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The Pierre Auger Observatory
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4 fluorescence detectors 
(24 telescopes up to 30°)

 Sub-array of 750 m 
(63 stations, 23.4 km2)

AERA - Auger Engineering Radio Array

World’s largest radio experiment for
CR-physics.

Profiting from 3 other nearby CR-detectors:
(! high quality data, ext. trigger, ...).

100% duty cycle.

Energy threshold ⇠ 1017 eV.
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1665 surface detectors: 
water-Cherenkov tanks 

(grid of 1.5 km, 3000 km2)

Radio antenna array 
(153 antennas, 17 km2)

  More than 400 members, 
  90+ institutes, 18 countries 

LIDARs and laser facilities

Pierre Auger Observatory 
Province Mendoza, Argentina

Southern hemisphere: Malargue, 
Province Mendoza, Argentina

Water-Cherenkov
detectors and
Fluorescence 
telescopes

Underground muon 
detectors (24+)

High elevation telescopes (3)



Air shower observables (hybrid observation)
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The energy spectrum from surface detector data (I)
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The energy spectrum from surface detector data (I)
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Surface Detector (SD)
100% duty cycle

Erec = f (S1000,q)

ICRC 2021
THE ASTROPARTICLE PHYSICS CONFERENCE

Berlin |  Germany

ONLINE ICRC 2021
THE ASTROPARTICLE PHYSICS CONFERENCE

Berlin |  Germany

37th International 
Cosmic Ray Conference

12–23 July 2021

1. Heavy particles interact earlier than light  
—> Depth of the shower maximum (Xmax) is probe 
for cosmic-ray mass. 

2. MHz radio signals from: 
 
 
 
 
 
 
 
 
 

3. Radio emission footprint on the ground is sensitive 
to Xmax.  
 

4. Compare measured footprint to footprint from 
CORSIKA air shower simulation  
—> minimise for Xmax of measured shower. 

Introduction: Depth of the shower maximum (Xmax) as ‘mass composition’ 
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Fluorescence Detector (FD): 
15% duty cycle

Radio Detector (RD): 
100% duty cycle



                          Isabelle Lhenry-Yvon, OnLine Collaboration Meeting , March 2021 �7

Check of the 6T5 event rate in 1500m array (weather corrected) 

- The decay  that had stopped between 2012 and 2016 is starting again since 2016 (checks 
on PMT needed in LTP)

-  THE good news is that the rate above 2 EeV  (energy of the correction) is still stable 

Phase I: more than 15 equivalent years of dataFD Performance (on-time)

F.Salamida

 http://paomon.physik.uni-wuppertal.de/UpTime

On-time root files 
available till end of 
June 2022 
Work in progress to 
update at Nov 2022
Thanks to Julian for 
taking care of the 
update

Scheduled DAQ:
●moon fraction 

below 70% 
●moon below 

the horizon for 
more than 3 
hours 

3

Remote control rooms

Staff in Malargue Jan 2004

Array event rate E > 3x1018 eV

More than 215 shifts of 15-20 days each 
Constant 85% of max. possible data taking time

Corona
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The Auger Collaboration in Malargue – November 2022
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Exposure and calibration of Auger data sets
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Auger energy spectrum Vladimír Novotnº
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Figure 1: Exposure of SD and FD measurements to cosmic ray showers as a function of energy (left) and
calibration functions of the SD energy estimators to the energies reconstructed by the FD (right).

1500 m array is covered by a denser array with a spacing of 750 m. Their spacings and areas are
chosen according to the energy ranges probed by the two arrays. Individual SD stations utilize the
water–Cherenkov technique of particle detection, thus they are sensitive to both the electromagnetic
(EM) and muonic components of showers.

The 1500 m array is sensitive to cosmic ray showers with incident zenith angles up to 80�,
but showers with zenith angles above 60� (so-called "inclined" showers) are reconstructed with a
di�erent method [3] to those at lower zenith angles ("vertical" showers) [4, 5]. This is mandatory
because for inclined showers the signal is dominated by muons that are deflected in the geomagnetic
field producing an asymmetric footprint on the ground. For events with zenith angles below 60�,
dominated by EM particles, this e�ect is negligible. The 1500 m array is fully e�cient in the
detection of showers, regardless of the primary mass composition, above 2.5 EeV and 4 EeV in the
case of vertical and inclined reconstruction, respectively.

The array with 750 m spacing is designed to measure at lower energies, and is fully e�cient
from 0.1 EeV, assisted by an additional set of dedicated triggers [6, 7].

The aperture of all SD methods is calculated geometrically by summing the contributions from
individual hexagonal cells under operation. With the use of a monitoring database, we then obtain
the exposure as an integral of the aperture in time. Thus the exposure of SD measurements is
independent of energy and is depicted in the left panel of Fig. 1 for all three SD methods.

The energy estimate for the SD array (⇢SD) is obtained by means of a calibration procedure
based on coincident SD and FD measurements. Events detected by both detectors can be used to
obtain a relation between the SD energy estimator (⌃ in the following) and the FD energy. This is
performed using the calibration function ⇢FD = �⌃⌫, where ⇢FD is the energy obtained with the
FD, and � and ⌫ are calibration parameters.

The energy estimators in the reconstruction of vertical showers are parameters (38 and (35 for
the SD 1500 m and SD 750 m measurements, respectively. These parameters are corrected for the
average shower size attenuation in the atmosphere using the constant intensity cut method [4]. In the
case of inclined reconstruction, the corresponding energy estimator is #19, the scaling factor of the
two dimensional muon density map on the ground used to fit the signal recorded by the SD [3]. The
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Calibration of SD events

SD 1500 m vertical – S
38

- S(1000)+CIC

- threshold 2.5 EeV

SD 750 m – S
35

- S(450)+CIC

- threshold 0.1 EeV

SD 1500 m inclined – N
19

- scaling parameter

- threshold 4 EeV

SD data are calibrated to FD energies

- common energy scale
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Figure 1: Exposure of SD and FD measurements to cosmic ray showers as a function of energy (left) and
calibration functions of the SD energy estimators to the energies reconstructed by the FD (right).

1500 m array is covered by a denser array with a spacing of 750 m. Their spacings and areas are
chosen according to the energy ranges probed by the two arrays. Individual SD stations utilize the
water–Cherenkov technique of particle detection, thus they are sensitive to both the electromagnetic
(EM) and muonic components of showers.

The 1500 m array is sensitive to cosmic ray showers with incident zenith angles up to 80�,
but showers with zenith angles above 60� (so-called "inclined" showers) are reconstructed with a
di�erent method [3] to those at lower zenith angles ("vertical" showers) [4, 5]. This is mandatory
because for inclined showers the signal is dominated by muons that are deflected in the geomagnetic
field producing an asymmetric footprint on the ground. For events with zenith angles below 60�,
dominated by EM particles, this e�ect is negligible. The 1500 m array is fully e�cient in the
detection of showers, regardless of the primary mass composition, above 2.5 EeV and 4 EeV in the
case of vertical and inclined reconstruction, respectively.

The array with 750 m spacing is designed to measure at lower energies, and is fully e�cient
from 0.1 EeV, assisted by an additional set of dedicated triggers [6, 7].

The aperture of all SD methods is calculated geometrically by summing the contributions from
individual hexagonal cells under operation. With the use of a monitoring database, we then obtain
the exposure as an integral of the aperture in time. Thus the exposure of SD measurements is
independent of energy and is depicted in the left panel of Fig. 1 for all three SD methods.

The energy estimate for the SD array (⇢SD) is obtained by means of a calibration procedure
based on coincident SD and FD measurements. Events detected by both detectors can be used to
obtain a relation between the SD energy estimator (⌃ in the following) and the FD energy. This is
performed using the calibration function ⇢FD = �⌃⌫, where ⇢FD is the energy obtained with the
FD, and � and ⌫ are calibration parameters.

The energy estimators in the reconstruction of vertical showers are parameters (38 and (35 for
the SD 1500 m and SD 750 m measurements, respectively. These parameters are corrected for the
average shower size attenuation in the atmosphere using the constant intensity cut method [4]. In the
case of inclined reconstruction, the corresponding energy estimator is #19, the scaling factor of the
two dimensional muon density map on the ground used to fit the signal recorded by the SD [3]. The
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SD-Calibration in energy

Estimator of the energy of the surface detector calibrated with a subset of 
hybrid measurements reconstructed independently by the SD and FD

data-driven estimation of the energy

E > 1018.6 eV
σ(E) ~ 19%

E > 1017 eV
σ(E) : 25% - 10%

E > 1018.4 eV
σ(E) : 22% - 7%

V. Novotný (2021), PoS(ICRC2021)691

The Pierre Auger Collaboration (2020), Phys. Rev. D 102 (2020) 062005
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Individual and combined energy spectra
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Auger energy spectrum Vladimír Novotnº

uncertainty is shown in the right panel of Fig. 2, estimated by shifting the energy assignment in MC
in accordance with the 15% systematic uncertainty in the energy scale.

The energy scale uncertainty of the Cherenkov–dominated data is slightly larger than that
a�ecting showers at higher energies [8], since it also accounts for the uncertainty in the Cherenkov
emission model estimated to be 3% in energy, it includes a contribution related to the invisible
energy model [11], and incorporates 2.5% in energy for half of the maximum reconstruction bias
observed. The energy threshold of 6 PeV accessible by Cherenkov–dominated events is mainly
determined by the systematic uncertainty in exposure at low energies. We report data above an
energy where the uncertainty in exposure matches the uncertainty attributed to the energy scale.
Further details on the analysis of the Cherenkov events will be reported in a dedicated publication.

3. The Auger spectrum and its features

The measurements of the energy spectrum obtained with the 1500 m array using vertical events
[5], inclined events [13], hybrid events, events detected by the 750 m array [6] and the FD events
dominated by Cherenkov light are shown in the left panel of Fig. 3. The analysis and data set used
for the hybrid events is the same as in [13] with the only exception being the improvement in the
estimation of the exposure addressed in the previous section. Also, the data set for the 750 m array
is the same as in [13], but now the analysis benefits from an improved absolute calibration of the
HEAT telescopes and a reassessment of the trigger e�ciency that a�ects the measurements around
the threshold at 1017 eV [6].

For the FD Cherenkov events, in comparison to our previous report [11, 13], the analysis has
been improved in several aspects that have allowed us to lower the energy threshold from 3⇥1016 eV
down to 6 ⇥ 1015 eV, see Section 2.2. The data period was extended to 06/2012–12/2017 resulting
in 123 159 events selected for analysis. The energy spectrum of cosmic rays derived from the
PCGF reconstruction method is depicted in the right panel of Fig. 3, together with systematic
uncertainties. Besides the uncertainties in exposure we also show a major contribution from the
energy scale uncertainty, both are discussed in Section 2.2.
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Figure 3: Intensity of cosmic rays, �, multiplied by ⇢3 estimated using five di�erent techniques (left) and
the energy spectrum deduced from Cherenkov–dominated data (right). In the right plot, the systematic
uncertainty related to exposure is shown by the magenta band, that corresponding to the energy scale by the
blue band, and the total systematic uncertainty by the gray band.
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Auger measurements

compatible within uncorrelated uncertainties

normalization shifts after comb.:

  SD 1500 m   <1 %

  SD 750 m   -2 %

  SD 1500 m inclined   +5 %

  Hybrid   <1 %

  Cherenkov   +7 %

* A. Aab et al. [Pierre Auger Coll.], Phys. Rev. D102(2020) 062005

* A. Aab et al. [Pierre Auger Coll.], Phys. Rev. Lett.125(2020) 121106

*

PRELIMINARY

+ A. Aab et al. [Pierre Auger Coll.], submitted to Eur. Phys. J. C

+

Low-energy showers with FD

- large Cherenkov light fraction

- Profile-constrained geometry fit

15

5 data-sets, 5 spectra

Normalisation shifts after 
combination of all spectra:

<1%   SD-1500 m vertical
+5%    SD-1500 m inclined
-2%   SD-750 m
<1%   Hybrid
+7%   Cherenkov

V. Novotný (2021), PoS(ICRC2021)691

Unfolding procedure applied to account for the detector effects

Energy spectra consistent within the systematic uncertainties after rescaling

Combination performed considering, for each data-sets, adjustable shifts in exposure 
and energy within uncorrelated uncertaintiesAuger ICRC 2021, PoS(ICRC2021)691 
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Combined spectrum – systematic uncertainty

PRELIMINARY

Energy spectrum (ii)
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Spectral features
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J
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fit parameters (± stat. ± syst.)13

Combined spectrum

likelihood of combination fit = exposure shifts x energy calibration shifts x forward-folding

description of data sets by model

fit function:
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horizon and zenith at the observatory site to define the local
zenithal and azimuth angles ðθ;φÞ. Alternatively, we can
make use of the fixed equatorial coordinates, right ascen-
sion and declination ðα; δÞ, aligned with the equator and
poles of the Earth, for the same purpose. The wide range of
declinations covered by using events with zenith angles up
to 60°, from δ ¼ −90° to δ ≃þ24.8° (covering 71% of the
sky), allows a search for dependencies of the energy
spectrum on declination. We present below the determi-
nation of the energy spectrum in three declination bands
and discuss the results.
For each declination band under consideration, labelled

as k, the energy spectrum is estimated as

Jik ¼
Nikcik
EkΔEi

; ð10Þ

where Nik and cik stand for the number of events and the
correction factors in the energy bin ΔEi and in the
declination band considered k, and Ek is the exposure
restricted to the declination band k. For this study, the
observed part of the sky is divided into declination bands
with equal exposure, Ek ¼ E=3. The correction factors are
inferred from a forward-folding procedure identical to
that described in Sec. IV, except that the response matrix
is adapted to each declination band (for details see
Appendix C).
The intervals in declination that guarantee that the

exposure of the bands are each E=3 are determined by
integrating the directional exposure function, ωðδÞ, derived
in Appendix E, over the declination so as to satisfy

R δk
δk−1

dδ cos δωðδÞ
R δ3
δ0
dδ cos δωðδÞ

¼ 1

3
; ð11Þ

where δ0 ¼ −π=2 and δ3 ¼ þ24.8°. Numerically, it is
found that δ1 ¼ −42.5° and δ2 ¼ −17.3°.
The resulting spectra (scaled by E3) are shown in the left

panel of Fig. 13. For reference, the best fit of the spectrum
obtained in section IV B is shown as the black line. No
strong dependence of the fluxes on declination is observed.
To examine small differences, a ratio plot is shown in the

right panel by taking the energy spectrum observed in the
whole field of view as the reference. A weighted-average
over wider energy bins is performed to avoid large
statistical fluctuations preventing an accurate visual appre-
ciation. For each energy, the data points are observed to be
in statistical agreement with each other. Note that the same
conclusions hold when analyzing data in terms of integral
intensities, as evidenced for instance in Table IV above
8 × 1018 eV. Similar statistical agreements are found above
other energy thresholds. Hence this analysis provides no
evidence for a strong declination dependence of the energy
spectrum.
A 4.6% first-harmonic variation in the flux in right

ascension has been observed in the energy bins above
8 × 1018 eV shown in the right panel of Fig. 13 [47]. It is
thus worth relating the data points reported here to these
measurements that are interpreted as dipole anisotropies.
The technical details to establish these relationships are
given in Appendix E.

TABLE IV. Integral intensity above 8 × 1018 eV in the three
declination bands considered.

Declination band Integral intensity [km−2 yr−1 sr−1]

−90.0° ≤ δ < −42.5° ð4.17% 0.04Þ × 10−1

−42.5° ≤ δ < −17.3° ð4.11% 0.04Þ × 10−1

−17.3° ≤ δ < þ24.8° ð4.11% 0.04Þ × 10−1
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FIG. 13. Left: Energy spectra in three declination bands of equal exposure. Right: Ratio of the declination-band spectra to that of the
full field-of-view. The horizontal lines show the expectation from the observed dipole [47]. An artificial shift of %5% is applied to the
energies in the x-axis of the northernmost/southernmost declination spectra to make it easier to identify the different data points.
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Declination dependence of spectrum

horizon and zenith at the observatory site to define the local
zenithal and azimuth angles ðθ;φÞ. Alternatively, we can
make use of the fixed equatorial coordinates, right ascen-
sion and declination ðα; δÞ, aligned with the equator and
poles of the Earth, for the same purpose. The wide range of
declinations covered by using events with zenith angles up
to 60°, from δ ¼ −90° to δ ≃þ24.8° (covering 71% of the
sky), allows a search for dependencies of the energy
spectrum on declination. We present below the determi-
nation of the energy spectrum in three declination bands
and discuss the results.
For each declination band under consideration, labelled

as k, the energy spectrum is estimated as

Jik ¼
Nikcik
EkΔEi

; ð10Þ

where Nik and cik stand for the number of events and the
correction factors in the energy bin ΔEi and in the
declination band considered k, and Ek is the exposure
restricted to the declination band k. For this study, the
observed part of the sky is divided into declination bands
with equal exposure, Ek ¼ E=3. The correction factors are
inferred from a forward-folding procedure identical to
that described in Sec. IV, except that the response matrix
is adapted to each declination band (for details see
Appendix C).
The intervals in declination that guarantee that the

exposure of the bands are each E=3 are determined by
integrating the directional exposure function, ωðδÞ, derived
in Appendix E, over the declination so as to satisfy

R δk
δk−1

dδ cos δωðδÞ
R δ3
δ0
dδ cos δωðδÞ

¼ 1

3
; ð11Þ

where δ0 ¼ −π=2 and δ3 ¼ þ24.8°. Numerically, it is
found that δ1 ¼ −42.5° and δ2 ¼ −17.3°.
The resulting spectra (scaled by E3) are shown in the left

panel of Fig. 13. For reference, the best fit of the spectrum
obtained in section IV B is shown as the black line. No
strong dependence of the fluxes on declination is observed.
To examine small differences, a ratio plot is shown in the

right panel by taking the energy spectrum observed in the
whole field of view as the reference. A weighted-average
over wider energy bins is performed to avoid large
statistical fluctuations preventing an accurate visual appre-
ciation. For each energy, the data points are observed to be
in statistical agreement with each other. Note that the same
conclusions hold when analyzing data in terms of integral
intensities, as evidenced for instance in Table IV above
8 × 1018 eV. Similar statistical agreements are found above
other energy thresholds. Hence this analysis provides no
evidence for a strong declination dependence of the energy
spectrum.
A 4.6% first-harmonic variation in the flux in right

ascension has been observed in the energy bins above
8 × 1018 eV shown in the right panel of Fig. 13 [47]. It is
thus worth relating the data points reported here to these
measurements that are interpreted as dipole anisotropies.
The technical details to establish these relationships are
given in Appendix E.

