Ground Observations of the Spectrum and Composition of Cosmic Rays Below the Knee

Juan Carlos Díaz Vélez Universidad de Guadalajara on behalf of the HAWC Collaboration

5 Dic. 2022 Cosmic Rays in the Multi-Messenger Era APC Laboratory (Paris)

Image: tecreview.tec.mx

The Cosmic-Ray Spectrum

- Spectral characteristics from acceleration and propagation mechanism effects
- Mass composition reveals information about local source environment and of cosmic ray propagation in the Galaxy.
- In general, it is thought that cosmic rays with energies below PeV are of galactic origin and that their acceleration and transport in the Galaxy occur through diffusive processes driven by B-fields.
- Energies up to PeV assumed from 1st order Fermi acceleration in shocked plasmas of SNRs with propagation through scattering on random fluctuations in the ISMF.
- CR of extra-galactic origin above 10⁹ GeV

https://web.physics.utah.edu/~whanlon/spectrum.html

LEAP - satellite

10¹⁹ 10²⁰

Energy (eV)

The Cosmic-Ray Spectrum

- Previously: little data in 10 TeV 100 TeV region
 - Recent direct measurements have been extended to higher energies
 - Ground-based experiments to lower energies
 - Overlap allows for cross-calibration

Energy (eV)

• ATIC-2

- Energy spectra of protons and He, C, O, Ne, Mg, Si, and Fe nuclei
- Complex structure of the energy dependence of the mean logarithm of atomic weight. (i. e. softening at $\sim 10 \text{ TV}$)

http://science.nasa.gov

• CREAM I-III:

- apparent suppression beyond 20TeV in the spectra of H
- Statistical uncertainties are large and suggest additional data needed.

https://cosmicray.umd.edu/cream

Y. S. Yoon *et al* 2017 *ApJ* **839** 5

- DAMPE:
- Measurements of the spectrum of protons (Q. An et al., 2019) between 40 GeV and 100 TeV;

Q. An et al., Science Adv. (2019)

• DAMPE:

- Measurements of the spectrum of protons (Q. An et al., 2019) between 40 GeV and 100 TeV;
- He for E = 70 GeV 80 TeV (F. Alemanno *et al.*, 2021).

F. Alemanno et al., Phys. Rev. Lett. (2021)

• DAMPE:

- Measurements of the spectrum of protons (Q. An et al., 2019) between 40 GeV and 100 TeV;
- He for E = 70 GeV 80 TeV (F. Alemanno *et al.*, 2021).
- First confirmation of TeVs cutoffs in H and He spectra reported by ATIC-2 AND CREAM I-III.

• DAMPE:

- Confirmation of the softening at ~ 25 TeV for combination of p and He spectra
- Extension to 300 TeV
- Overlapping with indirect measurements

• ISS-CREAM: showed preliminary results at ICRC2021 that seem to support HAWC observations on the recovery of light cosmic ray spectra around 100 TeV

ISS-CREAM; NASA; UMd

G. H. Choi, PoS(ICRC2021)094

• CALET: Measurements of the p and He spectrum confirm the cutoffs in the p spectrum between 50 GeV and 60 TeV.

NASA

O. Adriani et al. Phys. Rev. Lett. (2022)

Indirect Detection Methods

Image: Armelle Jardin-Blicq (HAWC Collaboration)

Images: Fabian Schmidt, University of Leeds, UK (<u>https://www.iap.kit.edu/corsika/</u>)

Indirect Detection Methods

- Detection of secondary air shower particles
- Large variance in shower development
- Method:
- Limited observables: deposited charge, lateral charge distribution, core location, arrival direction, etc.
- Use Monte Carlo simulations to statistically separate different mass species based on observables:
 - Direct cuts
 - ML methods
- (typically) use an unfolding method to derive physical spectrum from observed spectrum, accounting for effective area, efficiency.

J. C. Arteaga-Velázquez (ISVHE-CRI 2022)

Amenomori, M. et al, Phys. Rev. D

$$N(E_{\rm reco}) = \frac{1}{\Omega} \int A_{\rm eff}(E, E_{\rm reco}) N(E) dE$$

$$P(E|E_{\text{reco}}) = \frac{P(E_{\text{reco}}|E)P(E)}{\epsilon(E)\sum_{E'}P(E_{\text{reco}}|E')P(E')} \qquad N(E) = \sum_{E_{\text{reco}}} N(E_{\text{reco}})P(E|E_{\text{reco}}) = \frac{P(E_{\text{reco}}|E)P(E)}{\epsilon(E)\sum_{E'}P(E_{\text{reco}}|E')P(E')}$$

G. D'Agostini, Nucl. Inst. Meth. Phys. Res., 362 (1995).

Early Ground-based Measurements

EAS Experiments 10 TeV - 1 PeV

- **TIBET** measured the energy spectrum of H and He for E = 200 TeV 1 PeV.
- EAS-TOP with MACRO, on the intensity of H, He and CNO primaries.
- **KASCADE**, on the flux of p primaries [6].
- **ARGO-YBJ** performed measurements on the spectrum of the H+He mass group.

