Modelling the cosmic ray spectrum at the knee

Gwenael Giacinti TDLI & SJTU (Shanghai)

p,e

Experimental data (knee)

The knee in the CR spectrum

Knee was discovered by Kulikov and Khristiansen in data of MSU Experiment in 1958. It was confirmed by all new independent experiments.

For a long time there were 2 explanations: either astrophysical and from particle physics. In the 'particle physics' explanation, it was assumed that either interactions change or a new particle dominates. LHC finally dismissed this interpretation.

The knee in the CR spectrum

Astrophysical interpretations of the knee

- \neg Knee is due to the maximum energy of the dominant type of sources.
- Problem: Observed knee is too sharp.

 \rightarrow One single source dominates everything around the knee.

Problem: Dipole anisotropy is too small.

 → Knee is due to a change in the CR propagation properties in the interstellar medium.
Problem: Not the end of the Galactic CR spectrum.
=> Galactic CR sources have to accelerate particles

above the knee.

The standard paradigm for Galactic CRs

Grammage : $X = c\rho h H/D_z \sim \text{several g/cm}^2$ at GeV

 $D \sim 10^{28}$ cm²/s at GeV

for H ~ several kpc

Fermi, 2008 – 2017 :

Diffuse emission at \sim GeV – TeV energies :

→ Globally in agreement with B/C, & SNR paradigm in terms of injected CR power...

Problems – Part 1 (sources):

→ Where are the PeVatrons? → Particle acceleration at SNR shocks → Composition $\rightarrow \sim 10$ TeV bump

The sky at VHE

LHAASO PeVatrons :

LHAASO PeVatrons :

Ultrahigh-energy photons up to 1.4 petaelectronvolts from 12 y-ray Galactic sources

Zhen Cao 🖾, F. A. Aharonian 🖾, [...]X. Zuo

Local fluxes of CR p and He

Acceleration mechanism???

Local fluxes of CR p and He

2 source populations?

Bell et al. (2013) : Only some supernovae in dense winds can reach multi-PeV energies.

Tatischeff, A&A (2013) : SN 1993 J a PeVatron for 10 yr.

And the CR spectrum at Earth?

Proton spectrum with DAMPE (arXiv:1909.12860)

Problems – Part 2 (propagation):

 → Standard picture in strong tension with GMF/ISMF observations & knowledge about CR propagation
→ Patchy diffuse Galactic γ-ray emission at VHE (~ 100 TeV +) Anisotropic diffusion

Isotropic diffusion

Giacinti et al, 1710.08205

Isotropic diffusion

Allowed ranges of $B_{\rm rms}$ and $L_{\rm coh}$ compatible with $D_0 = (3-8) \times 10^{28} {\rm cm}^2/{\rm s}$ at $E_0 = 10 {\rm GeV}$

Anisotropic diffusion

Isotropic diffusion:

Needs > 1000s sources for the local > 10 TeV CR flux.

Isotropic diffusion:

Needs > 1000s sources for the local > 10 TeV CR flux.

Anisotropic diffusion:

One/Few local sources (~ 200pc) may dominate the CR flux at > 10TeV +

LOFAR measurement of maximum scale of turbulent GMF in disk

arXiv: 1308.2804

Fig. 9. Power spectra of total intensity from the LOFAR (dots) and WSRT (crosses) observations. The error bars indicate statistical errors at 1σ . The fitted power law (dashed line) with a spectral index $\alpha = -1.84 \pm 0.19$ for $\ell \in [100, 1300]$ is also shown.

Lmax ~ 20 pc +-6 pc in disk

«Escape model» GG+ (2014, 2015)

«ESCAPE MODEL»:

Idea:

V. L. Ginzburg and S. I. Syrovatskii, 1962-1964; small angle diffusion at HE

Development:

V. S. Ptuskin et al., Astron. Astrophys. 268, 726 (1993); J. Candia, E. Roulet and L. N. Epele, JHEP 0212, 033 (2002); J. Candia, S. Mollerach and E. Roulet, JCAP 0305, 003 (2003). (*Hall diffusion*)

Gaz $n(z) = n_0 \exp(-(z/z_{1/2})^2)$ with $n_0 = 0.3/\text{cm}^3$ at R_{\odot} andGaz $z_{1/2} = 0.21 \,\text{kpc}$ distribution $n = 10^{-4} \text{g/cm}^3 \leftrightarrow \text{Minimum, up to } z = +/-10 \,\text{kpc}$

Sources: $n(r) \propto (r/R_{\odot})^{0.7} \exp[-3.5(r-R_{\odot})/R_{\odot}]$ D. A. Green, arXiv:1309.307

Cosmic Ray Knee: all particles

Contribution of extra-Galactic sources

Diffuse Galactic gamma-ray emission (Tibet AS-gamma)

Tibet gamma-ray sky at > 400 TeV (2021)

Diffuse Galactic VHE y-ray emission

³⁹⁸⁻¹⁰⁰⁰ TeV Tibet ASy events

Diffuse Galactic VHE y-ray emission

³⁹⁸⁻¹⁰⁰⁰ TeV Tibet ASy events

Our updated model of the knee (& >TeV CR flux) with anisotropic CR diffusion

Diffuse Galactic VHE y-ray emission

Giacinti & Semikoz, In prep.

- \rightarrow Propagate CRs in Jansson&Farrar Galactic magnetic field model.
- \rightarrow Stochastic PeV CR injection at SNe.

Better than Galactic CR propagation codes at these energies (E~100TeV)

Knee – Proton flux

G.Giacinti and D.Semikoz, in preparation

log(CR density) in the Galactic plane

1/3 of all SNe are PeVatrons (all CCSNe)

~ 'SMOOTH'? BUT MUCH MORE PATCHY THAN WITH ISO DIFF

Knee – Proton flux

log(CR density) in the Galactic plane

1.6% of all SNe are PeVatrons (rare, extreme CCSNe in dense winds)

EXTREMELY PATCHY!!!

G.Giacinti and D.Semikoz, in preparation

G.Giacinti and D.Semikoz, in preparation

G.Giacinti and D.Semikoz, in preparation

Knee – Proton flux

G.Giacinti and D.Semikoz, in preparation

Summary

- Flux at the knee is dominated by few local sources
- Flux at the knee is strongly variable
- Two classes of sources, one accelerates to ~10+ TeV, another to ~10 PeV
- Galaxy NOT uniformly filled with CRs at PeV energies (very different from GeV energies)
- Updated our escape model with this new knowledge (dynamical now) → Description of the knee.