TABLE IV. Integral intensity above 8 × 1018 eV in the three
declination bands considered.

Declination band Integral intensity [km−2 yr−1 sr−1]

−90.0° ≤ δ < −42.5° ð4.17% 0.04Þ × 10−1

−42.5° ≤ δ < −17.3° ð4.11% 0.04Þ × 10−1

−17.3° ≤ δ < þ24.8° ð4.11% 0.04Þ × 10−1
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FIG. 13. Left: Energy spectra in three declination bands of equal exposure. Right: Ratio of the declination-band spectra to that of the
full field-of-view. The horizontal lines show the expectation from the observed dipole [47]. An artificial shift of %5% is applied to the
energies in the x-axis of the northernmost/southernmost declination spectra to make it easier to identify the different data points.
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Spectral features

E
01

 = (2.8 ± 0.3 ± 0.4) x 1016 eV

E
12

 = (1.58 ± 0.05 ± 0.2) x 1017 eV

E
23

 = (5.0 ± 0.1 ± 0.8) x 1018 eV

E
34

 = (1.4 ± 0.1 ± 0.2) x 1019 eV

E
45

 = (4.7 ± 0.3 ± 0.6) x 1019 eV

γ
0
 = 3.09 ± 0.01 ± 0.10

γ
1
 = 2.85 ± 0.01 ± 0.05 

γ
2
 = 3.283 ± 0.002 ± 0.10

γ
3
 = 2.54 ± 0.03 ± 0.05

γ
4
 = 3.03 ± 0.05 ± 0.10

γ
5
 = 5.3 ± 0.3 ± 0.1

low energy ankle

2nd knee

ankle

instep

suppression

J
0
 = (8.34 ± 0.04 ± 3.40) x 10-11 km-2 sr-1 

                                                  yr-1 eV-1

fit parameters (± stat. ± syst.)

The quest for UHECR origins 
Auger, PRL (2020)

Ultra-high energy cosmic rays (UHECR)
Long thought to be of extragalactic origin > 5 EeV (0.8 J!), marking the ankle

Observed spectral features: instep at 10-15 EeV, toe at 40-50 EeV
→ markers of Peters cycle (acceleration) and UHECR horizon (propagation) 
     based on joint spectral-composition modeling

Spectral and composition observables integrated over the sphere  
→ help constrain source distance distribution & source escape spectrum

Anisotropy observables 
→ break down the flux (and composition) vs arrival direction: pinpoint sources?

Credits: Jorge Cham & Daniel Whiteson
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Uncertainty dominated by 14% sys. energy scale
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- Other experiments 
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uncertainties


- Auger has smallest sys. 
uncertainty on energy 
scale (14%)
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1. Heavy particles interact earlier than light  
—> Depth of the shower maximum (Xmax) is probe 
for cosmic-ray mass. 

2. MHz radio signals from: 
 
 
 
 
 
 
 
 
 

3. Radio emission footprint on the ground is sensitive 
to Xmax.  
 

4. Compare measured footprint to footprint from 
CORSIKA air shower simulation  
—> minimise for Xmax of measured shower.  

Introduction: Depth of the shower maximum (Xmax) as ‘mass composition’ 

3/11

Lighter (p, …) Heavier (Fe, …)

At
m

os
ph

er
ic

 d
ep

th
 [g

/c
m

2 ]

Xmax

Xmax

Xmax

Bjarni Pont [Pierre Auger Collaboration] — July 2021 — ICRC2021 — CRI | Cosmic Ray Indirect

AERA - Auger Engineering Radio Array

World’s largest radio experiment for
CR-physics.

Profiting from 3 other nearby CR-detectors:
(! high quality data, ext. trigger, ...).

100% duty cycle.

Energy threshold ⇠ 1017 eV.
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Introduction: AERA at the Pierre Auger Observatory

17 km2

Both measure mass composition of cosmic ray

FluorescenceRadio
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3000 km2

Bjarni Pont [Pierre Auger Collaboration] — July 2021 — ICRC2021 — CRI | Cosmic Ray Indirect

Auger Engineering Radio Array (AERA): 
153 autonomous radio antennas

Auger Engineering Radio Array (AERA)
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Berlin |  Germany
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Cosmic Ray Conference
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Results: Measured AERA Xmax distribution

• Light composition (p-He mix) at E=1017.5 eV, becoming lighter (mostly p) towards E=1018.5 eV.

• Supports e.g. Auger FD (in mean, width, and general shape of Xmax  distribution).


Pro
ton

Iron

'Width of Xmax distribution’‘Mean of Xmax distribution’

Bjarni Pont [Pierre Auger Collaboration] — July 2021 — ICRC2021 — CRI | Cosmic Ray Indirect

Preliminary

Preliminary
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Independent confirmation of earlier Auger results ICRC 2021
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Berlin |  Germany
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Results: Measured AERA Xmax distribution

• No general ‘radio-bias’ w.r.t. other methods such as fluorescence.

• Study of systematic uncertainties similar to LOFAR. 


• Cross-checks have not found single simple cause. 

• Differences to be found in study of systematic uncertainties. 

• Physical origin difficult to propose.
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'Width of Xmax distribution’‘Mean of Xmax distribution’

Bjarni Pont [Pierre Auger Collaboration] — July 2021 — ICRC2021 — CRI | Cosmic Ray Indirect

Preliminary

Preliminary
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di�erent mass groups have small overlap and the composition becomes heavier as the energy
increases. The estimated non-negligible Fe fraction at the sources is actually required only by the
energy spectrum fit, since it contributes at the highest energies where the mass composition data
are not available, as already noted in [17].

3. E�ect of the experimental systematic uncertainties

The systematic uncertainties of instrumental origin a�ect both the energy and the -max mea-
surements. The uncertainty on the energy scale is assumed to be �⇢/⇢ = 14% in the whole
considered energy range [18]. For the -max scale we consider an asymmetric and slightly energy-
dependent uncertainty, ranging from 6 to 9 g cm�2 [13]. An additional systematic e�ect could also
arise from the uncertainties on the -max resolution and acceptance parameters [13], but we verified
that their impact on the fit results is here negligible.

�-max �⇢/⇢ ⇡� ⇡-max ⇡

-14% 52.5 578.3 630.9
�1fsyst 0 71.7 595.2 666.9

+14% 64.9 609.3 674.2
-14% 53.5 581.3 634.8

0 0 60.1 554.8 614.9
+14% 70.6 548.8 619.5
-14% 79.1 714.2 793.3

+1fsyst 0 80.8 555.4 736.2
+14% 82.4 615.7 698.2

Table 3: The e�ect on the deviance of the
±1 fsyst shifts in the energy and -max scales.

.

Following the same approach used in [2], we take
into account the uncertainty on the energy scale and on
the -max scale by shifting all the measured energies and
-max values by one systematic standard deviation in each
direction. We consider all the possible combinations of
these shifts and their e�ect on the deviance value is sum-
marised in Tab. 3. The dominant e�ect in terms of predic-
tions at Earth is the one arising from the -max uncertainty;
as for the estimated best fit parameters, they are not much
modified when the experimental systematic uncertainties
are considered.

The maximal variations on the predicted fluxes at Earth, obtained by considering all the
configurations of Tab. 3, are shown in Fig. 3. The rather large uncertainty on the predicted total
fluxes (brown band) is due to the ±14% shifts in the energy scale, but it significantly a�ects only

Figure 3: Left: the combined e�ect of the experimental uncertainties on the energy spectrum. Right: the e�ect on
the relative abundances at the top of atmosphere. The uncertainties are considered by shifting the energies and/or the
-max distributions of 1 fsyst in both directions, as shown in Tab. 3. The bands represent the maximal variations induced
by considering all the possible combinations of shifts. The shaded area in the right plot indicates the region where the
-max measurements are grouped in one single energy bin because of the low statistics and thus the mass composition
predictions are mainly driven by the energy spectrum fit.
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are free fit parameters. Our data cannot be described by a Galactic contribution with heavier
mass compositions, e.g. the deviance reaches ⇠ 1000 if a composition dominated by silicon is
assumed. In the second scenario we assume only one additional mixed extragalactic component
at low energies, similar to the above-ankle one, but characterised by di�erent physical parameters.
Even if this scenario exhibits a lower deviance, the di�erence is comparable to the systematic
uncertainties e�ect illustrated in the next sections; in the future a more detailed investigation of the
assumptions on the Galactic contribution could possibly help to establish a favoured scenario.

In both the scenarios the high-energy (HE) component exhibits a very hard energy spectrum
at the sources, a relatively low maximum rigidity and a mixed mass composition, dominated by
medium-mass nuclei. On the other hand, the additional low-energy (LE) extragalactic component,
either light or mixed, has a very soft energy spectrum and a very high rigidity cuto�, which are also
related to a larger estimated source emissivity with respect to the one of the HE component; the fit
is actually degenerate with respect to 'cut for values above ⇠ 1019 eV, thus fixing this parameter to
an arbitrarily high value, such as 1024 eV, provides the same best fit results.
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Figure 1: The measured energy spectrum and the estimated best fit results in the scenario with two mixed extragalactic
components. Left: the estimated contributions from the two extragalactic components (red: LE component, blue: HE
component). Right: the partial fluxes related to di�erent nuclear species at the top of atmosphere, grouped according to
their mass number: � = 1 (red), 2  �  4 (grey), 5  �  22 (green), 23  �  38 (cyan), � � 39 (blue).
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Figure 2: The first two moments of the -max distributions in each energy bin along with their expected values and the
predictions for pure compositions of 1H (red), 4He (grey), 14N (green), 28Si (cyan), 56Fe (blue).

In Fig. 1 and in Fig. 2 the best fit results obtained in the scenario with two mixed extragalactic
components are shown with the observed energy spectrum and the first two moments of the measured
-max distributions. The observed mass composition below the ankle is mixed and dominated by
protons and medium-mass nuclei, such as nitrogen. Above the ankle the contributions from the
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are free fit parameters. Our data cannot be described by a Galactic contribution with heavier
mass compositions, e.g. the deviance reaches ⇠ 1000 if a composition dominated by silicon is
assumed. In the second scenario we assume only one additional mixed extragalactic component
at low energies, similar to the above-ankle one, but characterised by di�erent physical parameters.
Even if this scenario exhibits a lower deviance, the di�erence is comparable to the systematic
uncertainties e�ect illustrated in the next sections; in the future a more detailed investigation of the
assumptions on the Galactic contribution could possibly help to establish a favoured scenario.

In both the scenarios the high-energy (HE) component exhibits a very hard energy spectrum
at the sources, a relatively low maximum rigidity and a mixed mass composition, dominated by
medium-mass nuclei. On the other hand, the additional low-energy (LE) extragalactic component,
either light or mixed, has a very soft energy spectrum and a very high rigidity cuto�, which are also
related to a larger estimated source emissivity with respect to the one of the HE component; the fit
is actually degenerate with respect to 'cut for values above ⇠ 1019 eV, thus fixing this parameter to
an arbitrarily high value, such as 1024 eV, provides the same best fit results.
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Figure 1: The measured energy spectrum and the estimated best fit results in the scenario with two mixed extragalactic
components. Left: the estimated contributions from the two extragalactic components (red: LE component, blue: HE
component). Right: the partial fluxes related to di�erent nuclear species at the top of atmosphere, grouped according to
their mass number: � = 1 (red), 2  �  4 (grey), 5  �  22 (green), 23  �  38 (cyan), � � 39 (blue).
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Figure 2: The first two moments of the -max distributions in each energy bin along with their expected values and the
predictions for pure compositions of 1H (red), 4He (grey), 14N (green), 28Si (cyan), 56Fe (blue).

In Fig. 1 and in Fig. 2 the best fit results obtained in the scenario with two mixed extragalactic
components are shown with the observed energy spectrum and the first two moments of the measured
-max distributions. The observed mass composition below the ankle is mixed and dominated by
protons and medium-mass nuclei, such as nitrogen. Above the ankle the contributions from the
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Effect of the systematic uncertainties

Energy scale:   
Xmax scale: 

σsys(E)/E = 14 %
σsys(Xmax) = 6 ÷ 9 g cm−2

Combined fit of the energy spectrum and mass composition across the ankle Eleonora Guido

Figure 3: Left: the combined e�ect of the experimental uncertainties on the energy spectrum. Right: the
e�ect on the relative abundances at the top of atmosphere. The uncertainties are considered by shifting the
energies and/or the -max distributions of 1 fsyst in both directions, as shown in Tab. 3. The bands represent
the maximal variations induced by considering all the possible combinations of shifts. The shaded area in
the right plot indicates the energy region where no mass composition information is available and thus the
predictions are only extrapolated from the energy spectrum fit.

4. E�ect of the uncertainties from models

We also investigate the impact on the fit results of changing the propagation models and the
hadronic interaction model. In all the cases we repeat the fit considering di�erent combinations of
propagation models, labelled as ’XY’ according to Tab. 1. The results thus obtained are written in
Tab. 5 and their e�ect on the predicted fluxes at Earth is shown in Fig. 4.

As concerns the hadronic interaction model, we verified that QGSJetIIv4 cannot properly
describe our data and is thus excluded from this analysis. Since we want to keep open the option
that our data are better described by an intermediate model between EPOS-LHC and Sibyll2.3d
instead of exactly one of them, we introduce an additional nuisance parameter XHIM, limited
between 0 and 1, which defines the value of each HIM-dependent Gumbel parameter as ? =
XHIM · ?EPOS + (1 � XHIM) · ?Sibyll. The introduction of XHIM leads to an additional deviance term
⇡HIM = (XHIM � 0.5)2/(0.5)2.

TG PG TD PD
LE HE LE HE LE HE LE HE

W 3.49 ± 0.02 �1.98 ± 0.10 3.48 ± 0.04 �1.9 ± 0.2 3.66 ± 0.05 �0.93 ± 0.09 3.51 ± 0.06 �0.86 ± 0.10
log10 ('cut/V) 24 (lim.) 18.16 ± 0.01 24 (lim.) 18.16 ± 0.02 18.04 ± 0.04 18.23 ± 0.01 17.95 ± 0.06 18.21 ± 0.01
�H (%) 49.87 $ (10�7) 49.39 0.44 44.17 0.38 40.85 $ (10�9)
�He (%) 10.92 28.60 14.52 49.29 7.45 20.21 14.64 47.99
�N (%) 36.25 69.05 33.28 43.84 45.17 73.80 39.57 38.29
�Si (%) $ (10�6) 7.32 $ (10�7) 4.64 $ (10�5) 2.91 $ (10�6) 11.15
�Fe (%) 2.96 2.35 2.80 1.78 3.21 2.69 4.94 2.58
XHIM 1.0 (lim.) 0.94 ± 0.17 0.92 ± 0.15 0.86 ± 0.13
⇡HIM 1.0 0.78 0.69 0.52
⇡� (#� ) 60.1 (24) 51.9 (24) 44.3 (24) 51.7 (24)
⇡-max (#-max ) 555.8 (329) 564.8 (329) 587.5 (329) 593.2 (329)
⇡tot (# ) 615.9 (353) 616.7 (353) 631.8 (353) 645.0 (353)

Table 5: Best fit results obtained by using di�erent combinations of propagation models. The uncertainty
due to the hadronic interaction model choice is considered by fitting the nuisance parameter XHIM.

For all the considered combinations of propagation models our data appear to be better described
by either EPOS-LHC or intermediate models compatible with it. The lowest deviance is obtained in
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Figure 3: Left: the combined e�ect of the experimental uncertainties on the energy spectrum. Right: the
e�ect on the relative abundances at the top of atmosphere. The uncertainties are considered by shifting the
energies and/or the -max distributions of 1 fsyst in both directions, as shown in Tab. 3. The bands represent
the maximal variations induced by considering all the possible combinations of shifts. The shaded area in
the right plot indicates the energy region where no mass composition information is available and thus the
predictions are only extrapolated from the energy spectrum fit.
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We also investigate the impact on the fit results of changing the propagation models and the
hadronic interaction model. In all the cases we repeat the fit considering di�erent combinations of
propagation models, labelled as ’XY’ according to Tab. 1. The results thus obtained are written in
Tab. 5 and their e�ect on the predicted fluxes at Earth is shown in Fig. 4.
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that our data are better described by an intermediate model between EPOS-LHC and Sibyll2.3d
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Table 5: Best fit results obtained by using di�erent combinations of propagation models. The uncertainty
due to the hadronic interaction model choice is considered by fitting the nuisance parameter XHIM.