Sciascio, Giuseppe, Sciences. 12. 705. (2022).

Early Ground-based Measurements EAS Array+Deep Underground µ-detector

EAS Experiments 10 TeV - 1 PeV

- **TIBET** measured the energy spectrum of H and He for E = 200 TeV 1 PeV.
- EAS-TOP with MACRO, on the intensity of H, He and CNO primaries .
- **KASCADE**, on the flux of p primaries .
- **ARGO-YBJ** performed measurements on the spectrum of the H+He mass group.

Aglietta, M. et al, Astro. Phys. 21 (2004)

Table 5 Comparison (a) of the present results alone and (b) combined with the direct p-flux measurements, with the JACEE and RUNJOB data

Qua	ntity(*)	EAS-TOP and MACRO	JACEE	R
(a) J	$_{p+He}(80 \text{ TeV})$	18 ± 4	12 ± 3	8
(b) J	He(80 TeV)	12.7 ± 4.4	6.4 ± 1.4	3
(b) \overline{J}	$\frac{J_{\rm p}}{J_{\rm p+He}}$ (80 TeV)	0.29 ± 0.09	0.45 ± 0.12	0
(a) J	_{p+He+CNO} (250 TeV)	1.1 ± 0.3	0.7 ± 0.2	0
(a) \overline{J}_1	$\frac{J_{\rm p+He}}{M_{\rm P+He+CNO}}$ (250 TeV)	0.78 ± 0.17	0.70 ± 0.20	0

CNO data and all errors of JACEE and RUNJOB are interpreted by ourselves from plots. (*)Intensity units are 10^{-7} $m^{-2} s^{-1} sr^{-1} TeV^{-1}$.

RUNJOB

 3 ± 2

 3.1 ± 0.7

 0.63 ± 0.20

 0.5 ± 0.1

 0.76 ± 0.25

operating outside the atmosphere or at ground level (see text for references).

Early Ground-based Measurements

EAS Experiments 10 TeV - 1 PeV

- **TIBET** measured the energy spectrum of H and He for E = 200 TeV 1 PeV.
- EAS-TOP with MACRO, on the intensity of H, He and CNO primaries .
- **KASCADE**, on the flux of p primaries .
- **ARGO-YBJ** performed measurements on the spectrum of the H+He mass group.

Early Ground-based Measurements

EAS Experiments 10 TeV - 1 PeV

- **TIBET** measured the energy spectrum of H and He for E = 200 TeV 1 PeV.
- EAS-TOP with MACRO, on the intensity of H, He and CNO primaries .
- KASCADE, on the flux of p primaries .
- **ARGO-YBJ** performed measurements on the spectrum of the H+He mass group.
 - Consistent with single power law with $\gamma = -2.64 \pm 0.01$

IACT Experiments 10 TeV - 1 PeV

• HESS, on the spectrum of Fe nuclei.

Consistent with single power law: $\gamma = 2.62 \pm 0.17$

• One of the first indirect observations in agreement with direct measurements of Fe component.

https://namibian.org

F. Aharonian, et al, Physical Review D (2007)

IACT Experiments 10 TeV - 1 PeV

- HESS, on the spectrum of Fe nuclei.
- MAGIC, on the intensity of protons

- Preliminary results shown at ICRC2021 (not included in proceedings).
- Protons discriminated from other nuclei through ML

P. Temnikov, et al. ICRC (2021)

IACT Experiments 10 TeV - 1 PeV

• HESS, on the spectrum of Fe nuclei.

A. Archer, et al. Physical Review D 98 (2018)

- GRAPES-3 (EAS):
 - proton spectrum indicates a spectral break at ~208TeV
 - both H and He have reasonably good overlap with other measurements

HAWC Observatory

Puebla,

Mexico

HAWC operates day and night, providing a large field of view for the observation of the highest energy gamma rays.

HAWC is located at 4,100 m above sea level, covering an area of 20,000 m².

