic horizon and - local source distribution

(Harari, Mollerach, Roulet PRD92 (2015) 06314)

Anisotropy searches at highest energies –

nates of UHECRs above 41 EeV smoothed with a top-hat Ma pre-trial significance map of localized overdensities. solid line. The edge of the FoV of the Pierre Auger Model flux map

Growth of test statistic (TS) compatible with linear increase **Discovery threshold of 5\sigma expected in 2025 – 2030 (Phase II) Other means to increase sensitivity (Auger 85% sky coverage)**

(Auger, UHECR 2022 & ICRC 2021)

Neutrinos and multi-messenger observations

USC

Phase II: upgrade of the Observatory – AugerPrime

Physics motivation

- Composition measurement up to 10²⁰ eV
- Composition selected anisotropy
- Particle physics with air showers
- Much better understanding of new and old data

Components of AugerPrime

- 3.8 m² scintillator panels (SSD)
- New electronics (40 MHz -> 120 MHz)
- Small PMT (dynamic range WCD)
- Radio antennas for inclined showers
- Underground muon counters (750 m array, 433 m array)
- Enhanced duty cycle of fluorescence tel.

Composition sensitivity with 100% duty cycle

(AugerPrime design report 1604.03637)

radio

Example of rich information in data of Phase II

Great physics potential in muons

(Auger, Universe 2022)

Backup slides

Searches: Ultra-high energy photons

Cut at 50% photon efficiency (median)

Background compatible with stat. expectation (burn sample of data)

Multi-messenger: searches for photons in coincidence with GW events

(Auger, UHECR 2022 & ICRC 2021)

٨

Uniform distribution

3.6x10⁻²⁰ cm⁻² sr⁻¹ yr⁻¹ if exposure is weighted with E⁻¹ **8.5x10⁻²⁰ cm⁻² sr⁻¹ yr⁻¹** if exposure is weighted with E⁻²

Searches: Lorentz invariance violation (LIV)

(Caterina Trimarelli)

$$E^2 - p^2 = m^2 + \eta^{(n)} \frac{p^{n+2}}{M_{\rm Pl}^n}$$

$$\gamma_{\text{LIV}} = E/m_{\text{LIV}}$$
$$m_{\text{LIV}}^2 = m^2 + \eta^{(n)} \frac{p^{n+2}}{M_{\text{Pl}}^n}$$

(Adriana Vazquez)

(Earth Space Sci. 7 (2020) 4)

An invitation: Auger open data

DOI:10.5281/zenodo.4487613

opendata.auger.org

Significance $[\sigma]$

Outlook: How to gain sensitivity to distinguish source scenarios

Fit of model parameters to

- energy spectrum,
- Xmax distribution
- arrival direction distribution

Flux and Xmax data:

fluxes of different mass groups at Earth

Arrival direction distribution:

distance sensitivity (deflection, production of secondaries)

	Deviance		Likelihood		
	D_E	$D_{X_{\max}}$	D _{total}	$2\log \frac{\mathcal{L}_{\mathrm{AD}}}{\mathcal{L}_{\mathrm{AD}}^{\mathrm{ref},m=3.4}}$	$2\log \frac{1}{\mathcal{L}_{s}^{r}}$
SBG model ($m = 3.4$) \rightarrow sim. truth	5.5	80.2	85.7	30.6	32
AGN model ($m = 3.4$)	6.0	81.8	87.8	11.2	10
AGN model ($m = 5.0$)	5.6	84.1	89.9	1.4	-]
26				•	

Monte Carlo study: Scenarios with similar catalog correlations can be clearly distinguished

Joint Auger-TA anisotropy working group

Large angular scales

Dipole direction better constrained, compatible with Auger-only result

 $\mathbf{T} = (10 \text{ FeV}(\text{TA}))$ 1. 1

(10.47 FeV(TA))

Comparison of Xmax data of Auger and TA

(Auger-TA Xmax Working Group, UHECR 2018)

Change of model predictions thanks to LHC data

pre-LHC models

(see also discussion Lipari, Phys.Rev.D 103 (2021) 103009)

post-LHC models

(Pierog, ICRC 2017)

LHC-tuned models should be used for data interpretation

Snowmass P5 strategy process

Solid lines: existing instruments, broken lines: planned instruments

⁽Snowmass UHECR White Paper, 2205.05845)

Several changes of paradigms

Measurement of composition-sensitive observables

- Mass composition and source / propagation physics
- Mass-enhanced anisotropy studies
- Hadronic interactions and particle physics
- Fundamental physics (LIV)
- Astrophysical magnetic fields

Multi-messenger observations

- Ultra-high energy photon and neutrino fluxes
- Transient source observation

Extension of sensitivity to lower energy

- Transition from galactic to extragalactic cosmic rays
- Multi-messenger observations at lower energy

Test facility and multi-disciplinary measurements

- Multi-hybrid detection technologies
- Calibrated environment, link to new instruments
- Atmospheric phenomena and transients

(RE, Nijmegen Summer School, 2006)

's Eye: longitudinal shower profile (fluorescence telescopes)

44

ing Superfast

1.