For all the considered combinations of propagation models our data appear to be better described
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Figure 4: Left: the e�ect of the uncertainties from models on the energy spectrum. Right: the e�ect on the relative
abundances at the top of atmosphere. The bands represent the maximal variations given by the results in Tab. 4.

5. Source evolution

All the results presented in the previous sections are obtained by assuming no cosmolog-
ical evolution for the populations of extragalactic sources. We perform the fit also assuming
three di�erent evolution scenarios: we consider a SF-like [18] evolution, an AGN-like one [19],
which have a positive source evolution for I < 1 (< = 3.5 and < = 5, respectively), and a
TDE-like evolution with < = �3 for small I [20]. Since there is no physical reasons to as-
sume that the two populations of sources have the same cosmological evolution, all the possible
combinations are considered and the results in terms of total deviance are summarised in Fig. 5.

Figure 5: Deviance as a function of the
cosmological evolution of the two popula-
tions.

In the case of the LE component, a positive (negative) evolu-
tion produces a hardening (softening) of the energy spectrum
at the sources to compensate the larger amount of low (high)
energy particles. As for the HE component, the cosmologi-
cal evolution e�ect is balanced by the interplay between the
modification of the energy spectrum at the sources and/or the
adjustment of the rigidity cuto� of the LE component. If the
HE population has a strong positive evolution (e.g. < = 5), the
hardening of the energy spectrum at the sources is not enough
to compensate the increased amount of low-energy particles,
hence the LE component is suppressed below ⇠ 1018 eV to
attempt the description of the whole energy range with the HE component alone; the deviances are
very high, so that such scenarios are excluded by our data at high significance. In all the other
scenarios, the impact on the fit results is within the systematic uncertainties e�ect, so it is more
di�cult to draw a conclusion about a favoured configuration. However, when we consider the values
< = 0, 3.5 for the HE component and < = �3, 0 for the LE one, we obtain the lowest deviances.

6. Conclusions

In this study we performed a combined fit of the energy spectrum and mass composition data
from ⇠ 6 · 1017 eV. The region above the ankle is described by an extragalactic component ejected
at the sources with a very hard energy spectrum (W < 0), a rather low rigidity cuto� and a mass
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(transition to galactic component), similar results for total composition obtained
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Effect of the systematic uncertainties

Energy scale:   
Xmax scale: 

σsys(E)/E = 14 %
σsys(Xmax) = 6 ÷ 9 g cm−2
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Figure 3: Left: the combined e�ect of the experimental uncertainties on the energy spectrum. Right: the
e�ect on the relative abundances at the top of atmosphere. The uncertainties are considered by shifting the
energies and/or the -max distributions of 1 fsyst in both directions, as shown in Tab. 3. The bands represent
the maximal variations induced by considering all the possible combinations of shifts. The shaded area in
the right plot indicates the energy region where no mass composition information is available and thus the
predictions are only extrapolated from the energy spectrum fit.

4. E�ect of the uncertainties from models

We also investigate the impact on the fit results of changing the propagation models and the
hadronic interaction model. In all the cases we repeat the fit considering di�erent combinations of
propagation models, labelled as ’XY’ according to Tab. 1. The results thus obtained are written in
Tab. 5 and their e�ect on the predicted fluxes at Earth is shown in Fig. 4.

As concerns the hadronic interaction model, we verified that QGSJetIIv4 cannot properly
describe our data and is thus excluded from this analysis. Since we want to keep open the option
that our data are better described by an intermediate model between EPOS-LHC and Sibyll2.3d
instead of exactly one of them, we introduce an additional nuisance parameter XHIM, limited
between 0 and 1, which defines the value of each HIM-dependent Gumbel parameter as ? =
XHIM · ?EPOS + (1 � XHIM) · ?Sibyll. The introduction of XHIM leads to an additional deviance term
⇡HIM = (XHIM � 0.5)2/(0.5)2.
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⇡-max (#-max ) 555.8 (329) 564.8 (329) 587.5 (329) 593.2 (329)
⇡tot (# ) 615.9 (353) 616.7 (353) 631.8 (353) 645.0 (353)

Table 5: Best fit results obtained by using di�erent combinations of propagation models. The uncertainty
due to the hadronic interaction model choice is considered by fitting the nuisance parameter XHIM.

For all the considered combinations of propagation models our data appear to be better described
by either EPOS-LHC or intermediate models compatible with it. The lowest deviance is obtained in
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Figure 4: Left: the e�ect of the uncertainties from models on the energy spectrum. Right: the e�ect on the relative
abundances at the top of atmosphere. The bands represent the maximal variations given by the results in Tab. 4.

5. Source evolution

All the results presented in the previous sections are obtained by assuming no cosmolog-
ical evolution for the populations of extragalactic sources. We perform the fit also assuming
three di�erent evolution scenarios: we consider a SF-like [18] evolution, an AGN-like one [19],
which have a positive source evolution for I < 1 (< = 3.5 and < = 5, respectively), and a
TDE-like evolution with < = �3 for small I [20]. Since there is no physical reasons to as-
sume that the two populations of sources have the same cosmological evolution, all the possible
combinations are considered and the results in terms of total deviance are summarised in Fig. 5.

Figure 5: Deviance as a function of the
cosmological evolution of the two popula-
tions.

In the case of the LE component, a positive (negative) evolu-
tion produces a hardening (softening) of the energy spectrum
at the sources to compensate the larger amount of low (high)
energy particles. As for the HE component, the cosmologi-
cal evolution e�ect is balanced by the interplay between the
modification of the energy spectrum at the sources and/or the
adjustment of the rigidity cuto� of the LE component. If the
HE population has a strong positive evolution (e.g. < = 5), the
hardening of the energy spectrum at the sources is not enough
to compensate the increased amount of low-energy particles,
hence the LE component is suppressed below ⇠ 1018 eV to
attempt the description of the whole energy range with the HE component alone; the deviances are
very high, so that such scenarios are excluded by our data at high significance. In all the other
scenarios, the impact on the fit results is within the systematic uncertainties e�ect, so it is more
di�cult to draw a conclusion about a favoured configuration. However, when we consider the values
< = 0, 3.5 for the HE component and < = �3, 0 for the LE one, we obtain the lowest deviances.

6. Conclusions

In this study we performed a combined fit of the energy spectrum and mass composition data
from ⇠ 6 · 1017 eV. The region above the ankle is described by an extragalactic component ejected
at the sources with a very hard energy spectrum (W < 0), a rather low rigidity cuto� and a mass
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1. Introduction

The existence of ultra-high-energy cosmic rays (UHECRs), the ones reaching Earth with
energies above ⇠ 1018 eV, was proven in the early 1960s and recent measurements point to a
predominant flux component of extragalactic origin at these energies [1]. In the still open quest for
the sources of these particles, the large ground-based experiments built in the last few decades, like
the Pierre Auger Observatory, have been helping in shedding light on such open questions.

In this analysis we simultaneously fit a simple astrophysical model to both the energy spectrum
and the mass composition data measured at the Pierre Auger Observatory, considering energies
from 1017.8 eV to include the region across the ankle. At this first stage, the e�ects of the potentially
relevant interactions occurring in the acceleration sites are not considered, limiting the study to
constrain the physical parameters related to the energy spectrum and the mass composition of
particles escaping the environments of extragalactic sources. In a previous publication [2], a model
consisting of one single population of extragalactic sources was fitted to the data above the ankle
(⇢ > 1018.7 eV). Here, since we want to interpret also the ankle region, we assume the presence of
one (or more) additional contribution(s) at low energies, so that the ankle feature results from the
superposition of di�erent components. Each extragalactic component originates from a population
of identical sources, uniformly distributed in the comoving volume except for a local overdensity
for distances smaller than ⇠ 30 Mpc. The overdensity is considered as a cluster centred around
our Galaxy, following [3], which provides a good approximation to nearby densities if compared
to the distributions of stellar mass and star formation (SF) rate over the full sky illustrated in [4].
Each component is given by the superposition of the contributions of =  5 representative nuclear
species �, chosen among 1H, 4He, 14N, 28Si, 56Fe, ejected according to a power-law spectrum with
a rigidity-dependent broken exponential cuto�:

� (⇢) =
’
�

5� · �0 ·
✓
⇢

⇢0

◆�W
·
8>><
>>:

1, ⇢ < /� · 'cut;

exp
⇣
1 � ⇢

/� ·'cut

⌘
, ⇢ > /� · 'cut.

(1)

where �0 is the normalisation factor, /� is the atomic number of each species � and 5� is the
fraction of � at the energy ⇢0 = 1017.5 eV.

fpd Talys [6], PSB [7] XYZ
EBL Gilmore [8], Dominguez [9] XYZ
HIM EPOS-LHC [10], Sibyll2.3d [11], QGSJetIIv4 [12] XYZ

Table 1: The propagation models used in this analysis. The
bold letters define the label ’XYZ’. For instance, ‘TGE’ stands for
Talys, Glimore and EPOS-LHC models.

The energy spectrum and mass com-
position of the particles escaping from the
sources are modified during the propaga-
tion in the intergalactic medium (IGM) by
the adiabatic energy losses and the interac-
tions with background photons. We take
into account these e�ects by using SimProp [5] simulations, where the uncertain quantities, i.e.
the photodisintegration cross sections fpd and the EBL spectrum, are treated with phenomenolog-
ical models. Besides, since a direct measurement of the mass composition is not possible on an
event-by-event basis, we use the distribution of -max as an estimator of the mass distribution in each
energy bin. The conversion to the mass distribution depends on the chosen hadronic interaction
model (HIM), which is thus another source of uncertainty. The various propagation models used in
this analysis are shown in Tab. 1. We choose the configuration labelled as “TGE” as our reference
and the impact of the models on the fit results will be discussed in Sec. 4.

2

Mass composition at Earth

Rcut = 1.4 . . .1.6⇥1018 V

Extragalactic index very hard, but no really good handle on this parameter

Flux suppression superposition

of injection maximum energy 
and propagation energy losses

(Auger, UHECR 2022, ICRC 2021)
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Comparing Sibyll to QGSJet

The AugerMix result using Sibyll 2.3d is very similar to the old AugerMix result with QGSJetII-04

15

Conclusion

We have constructed a representation of Auger Xmax measurements as would have 
been seen in the TA detector using the Sibyll 2.3d high-energy interaction model.

This representation agrees with TA <Xmax> measurements well, but there is 
disagreement at some energies in 𝝈(Xmax). This disagreement is plausibly due to 
the handling of Xmax resolution due to varying aerosols at TA

A robust difference between the Auger and TA Xmax measurements has not been 
found

A journal publication from the Mass Composition Working Group 
is forthcoming

20

(UHECR 2022, D. Bergmann for the 
Auger-TA joint working group)
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Event-by-event reconstruction of Xmax with the
Surface Detector of the Pierre Auger Observatory
using deep learning
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Figure 1: (a) Simulated signal pattern measured by the surface detector. The marker sizes indicate
the amount of measured signal and the colors represent the arrival time of the shower at a given
station (yellow=early, red=late). The arrow denotes the projection of the shower axis on the surface
and its tip the shower core. (b) Simulated signal trace of a cosmic-ray event measured at a surface-
detector station at a distance of about 1000 m to the shower core. Different colors indicate signals
from different shower components.

minimized during network training.
This work is structured as follows. First, we specify the data sets for both the simulation studies

and measured Auger hybrid data, which include information from the FD for validation purposes.
We explain in detail how the simulated data are prepared and augmented for the optimization
of the network parameters and the reconstruction of !max. After that, we describe in detail the
architecture and training of the deep network. Then we show the !max reconstruction performance
of the network on simulated data as a function of energy, zenith angle, mass of the primary particle,
and the effect of using two hadronic interaction models different from the one used in the training.
Finally, we verify the capabilities of the network by direct comparison of the measured maximum
shower depth !max of the network and of the FD. We correct for detector-aging effects resulting
from long-term operation of the observatory. Subsequently, we calibrate the absolute !max value of
the network output, and determine the !max resolution of the network as a function of the primary
energy.

2 Data sets and their preparation

The measured air shower footprint consists of a characteristic pattern of several triggered WCDs
arranged in a hexagonal grid (see Fig. 1a). Using three PMTs each triggered station measures the
time-dependent density of particles encoded in three signal traces. An example of a simulated
signal trace is shown in Fig. 1b.

The basic idea is to provide the network as input the raw data of a measured cosmic-ray
event. The raw information for each triggered station consists of three signal time traces, the station
position and the time of the first shower particles arriving at the station.

– 3 –

Simulated signal trace of one station
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Evaluation – EPOS-LHC
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Figure 12: (a) Energy-dependent bias of the deep neural network with respect to the reconstruction
of the fluorescence detector. (b) Energy-dependent resolution of the deep neural network with
respect to the reconstruction of the fluorescence detector.

6 Summary

In this work we presented a new approach for reconstructing the maximum shower depth !max using
only the signal traces of the water-Cherenkov detectors (WCDs) placed on ground, which record a
tiny subset of the billions of shower particles. It was shown that the presented method is capable
of exploiting the data measured by the WCDs more comprehensively than ever before by adapting
deep learning techniques, resulting in an unprecedented performance for mass composition studies
using the surface detector.

As reconstruction method we have developed an advanced deep neural network which is
especially suited for the situation of the Pierre Auger Observatory. The signal traces of the WCDs
are analyzed by the network using so-called LSTM cells and their measurements are combined
according to the hexagonal symmetry of the detector grid.

A key issue to correctly adjust the network parameters is the proper preparation of the data
used for the network training. In addition to re-scaling and normalization of the signal amplitudes
and time measurements, we implement real operation-conditions in the simulation data as data
augmentation during the training. This includes missingWCDs due to hardware failures or showers
falling close to the edges of the detector grid, missing signal traces of single photomultipliers and
detector stations with saturated signal traces owing to high-energy events or very close shower cores.
By including such effects, we make the network robust against small differences between simulation
and measured data, enhancing its generalization capacities and providing an accurate reconstruction
of !max for zenith angles up to 60◦ and even for events with saturated station electronics.

Initially we evaluate the performance of the network on simulated data. When evaluating the
network using disjunct data from the same simulation as used for training, we observe an almost
bias free reconstruction of !max. The !max resolution improves with increasing cosmic ray energy
and is composition dependent. For proton-induced showers the resolution is 38 g/cm2 at 10 EeV
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Figure 4: Event-by-event correlation of -max as measured by the DNN and the FD using golden hybrids.

reconstruction bias at low energies (compare to Fig. 1a). After fitting a constant to the data, which
yields �30.0 ± 0.6 g/cm2, the predictions of the DNN are calibrated to the FD -max scale.

We show the energy dependence of f(-max,DNN � -max,FD) in Fig. 5b. Statistical uncertainties
are estimated using bootstrapping. To extract the resolution of the DNN, we first parameterize this
dependency by fitting the function f�-max (⇢) = 0 · 4�1 · (log10 ⇢/eV�18.5) + 2 to the data. The obtained
parameters are 0 = 18.0 ± 2.5 g/cm2, 1 = 2.9 ± 1.2, and 2 = 27.7 ± 2.6 g/cm2. The fit is depicted
as the continuous red line in Fig. 5b. To determine the resolution of the DNN, we subtract the FD
resolution [2], which is shown as dashed grey line, in quadrature. The resulting DNN resolution is
shown as a dashed red line. It improves from approximately 40 g/cm2 at 3 EeV to below 25 g/cm2

beyond 20 EeV. This is in good agreement with our expectations from simulation studies (compare
with Fig. 2) and strengthens the finding that the resolution is independent of the interaction model.
This implies that only a calibration to the -max scale of the FD, as performed above, is needed for
using the DNN for event-by-event composition studies.

6. Conclusion

In this contribution, we presented a deep neural network (DNN) to reconstruct the atmospheric
depth of the shower maximum -max using the SD. The network was trained using EPOS-LHC
showers and further evaluated on QGSJetII-04 and Sibyll 2.3 showers. The composition bias of
the reconstruction is similar for all interaction models and amounts to only a few g/cm2 beyond
10 EeV. Additionally, it was found that the overall bias of the -max reconstruction depends on the
hadronic interaction model used, requiring a calibration of the method. In contrast, the resolution
was found to be independent of the interaction model. It amounts for protons (iron) to roughly
40 g/cm2 (25 g/cm2) at 10 EeV, and reaches 30 g/cm2 (15 g/cm2) beyond 100 EeV. By further
investigating the discrimination power of the reconstruction, it was shown that the DNN will enable
mass-composition studies on an event level.

To verify the method’s performance and calibrate the predictions of the DNN to the -max scale
of the FD, hybrid measurements were used. The calibration was found to be energy-independent,
with a size of the -max bias moderately above expectations from simulation studies. The resolution
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tiny subset of the billions of shower particles. It was shown that the presented method is capable
of exploiting the data measured by the WCDs more comprehensively than ever before by adapting
deep learning techniques, resulting in an unprecedented performance for mass composition studies
using the surface detector.

As reconstruction method we have developed an advanced deep neural network which is
especially suited for the situation of the Pierre Auger Observatory. The signal traces of the WCDs
are analyzed by the network using so-called LSTM cells and their measurements are combined
according to the hexagonal symmetry of the detector grid.

A key issue to correctly adjust the network parameters is the proper preparation of the data
used for the network training. In addition to re-scaling and normalization of the signal amplitudes
and time measurements, we implement real operation-conditions in the simulation data as data
augmentation during the training. This includes missingWCDs due to hardware failures or showers
falling close to the edges of the detector grid, missing signal traces of single photomultipliers and
detector stations with saturated signal traces owing to high-energy events or very close shower cores.
By including such effects, we make the network robust against small differences between simulation
and measured data, enhancing its generalization capacities and providing an accurate reconstruction
of !max for zenith angles up to 60◦ and even for events with saturated station electronics.