Mapping the Northern Sky in High-Energy Gamma Rays

The HAWC γ -ray observatory

- Core location, (X_c, Y_c)
- Arrival direction, θ

• • • •

- Fraction of hit PMT's, f_{hit}
- Lateral charge profile, Qeff(r)

HAWC: J. C. Arteaga

[HAWC Coll., ApJ 843 (2017) 39]

HAWC All-particle cosmic ray energy spectrum

All-particle cosmic ray energy spectrum measured by the HAWC experiment from 10 to 500 TeV

Bayesian Unfolding

G. D'Agostini, Nucl. Inst. Meth. Phys. Res., 362 (1995).

The number of events observed in time T, within the solid angle Ω , and with reconstructed energy E_{reco} , $N(E_{reco})$ is related to the true energy distribution N(E) by

$$N(E_{\rm reco}) = \frac{1}{\Omega} \int A_{\rm eff}(E, E_{\rm reco}) N(E) dE,$$

R. Alfaro, et al. Phys. Rev. D 96 (2017)

$$P(E|E_{\text{reco}}) = \frac{P(E_{\text{reco}}|E)P(E)}{\epsilon(E)\sum_{E'}P(E_{\text{reco}}|E')P(E')}$$

defines the probability of a shower with reconstructed energy *E*_{reco} to have been produced by a primary particle with energy E. $\epsilon(E)$ is the efficiency to observe an event with energy E.

The unfolded energy distribution is given by convolving the unfolding matrix with the reconstructed energy distribution iteratively via

$$N(E) = \sum_{E_{\text{reco}}} N(E_{\text{reco}}) P(E|E_{\text{reco}})$$

HAWC All-particle cosmic ray energy spectrum

s⁻¹) (GeV)^{1.6}

sr1

ΦE^{2.6} (m⁻²

10

All-particle cosmic ray energy spectrum measured by the HAWC experiment from 10 to 500 TeV

All-particle spectrum consistent with a broken power law

$$\Phi(E) = \Phi_0 E^{\gamma_1} \left[1 + \left(\frac{E}{E_0}\right)^{\epsilon} \right]^{(\gamma_2 - \gamma_1)/\epsilon}$$

with an index of $\gamma_1 = -2.5 \pm 0.009$

with a break at $E_0 = 30.84^{+1.83}_{-1.72}$ TeV,

followed by an index of $\gamma_2 = -2.7 \pm 0.004$ $\epsilon = 9.9 \pm 1.8$.

- Obtained event-by-event
- Fit of Qeff(r) with a NKG-like function:

$$f_{ch}(r) = A \cdot (r/r_0)^{s-3} \cdot (1+r/r_0)^{s-4.5}$$

with $r_0 = 124.21$ m.

A, **s** are free parameters

[HAWC Collab., APJ 881 (2017); J.A. Morales Soto et al., PoS(ICRC2019 359 (2019)]

- Age parameter is sensitive to composition
- Select a subsample using a cut on the age
 - Subsample must have a large relative abundance of H and He.

Comparison with measurements from other experiments

- HAWC data confirm previous hints from ATIC-2, CREAM I-III and NUCLEON about the existence of a break in the spectrum of the light component of cosmic rays in the $10^4 - 10^5$ GeV range.
- **HAWC** result is strengthened by recent DAMPE data.
- **HAWC** data is in agreement with ATIC-2 close to 10^4 GeV.

Fit of spectrum

• Test Statistics: $TS = -\Delta \chi^2 = 177.25$

 $p-value = 2 \times 10^{-5}$

-> 4.1o deviation from scenario with single power-law.

- Results for the double power-law fit:
- $\gamma_1 = -2.51 \pm 0.02$ $\gamma_2 = -2.83 \pm 0.02$ $\Delta \gamma = -0.32 \pm 0.03$ $log_{10}(E_0/GeV) = 4.38 \pm 0.06$ • $E_0 = 24.0^{+3.6}_{-3.1}$ TeV

HAWC p, He, Z >= 3

• Unfold shower age vs $log_{10}(E)$ data to find the elemental spectra for H, He and heavy nuclei (Z > 2).

HAWC data

- January/01/16 June/03/19 ullet
- $T_{\rm eff}$ = 3.21 years
- Θ < 45⁰
- Successfully reconstructed ${\color{black}\bullet}$
- fhit ≥ 0.2

- \bullet 40 m > 40
- s = [1, 3.2]
- \bullet

$$g_{10} E) = T_{\text{eff}} \Delta \Omega \sum_{j=1}^{\infty} \sum_{E_T} P_j(s, \log_{10} E | \log_{10} E_T) A_{\text{eff}, j}(E_T) \Phi_j(E_T) \Delta E$$

 $g_{10} E)$: # events per ($s, \log_{10} E$) bin.
 $\log_{10} E | \log_{10} E_T$): response matrix for EAS from mass group j
(reconstruction and fluctuations).
: effective area = $A_{\text{thrown}} \varepsilon_{\text{eff}}$.

: spectrum for mass group j.

Hit PMT's within radius of $\log_{10} (E/GeV) = [3.5, 6.2]$ Bins: $\Delta s = 0.17$

[R.Gold, Report ANL-6984, 1964]

[KASCADE Collab., App 24 (2005) 1]

 $\Delta \log_{10} (E/GeV) = 0.1$

J.C. Arteaga-HAWC Cosmic Ray Composition

The elemental spectra do not follow a power-law function.

- Composition becomes heavier from 10 TeV to 100 TeV.
- groups.

 Knee-like feature at ~ 32 TeV in spectra of H+He observed by HAWC in 2019 comes from individual cuts in spectra for H and He.

[HAWC Collab., PoS(ICRC2019) 176]

 $E_{0, He}/E_{0, H} = 1.8^{+0.3}_{-0.1}$

HAWC p, He, Z >= 3

- HAWC data show fine structure (> 5σ) between 10 TeV and 251 TeV:
 - $\Phi H(E)/\Phi He(E) < 1$ for E = [10 TeV, 100 TeV].
- Bump in the the all-particle spectrum at \sim 46 TeV reported by HAWC in 2017 is due to
- the superposition of individual softenings in the spectra of light and heavy mass

[HAWC Collab., PRD 96 (2017) 122001]

$$\Phi(E) = \Phi_0 E^{\gamma_1} \left[1 + \left(\frac{E}{E_0}\right)^{\varepsilon_0} \right]^{(\gamma_2 - \gamma_1)/\varepsilon_0} \left[1 + \left(\frac{E}{E_1}\right)^{\varepsilon_1} \right]^{(\gamma_3 - \gamma_2)}$$

	E ₀ (TeV)	<i>E</i> ₁ (<i>TeV</i>)	? 1	Y2
Н	14.1 +2.2/-0.4	103 +1/-4	-2.6 +0.2/-0.5	-3.1 ± 0.3
Не	25.3 +1.1/-0.8	152 +11/-9	-2.2 +0.1/-0.3	-3.1 +0.4/-0.
Z > 2	51 ± 1		-2.1 ± 0.3	-2.6 +0.04/-0

HAWC p, He, Z >= 3

H and He spectra: Comparison with other experiments

HAWC: J. C. Arteaga

Good agreement of **HAWC** with direct data from **DAMPE**, **ATIC-02** and **CREAM I-III** within systematic errors.

• HAWC confirms softenings at tens of TeV observed by DAMPE, first hinted by ATIC-02, CREAM and NUCLEON.

HAWC Composition

Light (H + He) and Heavy (Z > 2) spectra: Comparison with other experiments

- Good agreement of **HAWC** with **ATIC-02**, **CREAM** and **JACEE** within systematic errors.
- **ARGO-YBJ** disagrees with **HAWC** data for E < 50TeV.

- Agreement of HAWC with ATIC-02 within systematic errors.
- HAWC data is above NUCLEON, MUBEE and **JACEE** observations.

Discussion

- TeV softening in p+He spectrum could contribute to the softening observed at TeV energies in all-particle spectrum.
- All-particle spectrum feature: wider and shifted to higher energies possibly from increasing influence of Z > 2 close to 100 TeV, consistent with heavy element data from NUCLEON, the mean shower age from HAWC and analysis of the efficiency of the age cut.
- Decrease in Φ_{H+He}/Φ_{Tot} ratio from 10 to 158TeV suggests relative increase in contribution of heavy nuclei in the total spectrum.
- Diffusive shock acceleration predicts a power-law spectrum of nuclei from TeV to PeV.
- Max. confinement energy by B-fields either at source or in Galaxy: rigidity dependent cuts at ~PeV
- Measurements in tension with standard scenario.
- Some nonconventional models predict features in the ~TeV spectra of different nuclei and invoke new kinds of accelerators, nearby sources, or modified mechanism of acceleration in astrophysical shocks
- ▶ Further studies needed at energy spectra of heavier nuclei in 10 TeV 1 PeV range.