Initially we evaluate the performance of the network on simulated data. When evaluating the
network using disjunct data from the same simulation as used for training, we observe an almost
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FIG. 7. Average logarithmic muon content, hlnRµi, as a function of the average shower depth, hXmaxi.

D. Number of muons and its fluctuations

The average number of muons in a proton shower of energy E has been shown in simulations to scale as

N⇤
µ(E) = C E�

where � ' 0.9 (see main text for references).

If we assume all the secondaries from the first interaction produce muons following the same relation as given for

protons above, we obtain the number of muons in the shower as

Nµ(E) =

mX

j=1

C E�
j = N⇤

µ(E)

mX

j=1

x�
j = N⇤

µ(E) ↵1 , (1)

where index j runs over m secondary particles which reinteract hadronically and xj = Ej/E is the fraction of energy

fed to the hadronic shower by each. In this expression the fluctuations in Nµ are induced by ↵1 in the first generation

which fluctuates because the multiplicity m and the energies xj of the secondaries fluctuate.

Consider a “toy“ interaction producing only pions, all with the same energy and only a fraction f of them are

charged and contribute to the hadron cascade. This model has no fluctuations and should by construction give

↵1 = 1, which follows from Eq. (1) if we identify the average number of muons for proton showers with N⇤
µ(E) which

coincides with our definition. This incidentally implies a condition for � = log(m)/ log(m/f) which is the same as

that obtained by Matthews and by Kampert et al. (� ' 0.90 for f = 2/3 and m ⇠ 50). In a more realistic scenario

↵1 fluctuates because the particles do not have the same energy and f (the ratio of charged pions) and m fluctuate.
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The probability of hybrid events hðEÞ (product of the
energy spectrum of cosmic rays and the efficiency of
detection) can be obtained from the data, as explained in
and [10,24,26]. The rhs of Eq. (2) depends on the
parameters a and b via Eq. (1). To obtain the energy
dependence of the fluctuations, we parametrize σ by six
independent values such that σðEÞ ¼ σ̂k · hRμiðEÞ, where
the constants σ̂k are the relative fluctuations in the kth
energy bin with limits ½Ek−1; Ek%, where k runs from one to
six. In Eq. (2), k ¼ 0 corresponds to the contributions from
the interval ½0; Ethr%, where the SD is not fully efficient. The
fluctuations here are assumed to take the value of the first
fitted bin σ̂0 ≡ σ̂1.
The sum over the index i in Eq. (2) (the usual sum over

the log-likelihoods of events) includes only events above
the energy threshold of 4 × 1018 eV. The function CðEÞ is
the normalization factor from the double Gaussian. The
result of the fit for the parameters a and b are shown in
Fig. 1. The fluctuations are shown in Fig. 2. The distri-
bution of the number of muons and the PDF in the
individual energy bins can be found in the Supplemental
Material [17].
The dominant systematic uncertainties of σ come from

the uncertainties in the resolutions sE and sμ. For sμ we
estimate the uncertainty using simulations and data. In
simulations, the uncertainty was estimated by the spread in
a sample of simulated showers, where each shower is
reconstructed multiple times, each time changing only the
impact point at the ground. For data, we reconstruct the
same event multiple times, leaving out the signals from one
of the detector stations. The average relative resolution

hsμ=Rμi and its systematic uncertainty is thus ð10& 3Þ%
at 1019 eV.
We verified the values of sE by studying the difference in

the energy reconstruction of events measured independently
by two or more FD stations. The width of the distribution of
these energy differences is found to be compatible with sE.
We therefore take the statistical 1-σ uncertainties of this
cross check as a conservative upper limit of the systematic
uncertainty of sE [27]. The average relative energy reso-
lution hsE=Ei is about ð8.4& 2.9Þ% at 1019 eV. We have
further confirmed that there are no significant contributions
to the fluctuations from differences between the individual
FD stations, neither related to the longtime performance
evolution of the SD and FD detectors.
Any residual electromagnetic component in the signal

would affect the lower zenith angles more. We therefore
split the event sample at the median zenith angle (66°) and
compare the resulting fluctuations. We find no significant
difference between the more and the less inclined sample.
In another test, we do find a small modulation of hRμi

with the azimuth angle (<1%), which we correct for. This
modulation is related to the approximations used in the
reconstruction, which deal with the azimuthal asymmetry
of the muon densities at the ground due to the Earth’s
magnetic field [3]. Finally, we have run an end-to-end
validation of the whole analysis method described in this
Letter on samples of simulated proton, helium, oxygen, and
iron showers.
Because of the almost linear relation between Rμ and E,

the systematic uncertainty on σ due to the uncertainty of the
absolute energy scale of 14% [25] practically cancels out in
the relative fluctuations. The systematic uncertainty in the
absolute scale of Rμ of 11% [5] drops out for the same
reason. The systematic effects for the bin around 1019 eV
are summarized in Table I. Over all energies, the systematic
uncertainties are below 8%.
Results and discussion.—The best-fit value for the

average relative number of muons at 1019 eV (parameter a)
is hRμið1019eVÞ¼1.86&0.02ðstatÞþ0.36

−0.31ðsystÞ. For the
slope (parameter b) we find dhlnRμi=d lnE ¼ 0.99&
0.02ðstatÞ þ0.03

−0.03ðsystÞ. These values are consistent with
the values previously reported [5,17].

FIG. 2. Measured relative fluctuations in the number of muons
as a function of the energy and the predictions from three
interaction models for proton (red) and iron (blue) showers.
The gray band represents the expectations from the measured
mass composition interpreted with the interaction models.
The statistical uncertainty in the measurement is represented
by the error bars. The total systematic uncertainty is indicated by
the square brackets.

TABLE I. Contributions to the systematic uncertainty in the
relative fluctuations around 1019 eV (1018.97–1019.15 eV). The
central value is σ=hRμi ¼ 0.102& 0.029ðstatÞ & 0.007ðsystÞ.

Source of uncertainty Uncertainty (%)

E absolute scale hEi <0.1
E resolution sE 4.6
Rμ absolute scale hRμi 0.5
Rμ resolution sμ 5.2
Rμ azimuthal modulation hRμiðϕÞ 0.5

Total systematics 7.0

PHYSICAL REVIEW LETTERS 126, 152002 (2021)

152002-6

(Phys. Rev. Lett. 126 (2021) 152002)

24 4. Properties of the FD photomultipliers

(a) (b)

Figure 4.1.: (a) Schema of a PMT. The names of the different components are indicated as well
as the the first stages of the electron multiplication process. Taken from [50]. (b)
Measured quantum efficiency Q as function of the wavelength for two Hamamatsu
models of newer generation of PMTs with a super-bialkali photocathode, i.e. higher
quantum efficiency, as well as of a Photonis XP 3062 PMT. For the latter, Q is about
(29.5 ± 1)% at 375 nm. Taken from [51].

first dynode by an electric field between the photocathode and the first dynode.
By hitting the latter, they kick out further electrons, which again are accelerated
thanks to an electric field between the first and second dynode. This process is
repeated at every dynode resulting in a multiplication process of electrons. At
the end, the electrons hit the anode producing an electric current which can be
amplified, converted and measured.

The gain G is the multiplication factor of a PMT, i.e. how many electrons arrive
at the anode for one photoelectron produced at the photocathode. In other words

G =
nK
nA

=
IK
IA

, (4.1)

where nK is the number of produced photoelectrons at the cathode and nA the
number of electrons reaching the anode. IK and IA are the corresponding cur-
rents at the cathode and anode induced by these electrons. The whole am-
plification process will be explained in the following paragraph similar to the
explanations given in [52].

If the number of photoelectrons that strike the first dynode is nf and the gain
of the first dynode is g1, the number of resulting secondary electrons is nf g1.
If the second dynode has a gain g2, the number of emitted electrons from the
second dynode is then nf g1 g2. The repetition of this process for N dynodes
leads to the final number of electrons at the anode

nA = nf

N

’
i=1

gi. (4.2)

The initial photoelectrons have to be focused on the first dynode. The efficiency
of this process is given by the input system collection efficiency h. Thus, the

PMT analogy of air shower
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Fig. 12 Mean logarithmic muon density 〈ln ρ35〉 as a function of the
mean depth of shower maximum 〈Xmax〉 for simulations with primary
energies of 1017.5 eV (a) and 1018 eV (b) compared to Auger Observa-
tory measurements with the FD

the relationship between 〈Xmax〉 and 〈ln ρ35〉 can be repre-
sented by a line for each hadronic interaction model, as shown
in Fig. 12 at two different energies, 1017.5 eV and 1018 eV.
The 〈Xmax〉 data are extracted from [32]. It is apparent that
both models fail to reproduce the data. A difference of 38%
in the muon number is observed at 1017.5 eV and 1018 eV
compared to EPOS- LHC predictions, while the difference
is larger compared to the QGSJetII- 04 predictions. In both
cases, data show that the analyzed hadronic interaction mod-
els produce fewer muons than those observed in EAS. All
these results are collected in Tab. 2 together with the cor-
responding statistical and systematic uncertainties. It should
be stressed, nevertheless, that in the above comparison the
true Monte-Carlo energy was used for the simulated data
because the hybrid reconstruction of the energy (as done for
real data) is hampered by the failure in reproducing the num-
ber of muons impinging the SD stations [35].

The results presented in Figs. 10 and 11 are the first ones
for the Pierre Auger Observatory on the muon content of the
air showers obtained in this energy range. They allow us to
extend to lower energies results previously reported at higher
energies, based on the muon number estimation in inclined
air showers [36,37]. This is because at zenith angles exceed-

Table 2 Ratio fµ = exp (〈ln ρ35〉UMD − 〈ln ρ35〉sim) of the muon con-
tent in data and simulations with statistical and systematic uncertainties
at primary energies of 1017.5 eV and 1018 eV for the EPOS- LHC and
QGSJetII- 04 hadronic interaction models

Energy Model fµ

1017.5 eV EPOS- LHC 1.38 ± 0.04(stat)± 0.21
0.18(sys)

QGSJetII- 04 1.50 ± 0.04(stat)± 0.23
0.20(sys)

1018.0 eV EPOS- LHC 1.38 ± 0.12(stat)± 0.21
0.18(sys)

QGSJetII- 04 1.53 ± 0.13(stat)± 0.23
0.20(sys)

ing ≈ 60◦, EASs provide a direct measurement of the muon
number at the ground due to the absorption of the electromag-
netic component in the large atmospheric depth traversed.
The muon number for each shower can then be derived by
scaling a simulated reference profile of the muon density
distribution at the ground to the data. It is worth noting that
the measurements obtained pertain to muons with energies
above 0.16 GeV (Cherenkov threshold in water) that reach
the Observatory site located at an altitude of 1425 m, while
the measurements obtained in this work pertain to muons
with energies ∼ 1 GeV for vertical incidence.

Given the different conditions of measurements that select
muons with different energy distributions, it proves difficult
to compare directly the results presented here and the ones
reported in [36,37]. An indirect manner is required. Follow-
ing [38], we make use of the z-scale factor to perform the
comparisons,

z = 〈ln x〉 − 〈ln x〉p

〈ln x〉Fe − 〈ln x〉p
(18)

where x is the muon-density estimator (that is, ρ35 in this
work and Rµ in [37]). Here, the symbols 〈·〉p and 〈·〉Fe stand
for the expected muon densities for proton and iron showers,
simulated with a given model and accounting for detector
effects. The normalization by the difference between iron
and proton simulations allows the comparison between dif-
ferent types of quantities by reducing the possible systematic
differences.

The results of both analyses are shown in Fig. 13, using
two distinct generator models of hadronic interactions to
predict 〈ln ρ35〉 for proton and iron: EPOS- LHC (a) and
QGSJetII- 04 (b). There is a gap between ≈ 2 × 1018 eV
(UMD-based analysis running out of statistics) and ≈ 4 ×
1018 eV (threshold of the inclined EAS-based analysis), but
overall, both analyses give similar results in terms of z-factor.

Assuming the validity of the superposition model, the
measurement of 〈Xmax〉 by the FD converted into an aver-
age logarithmic mass 〈ln A〉 and finally into z = 〈ln A〉/ln 56

can be used to establish the reference values of the z-factor.
These are shown as the diamond markers in Fig. 13. For

123

(Eur. Phys. J. C80 (2020) 751)

Discrepancy in number of muons 
Relative fluctuations in agreement

(Phys. Rev. Lett. 117 (2016) 192001, 
 Phys. Rev. D91 (2015) 032003)
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Measured data

2297 high-quality showers for log
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( E
FD

 [eV] ) = 18.5-19.0, θ < 60°

Event selection according to [Phys. Rev. D 90 (2014) 122005, PoS(ICRC19)482] and [Phys. Rev. D 102 (2020) 062005]
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Motivations for adjustments of MC predictions

Xmax→Xmax+Δ Xmax

SHad(θ)→SHad (θ)⋅RHad

DX=880 g /cm2/cos (θ)−Xmax

ad-hoc adjustments

[Astropart. Phys. 87 (2017) 23, Astropart. Phys. 88 (2017) 46]

● Properties of 4-component shower universality:
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– Sem very universal 
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Aim: fit both Xmax and S1000 distributions simultaneously 
- Approximate universal depth profile of shower components

- Rescale hadronic component (muons)

- Shift mean depth of shower maximum
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Measured data

2297 high-quality showers for log
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FD

 [eV] ) = 18.5-19.0, θ < 60°

Event selection according to [Phys. Rev. D 90 (2014) 122005, PoS(ICRC19)482] and [Phys. Rev. D 102 (2020) 062005]

(Auger, UHECR 2022, ICRC 2021)
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1) NO adjustments

Gideon-Hollister correlation coeficient
[J. Am. Stat. Assoc. 82 (1987) 656]
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Results of the analysis

R
Had

 attenuation 

is correlated 
with the energy 
scale

Assumption: relative fluctuations not changed 
Main improvement by re-scaling muon component (attenuation, more muons at ground) 
Further improvement by shifting Xmax of models to larger depth (heavier composition)
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Less model-dependent mass composition
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 MC scale found lower at ⇥ energy 1018.5-19 eV by ~10 g/cm2 for EPOS-LHC mainly 
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Anisotropy on large angular scales – dipole
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Large-scale and multipolar anisotropies at the Pierre Auger Observatory R. M. de Almeida

⇢ (EeV) # 3? 3I 3 U3 [�] X3 [�] P(� AU1 )
4-8 106, 290 0.01+0.006

�0.004 �0.012 ± 0.008 0.016+0.008
�0.005 97 ± 29 �48+23

�22 1.4 ⇥ 10�1

8-16 32, 794 0.055+0.011
�0.009 �0.03 ± 0.01 0.063+0.013

�0.009 95 ± 10 �28+12
�13 3.1 ⇥ 10�7

16-32 9, 156 0.072+0.021
�0.016 �0.07 ± 0.03 0.10+0.03

�0.02 81 ± 15 �43+14
�14 7.5 ⇥ 10�4

�8 44, 398 0.059+0.009
�0.008 �0.042 ± 0.013 0.073+0.011

�0.009 95 ± 8 �36+9
�9 5.1 ⇥ 10�11

�32 2, 448 0.11+0.04
�0.03 �0.12 ± 0.05 0.16+0.05

�0.04 139 ± 19 �47+16
�15 1.0 ⇥ 10�2

Table 1: 3D dipole reconstruction. Shown are the number of events # , dipole components in the equatorial
plane 3? and along the rotation axis of the Earth 3I , the total 3D amplitude 3, dipole direction (U3 , X3) and
the probability to get a larger amplitude of AU1 from fluctuations of an isotropic distribution.
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Figure 1: Left panel:. Distribution of the normalized rate of events with energy above 8 EeV as a function
of the right ascension. The first-harmonic modulation obtained through the Rayleigh analysis is shown by a
black solid line. Right panel: Map of the flux of cosmic rays above 8 EeV in equatorial coordinates averaged
on top-hat windows of 45� radius. The location of the Galactic plane is shown with a dashed line and the
Galactic center is indicated with a star.

bin, averaged on top-hat windows of 45� radius is presented in the right panel of the same figure83

in equatorial coordinates. The dipole direction points ⇠ 115� away from the direction of the84

Galactic centre indicating an extragalactic origin for these cosmic rays, in agreement with previous85

publications [6, 7].86

The dipole amplitudes as a function of energy are presented in the left panel of Fig. 2. The87

evolution can be described as done in [6] by 3 = 310(⇢/10 EeV)V with 310 = 0.050 ± 0.007 and88

V = 0.98 ± 0.15. The reconstructed direction of the dipolar anisotropy for the di�erent energy bins89

is shown in the right panel of Fig.2 with corresponding 68% C.L. contours of equal probability per90

unit solid angle, marginalized over the dipole amplitude. There is no clear trend in the change of91

the dipole direction as a function of energy considering the present accuracy. The growth of the92

dipole amplitude as a function of energy can be a consequence of the larger relative contribution93

from nearby sources to the flux at higher energies with respect to the integrated flux from the94

more distant and isotropically distributed sources [10–18]. This suppression in the flux of sources95

at larges distances is expected to result from the interaction of UHECRs with the background96

radiation [19, 20]. Interpretation of the reconstructed dipole directions for the di�erent energy97

bins requires taking into account the magnetic deflections of the particles during their trajectory98
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Large-scale and multipolar anisotropies at the Pierre Auger Observatory R. M. de Almeida

⇢ (EeV) # 3? 3I 3 U3 [�] X3 [�] P(� AU1 )
4-8 106, 290 0.01+0.006

�0.004 �0.012 ± 0.008 0.016+0.008
�0.005 97 ± 29 �48+23

�22 1.4 ⇥ 10�1

8-16 32, 794 0.055+0.011
�0.009 �0.03 ± 0.01 0.063+0.013

�0.009 95 ± 10 �28+12
�13 3.1 ⇥ 10�7

16-32 9, 156 0.072+0.021
�0.016 �0.07 ± 0.03 0.10+0.03

�0.02 81 ± 15 �43+14
�14 7.5 ⇥ 10�4

�8 44, 398 0.059+0.009
�0.008 �0.042 ± 0.013 0.073+0.011

�0.009 95 ± 8 �36+9
�9 5.1 ⇥ 10�11

�32 2, 448 0.11+0.04
�0.03 �0.12 ± 0.05 0.16+0.05

�0.04 139 ± 19 �47+16
�15 1.0 ⇥ 10�2

Table 1: 3D dipole reconstruction. Shown are the number of events # , dipole components in the equatorial
plane 3? and along the rotation axis of the Earth 3I , the total 3D amplitude 3, dipole direction (U3 , X3) and
the probability to get a larger amplitude of AU1 from fluctuations of an isotropic distribution.
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unit solid angle, marginalized over the dipole amplitude. There is no clear trend in the change of91

the dipole direction as a function of energy considering the present accuracy. The growth of the92

dipole amplitude as a function of energy can be a consequence of the larger relative contribution93

from nearby sources to the flux at higher energies with respect to the integrated flux from the94

more distant and isotropically distributed sources [10–18]. This suppression in the flux of sources95

at larges distances is expected to result from the interaction of UHECRs with the background96

radiation [19, 20]. Interpretation of the reconstructed dipole directions for the di�erent energy97

bins requires taking into account the magnetic deflections of the particles during their trajectory98
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Dipole reconstruction

5No clear trend in the evolution of dipole direction with energy 

Galactic coordinates

Corresponds to 6.6\

was 1.4 × 10EX (ApJ 2020) and 
2.6 ×10E[ (Science 2017)

3

Figure 1. Left above: The density field of the local universe derived from CosmicFlow-2 (Hoffman et al. 2018) in Super-
galactic coordinates; a 3D interactive view is available at [https://sketchfab.com/3d-models/quasi-linear-construction-of-the-density-field-
91448f58ed5b4a30b5dc270a34fb4352] Left below: The intensity map of the flux illuminating the Galaxy � 8 EeV, for sources following
the CosmicFlow-2 density field using the Eq. 1, “d90”, treatment; the pattern is virtually identical for the sharp-horizon treatment, but with
maximum relative flux =1.47 instead of 1.67 as in “d90”. The direction of the dipole component is not far from the CMB dipole. Right panels:
The colored lines are the percentage contribution to the observed UHECR flux coming from the indicated distance bins, as a function of energy,
for the parameters of the best-fitting d90 (above) and sharp-horizon SH* (below) models detailed in Table 1. The dots represent the average
over the energy bin indicated at the top. The actual calculation uses 1 Mpc bins in distance and 0.1 bins in log10(E).

discussed in Table 1; the meaning should be clear in context.)
Even if the source spectrum were known, Eq. 1 is not an ex-
act description because the energy loss rate evolves during
evolution as the composition and energy change. Moreover
the d90(A, E) values available in the literature are integrated
above a threshold rather than applying to a bin of energy.
A future more accurate treatment needs to take this into ac-
count as well as taking the source spectrum as an unknown
to be self-consistently fit.

We explore the possible spreading of the source images
and reduction in horizon due to diffusion in the EGMF, us-
ing the sharp-horizon treatment. We adopt the simplest hy-
pothesis that the universe is filled with homogeneous and
isotropic turbulent magnetic fields. While the turbulence
level of the EGMF is still unknown, upper limits obtained by
various measurements or arguments exist (Durrer & Neronov
2013). We adopt a Kolmogorov spectrum and – to fully

cover the possible parameter space – we consider rms ran-
dom field strength 0.08  BEG  10 nG and coherence
length 0.08  �EG  0.5 Mpc. The diffusion coefficient,
DEG, and indeed all magnetic deflections, depends on rigid-
ity, E/Z; in the relevant rigidity domain, DEG is proportional
to
⇣
E/ZBEG�0.5

EG

⌘2
(Globus et al. 2008). The intensity profile

of a single source depends on the diffusion coefficient and on
the distance to the source; it is calculated by a method fol-
lowing the diffusion of light in scattering media, that allows
to take into account the transition between quasi-linear and
diffusive regimes, as detailed in Appendix A.

For a given assumed EGMF, composition and energy, and
adopting either the sharp-horizon or d90 attenuation, we cal-
culate the weight of a 1-Mpc-thick shell of matter at dis-
tance z in the total observed CR flux at the given (A, E). The
final illumination map for that (A, E) and attenuation model
is then the weighted sum of the surface mass density in each

Fundamental observation: 
non-trivial interplay of 
- mass composition, 
- magnetic horizon and 
- local source distribution

(Ding, Globus & Farrar 2101.04564) (Harari, Mollerach, Roulet PRD92 (2015) 06314)

6.6 s

p ⇠ 5⇥10�11
Exposure until end of 2020 (θ < 80°): 110,000 km2 sr yr

12 The Pierre Auger Collaboration
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Figure 6. Comparison of the dipole amplitude as a function of energy with predictions from models (Harari et al. 2015) with

mixed composition and a source density ⇢ = 10
�4

Mpc
�3

. Cosmic rays are propagated in an isotropic turbulent extragalactic

magnetic field with rms amplitude of 1 nG and a Kolmogorov spectrum with coherence length equal to 1 Mpc (with the results

having only mild dependence on the magnetic-field strength adopted). The gray line indicates the mean value for simulations

with uniformly distributed sources, while the blue one shows the mean value for realizations with sources distributed as the

galaxies in the 2MRS catalog. The bands represent the dispersion for di↵erent realizations of the source distribution. The steps

observed reflect the rigidity cuto↵ of the di↵erent mass components.

Regarding the possible origin of the dipolar CR anisotropy, we note that the relative motion of the observer with
respect to the rest frame of cosmic rays is expected to give rise to a dipolar modulation of the flux, known as the
Compton–Getting e↵ect (Compton & Getting 1935). For particles with a power-law energy spectrum d�/dE / E�� ,
the resulting dipolar amplitude is dCG = (v/c)(� + 2), with v/c the velocity of the observer normalized to the speed
of light. In particular, if the rest frame of the cosmic rays were the same as that of the cosmic microwave background,
the dipole amplitude would be dCG ' 0.006 (Kachelriess & Serpico 2006), an order of magnitude smaller than the
observed dipole above 8 EeV. Thus, the Compton–Getting e↵ect is predicted to give only a sub-dominant contribution
to the dipole measured for energies above 8 EeV.
Plausible explanations for the observed dipolar-like distribution include the di↵usive propagation from the closest

extragalactic source(s) or that it be due to the inhomogeneous distribution of the sources in our cosmic neighborhood
(Giler et al. 1980; Berezinsky et al. 1990; Harari et al. 2014, 2015). The expected amplitude of the resulting dipole
depends in these cases mostly on the number density of the source distribution, ⇢, with only a mild dependence on the
amplitude of the extragalactic magnetic field. For homogeneous source distributions with ⇢ ⇠ (10�5 � 10�3) Mpc�3,
spanning the range between densities of galaxy clusters, jetted radio-galaxies, Seyfert galaxies and starburst galaxies,
the dipole amplitude turns out to be at the level of few percent at E ⇠ 10 EeV, both for scenarios with light (Harari
et al. 2014) and with mixed CR compositions (Harari et al. 2015). A density of sources smaller by a factor of ten leads
on average to a dipolar amplitude larger by approximately a factor of two. An enhanced anisotropy could result if the
sources were to follow the inhomogeneous distribution of the local galaxies, with a dipole amplitude larger by a factor
of about two with respect to the case of a uniform distribution of the same source density. The expected behavior is
exemplified in Figure 6 where we have included the observed dipole amplitude values together with the predictions
from Harari et al. (2015) for a scenario with five representative mass components (H, He, C, Si and Fe) having an E�2

spectrum with a sharp rigidity cuto↵ at 6 EV and adopting a source density ⇢ = 10�4 Mpc�3 (ignoring the e↵ects of
the Galactic magnetic field). The data show indications of a growth in the amplitude with increasing energy that is
similar to the one obtained in the models. Note that this kind of scenario is also in line with the composition favored
by Pierre Auger Observatory data (The Pierre Auger Collaboration 2017c).
Regarding the direction of the dipolar modulation, it is important to take into account the e↵ect of the Galactic

magnetic field on the trajectories of extragalactic cosmic rays reaching the Earth.4 The facts that the Galactic magnetic

4 These deflections can not only lead to a significant change in the dipole direction and in its amplitude, but they also generate some
higher order harmonics even if pure dipolar modulation is only present outside the Galaxy (Harari et al. 2010).

p He
CNO

Si
Fe

ApJ 868 (2018) 1



Anisotropy searches at highest energies – catalogs
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UHECR sky > 32 EeV from the Pierre Auger Observatory

M83

Cen A

NGC 4945

Anisotropy search in the toe region with Auger phase 1 data spanning 2004-2020 (17 years!)
~4σ from search in Centaurus region, confirmed by catalog-based searches.

Largest signal from starburst galaxies but no compelling evidence for catalog preference

For all these searches: most significant signal at Eth = 38-41 EeV on top-hat scale 𝚿 = 23-27° with signal fraction α = 5-15%

Evolution of signal: compatible with linear growth within expected variance, 5σ reach expected in 2025-30 

Most important evidence for UHECR anisotropy around the toe from a single observatory → UHECR source ID is near?

Jonathan Biteau – ICRC 2021 / CR Anisotropies – 2021.07.15

A
pJL 2018
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pJL 2018

Catalog-based searches

8

Best-fit parameters and threshold energy
Fit of attenuated flux pattern + isotropy to data with variable signal fraction and smoothing scale above Eth = {32, 33, …, 80} EeV 
For all four catalogs: most significant signal at Eth = 38-41 EeV on top-hat scale 𝚿 = 23-27° with signal fraction α = 6-15%
Post-trial deviation from isotropy: from 3.1σ (jetted AGN) up to 4.0σ (starbursts). 

Evolution of signal with exposure
Starbursts significance: 4.0σ in ApJL 2018, 4.5σ at ICRC2019 (similar α, 𝚿 above 38-41 EeV). 
Compatible with linear growth within expected variance 

Stronger a priori: the Centaurus region

Motivation 
Early-day flagging of Centaurus region (7% current exposure)  

Crowded area in the Council of Giants (3-6 Mpc)

Method & Result
Direction fixed to that of Cen A, free Eth and 𝚿 

Eth > 41 EeV, 𝚿 = 27°: 3.9σ post-trial deviation from isotropy (5% excess)

20°

M83

Cen A

NGC 4945

Auger, Science 2007

6

UHECR sky > 32 EeV viewed from the Pierre Auger Observatory Jonathan Biteau

Catalog ⇢th [EeV]  [deg] U [%] TS Post-trial ?-value
All galaxies (IR) 40 24+16

�8 15+10
�6 18.2 6.7 ⇥ 10�4

Starbursts (radio) 38 25+11
�7 9+6

�4 24.8 3.1 ⇥ 10�5

All AGNs (X-rays) 41 27+14
�9 8+5

�4 19.3 4.0 ⇥ 10�4

Jetted AGNs (W-rays) 40 23+9
�8 6+4

�3 17.3 1.0 ⇥ 10�3

Table 2: The results of the searches for anisotropies against catalogs. The second to fourth columns provide
the threshold energy, the equivalent top-hat radius and the signal fraction maximizing the local TS, or
post-trial ?-value, shown in the fifth and sixth columns.

on the analysis results. The catalogs are fully complementary: 2MASS infrared observations of
“all” galaxies provide, through stellar mass, a deep view on integrated star-formation activity; radio
observations of bright starburst galaxies provide a more instantaneous view on ongoing starforming
activity; X-ray observations provide a census of “all” active galaxies, be they jetted or non-jetted;
W-ray observations finally focus on a sub-sample of jetted active galaxies.

To determine whether the flux patterns from these catalogs contribute to the anisotropy in the
toe region, we perform an unbinned maximum-likelihood ratio test [8] between the null hypothesis,
isotropy, and the test hypothesis, that is a catalog contribution added to an isotropic component,
where both hypotheses account for the exposure of the Observatory. The flux of each source is
weighted according to the UHECR attenuation expected from the best-fit model of the spectral and
composition data from [13]. The overall UHECR flux contribution of the catalog is normalized to
a free amplitude U (that of the isotropic component is 1-U) and the catalog flux pattern is smoothed
with a Fisher - von Mises function on a Gaussian angular scale, \. The local test statistic, TS,
corresponding to the maximum likelihood ratio is shown as a function of energy threshold in Fig. 2,
right. The TS profiles of the catalogs display an energy dependence similar to that observed in
the Centaurus region, obtained by profiling the pre-trial ?-value in Fig. 2, left, and penalizing for
the scan over the angular scale. As reported in Table 2, the signal is maximal for all four catalogs
above an energy threshold close to 40 EeV. For the sake of comparison with other results, the best-fit
Gaussian angular scales are converted to equivalent top-hat radii as  = 1.59⇥ \ [17], with best-fit
values at  ⇡ 25�. The signal fractions range from 6 to 15%. The local TS range between 17 and
25, yielding post-trial ?-values between 10�3 (3.1f) and 3 ⇥ 10�5 (4.0f), accounting for the scan
in energy threshold and the two free parameters (U, \).

Although similar parameters are inferred for the four catalogs, the TS and corresponding
post-trial ?-values show marked di�erences. A quantitative comparison between the catalogs is
performed, as in [8], by testing a composite model including contributions from catalog #1 and
catalog #2 against a model including a contribution from catalog #1 only. A W-ray only, X-ray
only, or IR only contribution is disfavored with respect to a composite model including a radio
contribution from starburst galaxies above 38 � 41 EeV at confidence levels varying between 2
and 3f. While there is no significant indication for a preferred catalog, such di�erences can be
qualitatively understood from a comparison of the observed flux map shown in Fig. 1 with the best-
fit flux models shown in Fig. 3. The X-ray and W-ray models of all and jetted AGNs are dominated
by a contribution from Centaurus A, with additional mild contributions close to the edge of the
FoV from NGC 4151 (so-called “Eye of Sauron”) for the former and from the blazar Markarian 421
and the radio-galaxy NGC 1275 for the latter. The possible mild excess south of the edge of the

6

A closer look at the catalog-based models

Which UHECR overdensities do the models grasp?
Centaurus region in all models (M83 + Cen A + NGC 4945 at ~4 Mpc)

Galactic-South-pole tepid spot in starburst model (NGC 253 at ~4 Mpc)

No hotspot at (l,b) ~ (280°,75°) from IR model (Virgo cluster at ~16 Mpc)

Observed > 41 EeV

Best-fit models > 38-41 EeV 

9

Disclaimer: qualitative comparison
Starbursts + IR/X-ray/ɣ-ray vs IR/X-ray/ɣ-ray

yield only mild (2-3σ) preference for starbursts

Model flux map

All data until end of 2020, optimized quality cuts: 120,000 km2 sr yr

4.0s

3.1s

Growth of test statistic (TS) compatible with linear increase 
Discovery threshold of 5σ expected in 2025 – 2030 (Phase II) 
Other means to increase sensitivity (Auger 85% sky coverage)

(Auger, ApJ 935 (2022) 170)



First look at composition and anisotropy
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Data scan and prescription

Data-driven selection of energy and latitude thresholds

• Scan over the data recorded before 01.01.2013 (54%)

• 5� steps in b and 0.1 lg(E/eV) steps in energy

• Highest TS of 8.35 for: ! Emin = 1018.7 eV

! bsplit = 30�

Set as prescription for remaining data
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Data scan and prescription

Data-driven selection of energy and latitude thresholds

• Scan over the data recorded before 01.01.2013 (54%)

• 5� steps in b and 0.1 lg(E/eV) steps in energy

• Highest TS of 8.35 for: ! Emin = 1018.7 eV

! bsplit = 30�

Set as prescription for remaining data
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On- and o↵-plane Xmax di↵erence in remaining data

Unscanned data: TS = 12.6

�hX 0
maxi = 10.5 ± 2.5+2.1

�2.2 g/cm
2

��(X 0
max) = 5.9 ± 3.1+3.5

�2.5 g/cm
2

All data: TS = 21.0

�hX 0
maxi = 9.1 ± 1.6+2.1

�2.2 g/cm
2

��(X 0
max) = 5.9 ± 2.1+3.5

�2.5 g/cm
2
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Composition Sky Map

Map compares hXmaxi of events
within 30� of each bin to

the rest of the sky

Red: lower mass than rest of sky
Blue: higher mass than rest of sky

• TS is Welch’s T-Test applied to in-

and out-of-hat X 0
max distributions

(Welch 1938)

• Detector/analysis e↵ects corrected for

by event arrival declination
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Smoothing over 30° bins

Not necessarily related to Galaxy 

Local source distribution and 
mass-dependent horizon effect? 

No independent confirmation from other data 

Phase II data and more statistics really 
important to make progress

(Auger, UHECR 2022 & ICRC 2021)



Neutrinos and multi-messenger observations
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• Best sensi1vity to UHE neutrinos
slightly below 1018 eV, comparable
to that of IceCube

• Integral limit for neutrino energies
between 1017 eV and 2.5×1019 eV:
3.5×10-9 GeV cm-2 s-1 sr-1

or equivalently
1.1 EeV km-2 yr-1 sr-1

• Frac1onal contribu1ons:
• Channel: ES 0.79; DGH 0.18; DGL 0.03
• Flavor: "" 0.10; "# 0.04; "$ 0.86

Upper limits on the diffuse flux of UHE neutrinos

15 November 2022Jaime Alvarez-Muñiz, Marcus Niechciol / Pierre Auger Collaboration Meeting November 2022 7

IceCube, PRD 98, 062003 (2018)
ANITA, PRD 98, 022001 (2018)

PRELIMINARYExpected event rates for selected models

[Referenz]

15 November 2022Jaime Alvarez-Muñiz, Marcus Niechciol / Pierre Auger Collaboration Meeting November 2022 8

JCAP 2019
1 Jan 2004 – 31 Aug 2018

UHECR 2022
1 Jan 2004 – 31 Dec 2021

PRELIMINARY

Expected event rates for selected models

[Referenz]

15 November 2022Jaime Alvarez-Muñiz, Marcus Niechciol / Pierre Auger Collaboration Meeting November 2022 8

JCAP 2019
1 Jan 2004 – 31 Aug 2018

UHECR 2022
1 Jan 2004 – 31 Dec 2021

PRELIMINARY
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Auger Observatory

Neutrino search using inclined air showers

Aperture comparable to IceCube if direction of source is favorable 
Multi-messenger: searches for neutrinos in coincidence with GW events 
Phase II: lowering of detection threshold (new electronics)

(Auger, UHECR 2022 & ICRC 2021)



Phase II: upgrade of the Observatory – AugerPrime
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Physics motivation 

- Composition measurement 
up to 1020 eV


- Composition selected anisotropy

- Particle physics with air showers

- Much better understanding of 

new and old data

Components of AugerPrime 

- 3.8 m2 scintillator panels (SSD)

- New electronics (40 MHz -> 120 MHz)

- Small PMT (dynamic range WCD)

- Radio antennas for inclined showers

- Underground muon counters 

(750 m array, 433 m array)

- Enhanced duty cycle of fluorescence tel.

radio

μComposition sensitivity
with 100% duty cycle

(AugerPrime design report 1604.03637)



Transition to Phase II of the Observatory

28

SD performances                           Auger Collaboration Meeting   13/11/ 2022 - Malargüe 2

! Array with UB is more and more reduced 

! No major incident perturbing Data taking 
– since the status report done during the analysis meeting

Transition period

Nov 2021 July 2022 Nov 2022

SD performances                           Auger Collaboration Meeting   13/11/ 2022 - Malargüe 6

Hexagons
! Hexagons with UB only / hexagons with UUB only 

!
Nominal: 
788

Nominal:  
379

1500m array

UUB - UB transition period

3

No major incidents perturbing data taking!
UUB can run in a compatible mode with down-
sampling (120MHz -> 40MHz), important for 
verifications and Phase1 and Phase2 data merging.

UB hexagons+ UUB hexagons
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Figure 4. (Top left) scatter plot of Xmax and Fµ, i.e., the observables used in the hybrid search for
photons using air-shower universality, for simulated primary photons (blue) and protons (red); The
contour lines enclose 90%, 50% and 10%, respectively, of the events. (Top right) distributions of the
Fisher discriminant f for simulated primary photons (signal, blue) and protons (background, red),
and for the burnt sample (black); the dashed red line marks the tail of the proton distribution; the
dashed blue line indicates the median of the photon distribution. (Bottom) the tail of the distribution
of f for the hybrid data sample (black dots); the dashed line represents the photon-candidate cut; the
shaded blue regions show the 1s, 2s and 3s uncertainty bands for background expectation. For more
details, see [24].

4.3. Search for Photons above 1019 eV with the Surface Detector of the Pierre Auger Observatory
In the energy range above 1019 eV, UHE photons are searched for among the data

collected with the 1500 m SD array of the Pierre Auger Observatory [25]. While the photon
search using SD-only data can profit from the large exposure due to the high duty cycle
of the SD, the lack of a corresponding fluorescence measurement for the bulk of the data
poses some challenges. For example, there is no direct measurement of Xmax available.
Additionally, the primary energy can only be accessed indirectly, using S(1000)—the
interpolated signal in the SD stations at a perpendicular distance of 1000 m from the shower
axis—as a proxy.

Two observables are used in this analysis, one related to the thickness of the shower
front at ground and one based on the steepness of the lateral distribution. These two
properties of an air shower depend on the type of the primary particle initiating the shower,
hence they can be used for photon–hadron separation. The first observable, D, is based
on the risetime t1/2 in the individual SD stations, which is defined as the time at which
the integrated signal in the measured time trace rises from 10% to 50% of its total value.
For showers of the same primary energy and zenith angle, t1/2 is expected to be larger for

Example of rich information in data of Phase II
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A first look – data of pre-production array (preliminary)
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Ratio of SSD/WCD signals at 500m versus reconstructed shower energy

 θ  � 0 - 42

 θ  41�  - 52

 θ  52�  - 60

500m from the shower axis, for both SSD and 
WCD. (from LDF fit).
 
Data and simulations show similar trends, but 
again there is no consistency in “mass” 
interpretation in different zenith ranges.

The energy dependence of the ratio seems a little 
flatter than at 1000m; possibly because the 
showers are dominated by the EM component  at 
500m

The zenith bins range from 0 – 60 deg, flat in 
sec(θ)
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Ratio SSSD/SWCD encodes physics
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These average LDFs are for the energy range of 
1018 < E < 1019 , chosen for better statistics.

Signal (in VEM or MIP) is normalised by S(1000) 
of the water-Cherenkov detector LDF.

Normalising both the VEM and MIP signal by 
WCD S(1000) preserves the ratio, giving us a 
graphical representation of how the ratio 
changes with distance.

The zenith bins range from 0 – 60 deg, flat in 
sec(θ)

Average LDFs from SSD PPA

5

Average lateral profiles

Size of scintillator chosen to have similar signals in VEM and MIP

5

These average LDFs are for the energy range of 
1018 < E < 1019 , chosen for better statistics.

Signal (in VEM or MIP) is normalised by S(1000) 
of the water-Cherenkov detector LDF.

Normalising both the VEM and MIP signal by 
WCD S(1000) preserves the ratio, giving us a 
graphical representation of how the ratio 
changes with distance.

The zenith bins range from 0 – 60 deg, flat in 
sec(θ)
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the rest of the sky

Red: lower mass than rest of sky
Blue: higher mass than rest of sky

• TS is Welch’s T-Test applied to in-

and out-of-hat X 0
max distributions

(Welch 1938)

• Detector/analysis e↵ects corrected for

by event arrival declination
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Indication of a mass-dependent anisotropy above 1018.7 eV – CRI 630 – July 13th @ 18 00 CEST 13

UHECR sky > 32 EeV from the Pierre Auger Observatory

M83

Cen A

NGC 4945

Anisotropy search in the toe region with Auger phase 1 data spanning 2004-2020 (17 years!)
~4σ from search in Centaurus region, confirmed by catalog-based searches.

Largest signal from starburst galaxies but no compelling evidence for catalog preference

For all these searches: most significant signal at Eth = 38-41 EeV on top-hat scale 𝚿 = 23-27° with signal fraction α = 5-15%

Evolution of signal: compatible with linear growth within expected variance, 5σ reach expected in 2025-30 

Most important evidence for UHECR anisotropy around the toe from a single observatory → UHECR source ID is near?

Jonathan Biteau – ICRC 2021 / CR Anisotropies – 2021.07.15
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Figure 1: Exposure of SD and FD measurements to cosmic ray showers as a function of energy (left) and
calibration functions of the SD energy estimators to the energies reconstructed by the FD (right).

1500 m array is covered by a denser array with a spacing of 750 m. Their spacings and areas are
chosen according to the energy ranges probed by the two arrays. Individual SD stations utilize the
water–Cherenkov technique of particle detection, thus they are sensitive to both the electromagnetic
(EM) and muonic components of showers.

The 1500 m array is sensitive to cosmic ray showers with incident zenith angles up to 80�,
but showers with zenith angles above 60� (so-called "inclined" showers) are reconstructed with a
di�erent method [3] to those at lower zenith angles ("vertical" showers) [4, 5]. This is mandatory
because for inclined showers the signal is dominated by muons that are deflected in the geomagnetic
field producing an asymmetric footprint on the ground. For events with zenith angles below 60�,
dominated by EM particles, this e�ect is negligible. The 1500 m array is fully e�cient in the
detection of showers, regardless of the primary mass composition, above 2.5 EeV and 4 EeV in the
case of vertical and inclined reconstruction, respectively.

The array with 750 m spacing is designed to measure at lower energies, and is fully e�cient
from 0.1 EeV, assisted by an additional set of dedicated triggers [6, 7].

The aperture of all SD methods is calculated geometrically by summing the contributions from
individual hexagonal cells under operation. With the use of a monitoring database, we then obtain
the exposure as an integral of the aperture in time. Thus the exposure of SD measurements is
independent of energy and is depicted in the left panel of Fig. 1 for all three SD methods.

The energy estimate for the SD array (⇢SD) is obtained by means of a calibration procedure
based on coincident SD and FD measurements. Events detected by both detectors can be used to
obtain a relation between the SD energy estimator (⌃ in the following) and the FD energy. This is
performed using the calibration function ⇢FD = �⌃⌫, where ⇢FD is the energy obtained with the
FD, and � and ⌫ are calibration parameters.

The energy estimators in the reconstruction of vertical showers are parameters (38 and (35 for
the SD 1500 m and SD 750 m measurements, respectively. These parameters are corrected for the
average shower size attenuation in the atmosphere using the constant intensity cut method [4]. In the
case of inclined reconstruction, the corresponding energy estimator is #19, the scaling factor of the
two dimensional muon density map on the ground used to fit the signal recorded by the SD [3]. The
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Combined fit of the energy spectrum and mass composition across the ankle Eleonora Guido

di�erent mass groups have small overlap and the composition becomes heavier as the energy
increases. The estimated non-negligible Fe fraction at the sources is actually required only by the
energy spectrum fit, since it contributes at the highest energies where the mass composition data
are not available, as already noted in [17].

3. E�ect of the experimental systematic uncertainties

The systematic uncertainties of instrumental origin a�ect both the energy and the -max mea-
surements. The uncertainty on the energy scale is assumed to be �⇢/⇢ = 14% in the whole
considered energy range [18]. For the -max scale we consider an asymmetric and slightly energy-
dependent uncertainty, ranging from 6 to 9 g cm�2 [13]. An additional systematic e�ect could also
arise from the uncertainties on the -max resolution and acceptance parameters [13], but we verified
that their impact on the fit results is here negligible.

�-max �⇢/⇢ ⇡� ⇡-max ⇡

-14% 52.5 578.3 630.9
�1fsyst 0 71.7 595.2 666.9

+14% 64.9 609.3 674.2
-14% 53.5 581.3 634.8

0 0 60.1 554.8 614.9
+14% 70.6 548.8 619.5
-14% 79.1 714.2 793.3

+1fsyst 0 80.8 555.4 736.2
+14% 82.4 615.7 698.2

Table 3: The e�ect on the deviance of the
±1 fsyst shifts in the energy and -max scales.

.

Following the same approach used in [2], we take
into account the uncertainty on the energy scale and on
the -max scale by shifting all the measured energies and
-max values by one systematic standard deviation in each
direction. We consider all the possible combinations of
these shifts and their e�ect on the deviance value is sum-
marised in Tab. 3. The dominant e�ect in terms of predic-
tions at Earth is the one arising from the -max uncertainty;
as for the estimated best fit parameters, they are not much
modified when the experimental systematic uncertainties
are considered.

The maximal variations on the predicted fluxes at Earth, obtained by considering all the
configurations of Tab. 3, are shown in Fig. 3. The rather large uncertainty on the predicted total
fluxes (brown band) is due to the ±14% shifts in the energy scale, but it significantly a�ects only

Figure 3: Left: the combined e�ect of the experimental uncertainties on the energy spectrum. Right: the e�ect on
the relative abundances at the top of atmosphere. The uncertainties are considered by shifting the energies and/or the
-max distributions of 1 fsyst in both directions, as shown in Tab. 3. The bands represent the maximal variations induced
by considering all the possible combinations of shifts. The shaded area in the right plot indicates the region where the
-max measurements are grouped in one single energy bin because of the low statistics and thus the mass composition
predictions are mainly driven by the energy spectrum fit.

5

Large-scale and multipolar anisotropies at the Pierre Auger Observatory R. M. de Almeida

⇢ (EeV) # 3? 3I 3 U3 [�] X3 [�] P(� AU1 )
4-8 106, 290 0.01+0.006

�0.004 �0.012 ± 0.008 0.016+0.008
�0.005 97 ± 29 �48+23

�22 1.4 ⇥ 10�1

8-16 32, 794 0.055+0.011
�0.009 �0.03 ± 0.01 0.063+0.013

�0.009 95 ± 10 �28+12
�13 3.1 ⇥ 10�7

16-32 9, 156 0.072+0.021
�0.016 �0.07 ± 0.03 0.10+0.03

�0.02 81 ± 15 �43+14
�14 7.5 ⇥ 10�4

�8 44, 398 0.059+0.009
�0.008 �0.042 ± 0.013 0.073+0.011

�0.009 95 ± 8 �36+9
�9 5.1 ⇥ 10�11

�32 2, 448 0.11+0.04
�0.03 �0.12 ± 0.05 0.16+0.05

�0.04 139 ± 19 �47+16
�15 1.0 ⇥ 10�2

Table 1: 3D dipole reconstruction. Shown are the number of events # , dipole components in the equatorial
plane 3? and along the rotation axis of the Earth 3I , the total 3D amplitude 3, dipole direction (U3 , X3) and
the probability to get a larger amplitude of AU1 from fluctuations of an isotropic distribution.
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Figure 1: Left panel:. Distribution of the normalized rate of events with energy above 8 EeV as a function
of the right ascension. The first-harmonic modulation obtained through the Rayleigh analysis is shown by a
black solid line. Right panel: Map of the flux of cosmic rays above 8 EeV in equatorial coordinates averaged
on top-hat windows of 45� radius. The location of the Galactic plane is shown with a dashed line and the
Galactic center is indicated with a star.

bin, averaged on top-hat windows of 45� radius is presented in the right panel of the same figure83

in equatorial coordinates. The dipole direction points ⇠ 115� away from the direction of the84

Galactic centre indicating an extragalactic origin for these cosmic rays, in agreement with previous85

publications [6, 7].86

The dipole amplitudes as a function of energy are presented in the left panel of Fig. 2. The87

evolution can be described as done in [6] by 3 = 310(⇢/10 EeV)V with 310 = 0.050 ± 0.007 and88

V = 0.98 ± 0.15. The reconstructed direction of the dipolar anisotropy for the di�erent energy bins89

is shown in the right panel of Fig.2 with corresponding 68% C.L. contours of equal probability per90

unit solid angle, marginalized over the dipole amplitude. There is no clear trend in the change of91

the dipole direction as a function of energy considering the present accuracy. The growth of the92

dipole amplitude as a function of energy can be a consequence of the larger relative contribution93

from nearby sources to the flux at higher energies with respect to the integrated flux from the94

more distant and isotropically distributed sources [10–18]. This suppression in the flux of sources95

at larges distances is expected to result from the interaction of UHECRs with the background96

radiation [19, 20]. Interpretation of the reconstructed dipole directions for the di�erent energy97

bins requires taking into account the magnetic deflections of the particles during their trajectory98

4

Phase I: 
- Exposure 80,000 km2 sr yr (vertical, highest quality), 

up to 120,000 km2 sr yr (loose cuts, combined)

- Change of composition established

- Composition tightly linked to hadronic interactions 

- Anisotropy observations very challenging

- Increasingly consistent picture is emerging 

Phase II: 
- Upgrade AugerPrime in progress

- Additional exposure 40,000 km2 sr yr (vertical) expected

- Enhanced composition and hybrid information

- Re-analysis of all data planned
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Unblinding of the data

10

Median of the photon distribution 
derived as photon selection cut from the 
study of the background extrapolation.

Photons identified as excess with respect 
to the expected background

P. Savina for the Pierre Auger Collabora�on – July 2021 – ICRC2021 – Cosmic Ray Indirect (CRI) 

Photon
candidates

# estimated events above median:
N

exp
(E > 1018.0 eV) = 30 ± 16

# Candidates found:
N

obs
(E > 18.0 eV) =  22

 

12

The most peculiar event

E = 2.00 ± 0.11 EeV

Xmax = 1245 ± 57 g/cm2

PROTONS

PHOTONS

Claim for a photon observation 
not possible from a statistical 
point of view. 11

 

9

Burnt Sample
(5% hybrid data 
sample)

Protons

Photons

Separation variables ranked 
by separation power:
1. Fμ

2. Xmax

3. log10(E)

Combining Xmax and Fμ in a Fisher Linear Discriminant 

9P. Savina for the Pierre Auger Collabora�on – July 2021 – ICRC2021 – Cosmic Ray Indirect (CRI) 

Muon signal by shower universality

Cut at 50% photon efficiency (median) 

Background compatible with 
stat. expectation (burn sample of data) 

Multi-messenger: searches for photons in 
coincidence with GW events

Limits begin being 
background-dominated 

Phase II: additional data for 
photon/hadron separation 
or photon discovery

(Auger, UHECR 2022 & ICRC 2021)
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ANITA anomalous events

The Auger FD is sensitive to these events → upward-going showers simulated and reconstructed 
within the Offline Framework → exposure calculation for upward-going showers

● The ANITA experiment detected two anomalous 
events with non-inverted polarity → consistent with 
upward-going showers observed directly by ANITA

○ E1,2 ≳ 0.2 EeV ≈ 1017.8 eV  
○ β1 ≈ 27° and β2 ≈ 35°

● If those events are due to 𝜈𝜏 they appear challenging 
to reconcile with the predictions of the standard 
model

M. Mastrodicasa for the Pierre Auger Collaboration Search for upward-going showers with the Fluorescence Detector of the Pierre Auger Observatory      2

β
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upward-going showers observed directly by ANITA

○ E1,2 ≳ 0.2 EeV ≈ 1017.8 eV  
○ β1 ≈ 27° and β2 ≈ 35°

● If those events are due to 𝜈𝜏 they appear challenging 
to reconcile with the predictions of the standard 
model

M. Mastrodicasa for the Pierre Auger Collaboration Search for upward-going showers with the Fluorescence Detector of the Pierre Auger Observatory      2

β

Signal simulation

- Primaries: protons → adaptable to other scenarios 
→ I. A. Caracas, PoS(ICRC2021)913

- Energy range: log10(Ecal/eV) ∊ [16.5, 18.5]
- Zenith angle range: θzenith ∊ [110 , 180]°

downward-going simulation upward-going simulation 

M. Mastrodicasa for the Pierre Auger Collaboration Search for upward-going showers with the Fluorescence Detector of the Pierre Auger Observatory      3

● Using the exponential fit and the cut l > 0.55, the expected number of background events is:

Results

nbkg = 0.45 土 0.18

Using Rolke the integral upper limit for log10(Ecal/eV)>17.5 with nbkg = 0.45 土 0.18 
and nobs = 1 is: 

➔ 3.6x10-20 cm-2 sr-1 yr-1 if exposure is weighted with E-1

➔ 8.5x10-20 cm-2 sr-1 yr-1 if exposure is weighted with E-2

M. Mastrodicasa for the Pierre Auger Collaboration Search for upward-going showers with the Fluorescence Detector of the Pierre Auger Observatory      9

We intend to compare these results with ANITA I and III observations

● After the unblinding of the data 1 event has been observed to pass all the selection criteria. This 
number is consistent with the expected number of background events

Likelihood ratio based variable distribution

● Variable l = atan(-2log(Ldown/Lup,down)/50)/(π/2) defined between 0 and 1

more likely upward-going event

cut value on l has 
been tuned by 

minimizing the 
upper limit

M. Mastrodicasa for the Pierre Auger Collaboration Search for upward-going showers with the Fluorescence Detector of the Pierre Auger Observatory      7

background simulation 
weighted to burn 
sample → good 

agreement between 
burn sample and 

background simulation
Ecal > 1017.5 eV● Using the exponential fit and the cut l > 0.55, the expected number of background events is:

Results

nbkg = 0.45 土 0.18

Using Rolke the integral upper limit for log10(Ecal/eV)>17.5 with nbkg = 0.45 土 0.18 
and nobs = 1 is: 

➔ 3.6x10-20 cm-2 sr-1 yr-1 if exposure is weighted with E-1

➔ 8.5x10-20 cm-2 sr-1 yr-1 if exposure is weighted with E-2

M. Mastrodicasa for the Pierre Auger Collaboration Search for upward-going showers with the Fluorescence Detector of the Pierre Auger Observatory      9

We intend to compare these results with ANITA I and III observations

● After the unblinding of the data 1 event has been observed to pass all the selection criteria. This 
number is consistent with the expected number of background events

Auger results: 
Background 0.45 ± 0.18 expected 
One event observed 
Flux limits on anomalous events 

(ANITA, Phys. Rev. Lett. 121 (2018) 161102)

A tau scenario application to a search for upward-going showers with the Fluorescence Detector of

the Pierre Auger Observatory

Executive Summary

Ioana Alexandra Caracas
0

for the Pierre Auger Collaboration
1

0
Bergische Universität Wuppertal, Department of Physics, Gaußstraße 20, Wuppertal, Germany

1
Observatorio Pierre Auger, Av. San Martín Norte 304, 5613 Malargüe, Argentina

What is this contribution about?

Upper flux limits have been set in the context of steeply up-going air showers induced by �-leptons using the Fluorescence Detector (FD) of the Pierre Auger Observatory.

Why is it relevant/interesting?
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Recent observations of two coherent radio pulses by the ANITA detector can be interpreted as steeply

upward-going cosmic-ray showers and remain unexplained. Several Beyond Standard Model (BSM)

interpretations resulting in the creation of �-leptons have been proposed. The Pierre Auger Observatory

allows to verify the ANITA observation and to test the proposed interpretations

What has been done?

�-leptons have been simulated using the NuTauSim code as a base, in order to obtain the distribution of

possible �-induced air showers in the field of view of the FD, in terms of shower energy and height of

first interaction. The resulting distribution is folded together with the double differential exposure of the

Observatory to up-going events to obtain the observatory’s exposure to up-going �-induced air showers.

This is further used to calculate limits on the flux of steeply up-going � showers at the Earth’s surface.

What is the result?

A single event passed all selection criteria, which is consistent with the expected experimental background of 0.5 events. Therefore, upper flux limits to up-going �-induced air

showers have been set, which account for the observed event. As a result we find energy dependent flux limits as low as 9.82 · 10
�10

GeV cm
�2

s
�1

sr
�1

for a � primary energy in the

range of lg E0/eV 2 [18.75, 18.875].

Tau scenario

Uniform distribution
(Eva Santos)

https://icrc2021-venue.desy.de/video/Monte-Carlo-simulations-for-the-Pierre-Auger-Observatory-using-the-VO-Auger-grid-resources/ca6af2de399dae4e39c87442731287cb


Constraining LIV using muon content of EAS Caterina Trimarelli
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Figure 4: Maximum with respect to U of the mixed relative fluctuations obtained using the parameterizations
in the standard case (dashed curve) and in the presence of LIV considering [ in the range [�10�3,�10�15]
(coloured curves) as a function of the primary energy. Each color corresponds to a di�erent violation
strength (right axis). The black points with error bars (statistical uncertainties) represent the measured
relative fluctuations in the number of muons.

the mixed relative fluctuations at three di�erent CLs obtained considering all the experimental data
are highlighted. The blue curve, corresponding to [ = �8.2 · 10�5, refers to 99.7% CL. The green
(black) one corresponds to 95.45% (90.5%) with a LIV parameter [ = �9.2·10�6 ([ = �5.95·10�6).
As a consequence, the new bound for [ (1) is [�5.95 · 10�6, 10�1] at 90.5% of CL.

It can be noticed that if the discrepancy in the reconstruction of the energy in the presence of
LIV and the one in the standard scenario was included, a net shift of the experimental data towards
the higher energies would be observed. However, this bias between the primary energy estimated
if the events are treated in LIV case and in standard one is lower than the 5% for all the considered
[ parameters and, if implemented, it would lead to a further improvement of the parameter bound.

In conclusion, we have found a new lower bound of the [ parameter range of values using the
maximum relative fluctuation for a mixed initial proton-iron composition for LIV at first order. In
particular, we have obtained [ (1) > �5.95 · 10�6 at 90.5% of CL. A similar approach using the
minimum of the relative fluctuation with respect to U could lead to the definition of a negative upper
bound of the LIV parameter. Previous works found limits to the LIV parameter at first order by
studying the e�ects of Lorentz invariance violation on the photon propagation in the universe [14].

Future prospects will provide for an extension of the overall procedure to the e�ects produced
by LIV at second order. Moreover, limits on [ parameter could be found through a combined
analysis considering simultaneously the relative fluctuations of the number of muons and the mass
composition derived from the -max measurements given by the Pierre Auger Observatory.
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Figure 1: Neutral pion mean lifetime as a function of energy for the Lorentz invariant case and for di�erent
strengths of LIV.

increase/decrease with respect to the LI case producing modifications in the EAS development
which depends both on the energy and the strength of the violation. As an example, the c0 lifetime
as a function of the energy for the standard case and for di�erent values of the LIV parameters
is shown in Fig. 1. For negative values of [, the mean lifetime increases up to a critical energy,
corresponding to the point at which the phase space reduces to zero (i.e. <2

LIV ! 0) and the particle
becomes stable (i.e. W ! 1). The energy at which the lifetime evolution deviates from the standard
LI case depends both on the order and the strength of the violation. To have a qualitative idea of
what one should expect, let us consider the simple model [15] where a primary hadron interacting
in the atmosphere produces 2/3 of charged pions c± and 1/3 of c0B. In the standard case, charged
pions decay producing muons and neutrinos while the neutral ones suddenly decay in two photons
producing an electromagnetic sub-shower. Otherwise, in the presence of LIV and for negative
values of [ (=) , the c0 lifetime grows and the probability to interact before decaying increases. The
re-interacting c0s will behave as the source of a hadronic sub-showers like those initiated by the
primary cosmic ray particle. As the energy decreases in the further shower generations, c0s will
start again to produce a standard electromagnetic sub-shower. The consequence is a modification
of the shower development in the atmosphere. The amount of energy deposited in the atmosphere
will be reduced (i.e. invisible energy going to neutrinos will grow) leading to an underestimation
of the primary energy if the event is treated as a standard physics one. Moreover, the position of
the shower maximum (-max) [16] will be slightly modified with respect to the standard LI case. In
addition, as the muon content correlates with the energy of the hadronic component of the shower,
we can predict that the number of muons produced in the EAS will increase and the physical
fluctuations will decrease, as almost all the energy is kept into the hadronic component after the first
stages of the shower developement, with little room for stochastic leakage to the electromagnetic
component [17]. On the other hand, for positive values of the [ parameter the lifetime becomes
smaller with respect to the standard LI case as the energy increases. In these cases, the lifetime
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1. Introduction

Violations of Lorentz Invariance could a�ect the energy threshold of photo-hadronic inter-
actions; in particular, depending on the composition of the UHECRs at the highest energies, the
attenuation length of photo-meson production or photo-disintegration may become extremely large
and suppress particle interaction during propagation in the extragalactic space [1–4]. As a conse-
quence, the existing evidence of the suppression of the flux at the highest energies [5] can be used to
put a limit on LIV. In particular, LIV can be tested by searching the best description of the UHECR
observables, under LIV assumptions, as already done for instance in [6–10]. However, the scenario
is complicated by the fact that the best description of the UHECR spectrum and composition is
found corresponding to values of maximum energy at the source smaller than or comparable to the
typical threshold energy for photo-meson or photo-disintegration reactions [11]. For this reason,
the sensitivity of the deviations from LI in UHECR propagation is smaller than expected, and
alternative approaches need to be investigated.

2. Lorentz Invariance Violation framework

One possibility to constrain LIV models is that, depending on the strength of the violation, the
high energy available in the collision of cosmic rays with the atmosphere1 can lead to modifications
of the shower development with respect to the standard LI case. A well established phenomenolog-
ical approach to introduce LIV e�ects [12, 13] consists of adding e�ective terms in the dispersion
relation of particles as:

⇢2 � ?2 = <2 + 5 ( Æ?,"Pl; [) (1)

where < is the particle mass at rest, ⇢ its energy, and 5 represents the contribution of violation
due to the quantum gravity e�ects. In this approach the violation depends on the momentum of
the particle Æ? and on the Planck mass "Pl through the LIV parameter [, a dimensionless constant
coe�cient to be constrained. At ? ⌧ "Pl, the factor 5 can be expanded and considering only the
leading order of the expansion, Eq. 1 becomes:

⇢2 � ?2 = <2 + [ (=)
?=+2

"=
Pl

(2)

Previous works found limits to the LIV parameter by studying the e�ects of Lorentz invariance
violation on cosmic ray propagation at first order [ (1)W > �1.2 · 10�10 [14] in the photon sector in
the astrophysical scenario, which best describes UHECR data, and at second order �10�3 < [ (2)c <

10�1 [2] in the case of the neutral pion decay. Interpreting the right-hand side of the Eq. 2 as an
energy dependent mass, <2

LIV = <2 + [ (=) ?
=+2

"=
Pl

, the Lorentz factor for a LI violating particle at
energy ⇢ can be defined as:

WLIV = ⇢/<LIV (3)

Depending on the value assumed by [ (=) , the lifetime of the considered particle g = W!�+ g0

will change accordingly. For negative/positive values of [ (=) the lifetime of the particle should

1As an example a proton at 1019 eV hitting the atmosphere corresponds to a 0.1 PeV collision in the center of mass
frame.
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Comparison of model simulations with 
data on muon number fluctuations 
New limits on LIV parameter η

(Caterina Trimarelli)

https://icrc2021-venue.desy.de/video/Constraining-Lorentz-Invariance-Violation-using-the-muon-content-of-extensive-air-showers-measured-at-Pierre-Auger-Observatory/ad628645deae9dbce01d509d7b7a6b14
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“SD-ring”events:
comparison with cosmic rays events

COSMIC RAY
E=1.44·1020 eV
θ=14.32°

long-signal stations
lightning stations
muon stations
center of the footprint

*
×

PMT1
PMT2
PMT3

PMT1
PMT2
PMT3

PMT1
PMT2
PMT3

PMT1
PMT2
PMT3

long-signal station

lightning station

23 peculiar events collected.

Atmospheric phenomena – Elves and other beasts

36
6

ELVES at the Pierre Auger Observatory  

R. Mussa [for the Pierre Auger Coll.], EPJ Web Conf. 197 (2019) .

• Since 2014 the FD readout and triggering
system were updated to detect ELVES with a
high efficiency.

• Trace length extended from 300 µs to 900 µs
in 2017.

• Viewing footprint for ELVES: 3x106 km2

A. Aab et al. [Pierre Auger Coll.], Astr. Soc. P. 7 (2020).

CRs ~ 8 µs ELVES ~ 200 µs

(Adriana Vazquez)
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“SD-ring”events:
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23 peculiar events collected.

1600 Elves observed with fluorescence telescopes Downward-going Terrestrial Gamma Ray Flashes (TGFs) ?

(Roberta Colalillo)

Rich physics of additional phenomena 
still at the beginning of exploration

air shower

(Earth Space Sci. 7 (2020) 4)

https://icrc2021-venue.desy.de/video/Study-on-multi-ELVES-in-the-Pierre-Auger-Observatory/d57172e2d9126e97cb5d9169159f81ba
https://icrc2021-venue.desy.de/video/Downward-Terrestrial-Gamma-ray-Flashes-in-Auger/d13152c3c11dc98c547fe29e0c68a6a6
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5

The Open Data

https://opendata.auger.org

DOI:10.5281/zenodo.4487613

Aim: re-use by a wider community 

including professional and citizen scientists and 
in educational and outreach initiatives

The February 2021 release

10% of data used for physics results presented at ICRC2019

Close-to-raw data & higher level 
reconstructed info

Surface and Fluorescence Detectors

JSON and summary CSV files

Event visualization tools

Python code for data analysis

Currently 10% of Auger vertical data 
Research-level data in JSON format 
Online visualization of events 
Data analysis scripts for science plots

You are welcome to use this data


If you have a great idea what to look 
for we can work with you to apply 
your analysis also to the full data set

opendata.auger.org

http://opendata.auger.org


Outlook: How to gain sensitivity to distinguish source scenarios
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Fit method overview

injected spectrum:
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Simulated observables:

energy spectrum

Xmax

3d setup: 

signal fraction f
0
, 

magnetic field blurring δ
0

Universe model setup:

propagation

compare to data 

via Likelihood:

spectrum: Poissonian

Xmax: Multinomial

arrival directions:

compare to modeled 

arrival pdf

adjust parameters 
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cut
,�a

i
,�f
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δ
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arrival directions:

from:

Auger Combined Fit 

Auger ADs comparison to astrophysical catalogs

Fit of model parameters to  
- energy spectrum,

- Xmax distribution

- arrival direction distribution

Teresa Bister - ICRC 2021 
9

11

Fit with catalog models

SBG model AGN model

spectrum and composition 

can be described by both models

energy-dependent arrival directions not

described by false AGN model (directions, distances )�

model (AGNs) signal contribution 

energy dependency different from simulated input (SBGs)

reminder:

benchmark sim. contains 

SBG catalog as input, m=3.4

Flux and Xmax data: 
fluxes of different mass groups at Earth


Arrival direction distribution: 
distance sensitivity (deflection, production of secondaries)

Deviance Likelihood

Monte Carlo study: Scenarios with similar catalog correlations can be clearly distinguished



Joint Auger-TA anisotropy working group
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The datasets

Telescope Array (TA) data
2008 May 11–2019 May 10 (11 years)
strict (spectrum) cuts, � < 55°
14 000 km2 yr sr e�ective exposure

315 events with E � 40.8 EeV

Pierre Auger Observatory (Auger) data
2004 Jan 01–2020 Dec 31 (17 years)
� < 80°, with di�erent cuts and
reconstructions for � < 60° and � � 60°
120 000 km2 yr sr e�ective exposure

2 625 events with E � 32 EeV
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Auger (θ < 80°): 120,000 km2 sr yr
TA (θ < 55°):   14,000 km2 sr yr

Post-trial significance

2.9� for the all-galaxy catalog 4.2� for the starburst galaxy catalog
A. di Ma�eo et al. (Pierre Auger and Telescope Array coll.) UHECR arrival directions and nearby galaxies ICRC 2021 15 / 16

Post-trial significance

2.9� for the all-galaxy catalog 4.2� for the starburst galaxy catalog
A. di Ma�eo et al. (Pierre Auger and Telescope Array coll.) UHECR arrival directions and nearby galaxies ICRC 2021 15 / 16

The cross-calibration of energy scales

�ere is a mismatch between the Auger
and TA energy spectrum measurements
in the common declination band, which
we need to correct for.
We convert TA energies to the Auger scale
according to

EAuger
10 EeV = 0.857�

ETA
10 EeV�

0.937

ETA
10 EeV = 1.179�

EAuger
10 EeV�

1.067

(see talk by Peter Tinyakov for details).
N���: �is conversion only ��ed to ETA � 10 EeV

— do not extrapolate to lower energies!
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Energy scale 
conversion

Sky coverage

The cross-calibration of energy scales

�ere is a mismatch between the Auger
and TA energy spectrum measurements
in the common declination band, which
we need to correct for.
We convert TA energies to the Auger scale
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— do not extrapolate to lower energies!
A. di Ma�eo et al. (Pierre Auger and Telescope Array coll.) UHECR arrival directions and nearby galaxies ICRC 2021 6 / 16

catalog Emin (Auger) Emin (TA) � equiv. top-hat radius f TS
all galaxies 41 EeV 53 EeV 24°+13°�8° 38°+21°�13° 38%+28%

�14% 16.2
starburst galaxies 38 EeV 49 EeV 15.5°+5.3°�3.2° 24.6°+8.4°�5.1° 11.8%+5.0%

�3.1% 27.2
A. di Ma�eo et al. (Pierre Auger and Telescope Array coll.) UHECR arrival directions and nearby galaxies ICRC 2021 11 / 16

Full sky flux maps in 3 energy bins

Flux averaged over 45� top-hat window

Reconstructed dipole + quadrupoleDipole direction better constrained, compatible with Auger-only result

Large angular scales
Catalog correlation searches

(Auger-TA,ICRC 2021)



Comparison of Xmax data of Auger and TA
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Alves Batista et al. Open Questions in Cosmic-Ray Research at Ultrahigh Energies

energy spectra for the Southern sky, seen by Auger only, for the Northern sky, seen by TA only, and for the
declination range �15�  �  24.8�, seen by both observatories. The energy spectrum for the common
declination band is depicted in the right panel of Figure 3. Obviously, the agreement is much better, but
some differences are still seen. It should also be noted that the energy spectrum measured by Auger does
not show any significant declination dependence, but that of TA does. As it is still too early to draw definite
conclusions about the source of the differences, the joint working group will continue their studies. It is
also worthwhile to note that the declination dependence of the energy spectrum seen by TA should cause a
significant anisotropy in the arrival directions of UHECR. This has been studied in [34] and was found to
be in tension with astrophysical models aimed at reproducing observational constraints on anisotropies.

Another important question related to the UHECR energy spectrum is about the origin of the flux
suppression observed at the highest energies. The GZK cut-off was predicted 50 years ago independently
by Greisen and Zatsepin & Kuzmin [2, 3] and was claimed to be found by the HiRes collaboration in
2008 [21]. At the same time, the Auger collaboration reported a flux suppression at about the same energy
and with a significance of more than 6� [35]. Above 1019.8 eV, TA has reported the observation of 26
events [36] and Auger has reported 100 events [37] by ICRC2017. However, these numbers cannot be
compared directly due to the difference in the energy calibration of the experiments. We discuss more this
problem in Section 3.1.

2.3 Mass Composition
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Figure 4. Measurements [38–40] of the mean (left) and standard deviation (right) of the distribution of
shower maximum as a function of energy. Data points from the Pierre Auger Observatory are shown as
published since they have been corrected for detector effects. Data from the Telescope Array have been
approximately corrected for detector effects by shifting the mean by +5 g/cm2 [41] and by subtracting
an Xmax-resolution of 15 g/cm2 [40] in quadrature. Furthermore, the TA data points were shifted down
by 10.4% in energy to match the energy scale of the Pierre Auger Observatory [42] (see also [43]
for a discussion of the good overall compatibility of the Xmax measurements from the Pierre Auger
Observatory and the Telescope Array). All error bars denote the quadratic sum of the quoted statistical and
systematic uncertainties. The energy evolution of the mean and standard deviation of Xmax obtained from
simulations [44] of proton- and iron-initiated air showers are shown as red and blue lines respectively. The
line styles indicate the different hadronic interaction models [45–47] used in the simulation. M. Unger for
this review.
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Work in progress: 
data consistent in energy range with sufficient statistics

(Auger-TA Xmax Working Group, UHECR 2018)

(MIAPP review, 
Front. Astron. Space Sci. 2019)
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(see also discussion Lipari, Phys.Rev.D 103 (2021) 103009)
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Several changes of paradigms 
Measurement of composition-sensitive observables 

- Mass composition and source / propagation physics

- Mass-enhanced anisotropy studies

- Hadronic interactions and particle physics

- Fundamental physics (LIV)

- Astrophysical magnetic fields


Multi-messenger observations 
- Ultra-high energy photon and neutrino fluxes

- Transient source observation


Extension of sensitivity to lower energy 
- Transition from galactic to extragalactic cosmic rays

- Multi-messenger observations at lower energy


Test facility and multi-disciplinary measurements 
- Multi-hybrid detection technologies

- Calibrated environment, link to new instruments

- Atmospheric phenomena and transients


Solid lines: existing instruments, broken lines: planned instruments

Figure 6.23: Left: The exposure to cosmic rays near the suppression region (50 EeV) is shown as
a function of time for Auger & Auger-Prime (SD-1500), TA & TA⇥4, GRAND, K-EUSO [949],
POEMMA in stereo-mode, and GCOS. The exposure for POEMMA in limb-mode is shown for
300 EeV. A band is shown to indicate the exposure for various deployment schedules for TA⇥4.
Right: The e↵ective aperture of the experiments are shown as a function of energy. The gray lines
indicate the yearly exposure that is required for an experiment to observe the indicated event rate,
according to the flux model given in Ref. [67]. In both panels, currently operating experiments are
shown in solid lines and future experiments/upgrades are shown in dashed lines.

in di↵erent sources, further reducing the statistics. This will require a large increase in exposure
that will be only provided by the next generation experiments.

Leveraging the spectral shape at the highest energies The limited statistics of Auger and
TA at the highest energies, hinders a proper characterization of the shape of the all-particle spec-
trum above the flux suppression and therefore to discover possible new spectral features in this
range (like recently happened with the instep at 1019 eV). A significant increase of the exposure is
therefore needed. Measuring precisely the spectrum at these extreme energies with high statistics
is of fundamental importance to understand the maximum energy achievable by accelerators as the
continuation of the very steep decay of the flux far above the suppression will confirm the end of the
cosmic-ray spectrum. A large exposure would also allow to explore the spectrum above few times
1020 eV, where only upper limits to flux are currently available. A new hardening in the flux sup-
pression of the energy spectrum could indicate the presence of a local source capable of accelerating
particles at such high energies [667, 950, 951] and would provide new insights in the understanding
of the mechanisms responsible for the acceleration of the highest-energy CRs [952]. A recovery of
the spectrum above 1020 eV has been moreover predicted [953] in the context of LIV allowing to
test the frontier of particle acceleration in the Universe, and new physics as well [954–956]. In
such kind of studies, a significant increase of the sensitivity is obtained by adding information on
mass composition [931]. The combined fit of the spectral shape and of the composition has been
used by the Auger collaboration to set stringent limits on the LIV amplitude [9]. A significant
increase in statistics together with an improvement in mass sensitivity for future observatories will
be extremely beneficial to improve such limits. Finally, the combination of high statistics, mass
sensitivity and anisotropy will be of extreme value also to constrain production models in a similar
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The quest for UHECR origins 
Auger, PRL (2020)

Ultra-high energy cosmic rays (UHECR)
Long thought to be of extragalactic origin > 5 EeV (0.8 J!), marking the ankle

Observed spectral features: instep at 10-15 EeV, toe at 40-50 EeV
→ markers of Peters cycle (acceleration) and UHECR horizon (propagation) 
     based on joint spectral-composition modeling

Spectral and composition observables integrated over the sphere  
→ help constrain source distance distribution & source escape spectrum

Anisotropy observables 
→ break down the flux (and composition) vs arrival direction: pinpoint sources?

Credits: Jorge Cham & Daniel Whiteson
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di�erent mass groups have small overlap and the composition becomes heavier as the energy
increases. The estimated non-negligible Fe fraction at the sources is actually required only by the
energy spectrum fit, since it contributes at the highest energies where the mass composition data
are not available, as already noted in [17].

3. E�ect of the experimental systematic uncertainties

The systematic uncertainties of instrumental origin a�ect both the energy and the -max mea-
surements. The uncertainty on the energy scale is assumed to be �⇢/⇢ = 14% in the whole
considered energy range [18]. For the -max scale we consider an asymmetric and slightly energy-
dependent uncertainty, ranging from 6 to 9 g cm�2 [13]. An additional systematic e�ect could also
arise from the uncertainties on the -max resolution and acceptance parameters [13], but we verified
that their impact on the fit results is here negligible.

�-max �⇢/⇢ ⇡� ⇡-max ⇡

-14% 52.5 578.3 630.9
�1fsyst 0 71.7 595.2 666.9

+14% 64.9 609.3 674.2
-14% 53.5 581.3 634.8

0 0 60.1 554.8 614.9
+14% 70.6 548.8 619.5
-14% 79.1 714.2 793.3

+1fsyst 0 80.8 555.4 736.2
+14% 82.4 615.7 698.2

Table 3: The e�ect on the deviance of the
±1 fsyst shifts in the energy and -max scales.

.

Following the same approach used in [2], we take
into account the uncertainty on the energy scale and on
the -max scale by shifting all the measured energies and
-max values by one systematic standard deviation in each
direction. We consider all the possible combinations of
these shifts and their e�ect on the deviance value is sum-
marised in Tab. 3. The dominant e�ect in terms of predic-
tions at Earth is the one arising from the -max uncertainty;
as for the estimated best fit parameters, they are not much
modified when the experimental systematic uncertainties
are considered.

The maximal variations on the predicted fluxes at Earth, obtained by considering all the
configurations of Tab. 3, are shown in Fig. 3. The rather large uncertainty on the predicted total
fluxes (brown band) is due to the ±14% shifts in the energy scale, but it significantly a�ects only

Figure 3: Left: the combined e�ect of the experimental uncertainties on the energy spectrum. Right: the e�ect on
the relative abundances at the top of atmosphere. The uncertainties are considered by shifting the energies and/or the
-max distributions of 1 fsyst in both directions, as shown in Tab. 3. The bands represent the maximal variations induced
by considering all the possible combinations of shifts. The shaded area in the right plot indicates the region where the
-max measurements are grouped in one single energy bin because of the low statistics and thus the mass composition
predictions are mainly driven by the energy spectrum fit.
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Energy scale:   
Xmax scale: 

σsys(E)/E = 14 %
σsys(Xmax) = 6 ÷ 9 g cm−2
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Figure 3: Left: the combined e�ect of the experimental uncertainties on the energy spectrum. Right: the
e�ect on the relative abundances at the top of atmosphere. The uncertainties are considered by shifting the
energies and/or the -max distributions of 1 fsyst in both directions, as shown in Tab. 3. The bands represent
the maximal variations induced by considering all the possible combinations of shifts. The shaded area in
the right plot indicates the energy region where no mass composition information is available and thus the
predictions are only extrapolated from the energy spectrum fit.

4. E�ect of the uncertainties from models

We also investigate the impact on the fit results of changing the propagation models and the
hadronic interaction model. In all the cases we repeat the fit considering di�erent combinations of
propagation models, labelled as ’XY’ according to Tab. 1. The results thus obtained are written in
Tab. 5 and their e�ect on the predicted fluxes at Earth is shown in Fig. 4.

As concerns the hadronic interaction model, we verified that QGSJetIIv4 cannot properly
describe our data and is thus excluded from this analysis. Since we want to keep open the option
that our data are better described by an intermediate model between EPOS-LHC and Sibyll2.3d
instead of exactly one of them, we introduce an additional nuisance parameter XHIM, limited
between 0 and 1, which defines the value of each HIM-dependent Gumbel parameter as ? =
XHIM · ?EPOS + (1 � XHIM) · ?Sibyll. The introduction of XHIM leads to an additional deviance term
⇡HIM = (XHIM � 0.5)2/(0.5)2.

TG PG TD PD
LE HE LE HE LE HE LE HE

W 3.49 ± 0.02 �1.98 ± 0.10 3.48 ± 0.04 �1.9 ± 0.2 3.66 ± 0.05 �0.93 ± 0.09 3.51 ± 0.06 �0.86 ± 0.10
log10 ('cut/V) 24 (lim.) 18.16 ± 0.01 24 (lim.) 18.16 ± 0.02 18.04 ± 0.04 18.23 ± 0.01 17.95 ± 0.06 18.21 ± 0.01
�H (%) 49.87 $ (10�7) 49.39 0.44 44.17 0.38 40.85 $ (10�9)
�He (%) 10.92 28.60 14.52 49.29 7.45 20.21 14.64 47.99
�N (%) 36.25 69.05 33.28 43.84 45.17 73.80 39.57 38.29
�Si (%) $ (10�6) 7.32 $ (10�7) 4.64 $ (10�5) 2.91 $ (10�6) 11.15
�Fe (%) 2.96 2.35 2.80 1.78 3.21 2.69 4.94 2.58
XHIM 1.0 (lim.) 0.94 ± 0.17 0.92 ± 0.15 0.86 ± 0.13
⇡HIM 1.0 0.78 0.69 0.52
⇡� (#� ) 60.1 (24) 51.9 (24) 44.3 (24) 51.7 (24)
⇡-max (#-max ) 555.8 (329) 564.8 (329) 587.5 (329) 593.2 (329)
⇡tot (# ) 615.9 (353) 616.7 (353) 631.8 (353) 645.0 (353)

Table 5: Best fit results obtained by using di�erent combinations of propagation models. The uncertainty
due to the hadronic interaction model choice is considered by fitting the nuisance parameter XHIM.

For all the considered combinations of propagation models our data appear to be better described
by either EPOS-LHC or intermediate models compatible with it. The lowest deviance is obtained in
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Figure 3: Left: the combined e�ect of the experimental uncertainties on the energy spectrum. Right: the
e�ect on the relative abundances at the top of atmosphere. The uncertainties are considered by shifting the
energies and/or the -max distributions of 1 fsyst in both directions, as shown in Tab. 3. The bands represent
the maximal variations induced by considering all the possible combinations of shifts. The shaded area in
the right plot indicates the energy region where no mass composition information is available and thus the
predictions are only extrapolated from the energy spectrum fit.
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The dominant effect on the the predicted fluxes and on the 
deviance is the one from the experimental uncertainties
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Figure 4: Left: the e�ect of the uncertainties from models on the energy spectrum. Right: the e�ect on the relative
abundances at the top of atmosphere. The bands represent the maximal variations given by the results in Tab. 4.

5. Source evolution

All the results presented in the previous sections are obtained by assuming no cosmolog-
ical evolution for the populations of extragalactic sources. We perform the fit also assuming
three di�erent evolution scenarios: we consider a SF-like [18] evolution, an AGN-like one [19],
which have a positive source evolution for I < 1 (< = 3.5 and < = 5, respectively), and a
TDE-like evolution with < = �3 for small I [20]. Since there is no physical reasons to as-
sume that the two populations of sources have the same cosmological evolution, all the possible
combinations are considered and the results in terms of total deviance are summarised in Fig. 5.

Figure 5: Deviance as a function of the
cosmological evolution of the two popula-
tions.

In the case of the LE component, a positive (negative) evolu-
tion produces a hardening (softening) of the energy spectrum
at the sources to compensate the larger amount of low (high)
energy particles. As for the HE component, the cosmologi-
cal evolution e�ect is balanced by the interplay between the
modification of the energy spectrum at the sources and/or the
adjustment of the rigidity cuto� of the LE component. If the
HE population has a strong positive evolution (e.g. < = 5), the
hardening of the energy spectrum at the sources is not enough
to compensate the increased amount of low-energy particles,
hence the LE component is suppressed below ⇠ 1018 eV to
attempt the description of the whole energy range with the HE component alone; the deviances are
very high, so that such scenarios are excluded by our data at high significance. In all the other
scenarios, the impact on the fit results is within the systematic uncertainties e�ect, so it is more
di�cult to draw a conclusion about a favoured configuration. However, when we consider the values
< = 0, 3.5 for the HE component and < = �3, 0 for the LE one, we obtain the lowest deviances.

6. Conclusions

In this study we performed a combined fit of the energy spectrum and mass composition data
from ⇠ 6 · 1017 eV. The region above the ankle is described by an extragalactic component ejected
at the sources with a very hard energy spectrum (W < 0), a rather low rigidity cuto� and a mass
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Figure 4: Left: the e�ect of the uncertainties from models on the energy spectrum. Right: the e�ect on the relative
abundances at the top of atmosphere. The bands represent the maximal variations given by the results in Tab. 4.
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TDE-like evolution with < = �3 for small I [20]. Since there is no physical reasons to as-
sume that the two populations of sources have the same cosmological evolution, all the possible
combinations are considered and the results in terms of total deviance are summarised in Fig. 5.
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