Summary

- \bullet statistics.
- ullet10 TV
- \bullet component (H+He) and individual nuclei for cosmic rays in the range E = [10 TeV, 100 TeV].
- First indirect observations by HAWC of a break at ~24.0 TeV in the cosmic-ray spectrum of H+He
- that the H+He spectrum of cosmic rays deviates from a power-law behavior in the 10-100 TeV range.
- \bullet
- Further studies needed for energy spectra of heavier nuclei in 10 TeV 1 PeV range. \bullet

Earlier indirect measurements lacked statistics and were consistent with a single power law due to limited

Direct measurements suggest the existence of a rigidity-dependent cutoff in the energy spectrum at around

Dedicated measurements of cosmic ray composition have allowed to reconstruct the spectrum of the light

Measurements confirm previous hints from ATIC-2, CREAM I-III and NUCLEON (and later confirmed by DAMPE).

HAWC and GRAPES-3 measurements suggest possible hardening in the intensities of H and He above 100TeV.

References

- Russ. Acad. Sci. Phys. 73, 564–567 (2009). https://doi.org/10.3103/S1062873809050098
- 2. Y. S. Yoon et al, Proton and Helium Spectra from the CREAM-III Flight2017 ApJ 839 5, doi:10.3847/1538-4357/aa68e4
- eaax3793 (2019).
- Mission, Phys. Rev. Lett. 126, 201102 (2021).
- Astronomy Reports 63, 66 (2019).
- Electron Telescope on the International Space Station, Phys. Rev. Lett. 129, 101102.
- 7. ISS-CREAM collab., Analysis Result of the High-Energy Cosmic-Ray Proton Spectrum from the ISS-CREAM Experiment, PoS(ICRC2021) 094.
- 8. R. Alfaro, HAWC collaboration, All-particle cosmic ray energy spectrum measured by the HAWC experiment from 10 to 500 TeV, Phys. Rev. D 96, 122001 (2017), doi:10.1103/PhysRevD. 96.122001.
- PhysRevD.105.063021.
- Phys. Rev. D 85, 092005 (2012), doi:10.1103/PhysRevD.85.092005.
- TeV, Phys. Rev. D 91, 112017 (2015), doi:10.1103/PhysRevD.91.112017.
- shower array, Phys. Rev. D 62 (2000) 112002.

1. Panov, A.D., Adams, J.H., Ahn, H.S. et al. Energy spectra of abundant nuclei of primary cosmic rays from the data of ATIC-2 experiment: Final results. Bull.

3. Q. An et al. (DAMPE Collaboration), Measurement of the cosmic ray proton spectrum from 40 GeV to 100 TeV with the DAMPE satellite, Sci. Adv. 5,

4. F. Alemanno et al. (DAMPE Collaboration), Measurement of the Cosmic Ray Helium Energy Spectrum from 70 GeV to 80 TeV with the DAMPE Space

5. E.V. Atkin et al. (NUCLEON Collaboration), Energy Spectra of Cosmic-Ray Protons and Nuclei Measured in the NUCLEON Experiment Using a New Method,

6. O. Adriani et al. CALET Collaboration, Observation of Spectral Structures in the Flux of Cosmic-Ray Protons from 50 GeV to 60 TeV with the Calorimetric

9. A. Albert et al., Cosmic ray spectrum of protons plus helium nuclei between 6 and 158 TeV from HAWC data, Phys. Rev. D 105, 063021 (2022), doi:10.1103/

10.B. Bartoli, ARGO-YBJ Collaboration, Light-component spectrum of the primary cosmic rays in the multi-TeV region measured by the ARGO-YBJ experiment,

11.B. Bartoli, ARGO-YBJ Collaboration, Cosmic ray proton plus helium energy spectrum mea- sured by the ARGO-YBJ experiment in the energy range 3–300

12.M. Amenomori et al., Tibet AS-gamma Collaboration, Primary proton spectrum between 200 TeV and 1000 TeV observed with the Tibet burst detector and air

References

- and a Cherenkov telescope of LHAASO, Phys. Rev. D 92 (2015) 092005.
- Phys. 24 (2005) 1-25.
- observations of MACRO and EAS-TOP, Astropart. Phys. 21, 223 (2004), doi:10.1016/j.astropartphys.2004.01.005.
- doi:10.1086/422674.
- 17.P. Temnikov et al., Protons Spectrum from MAGIC Telescopes data, Proc. Sci. 395, 231 (2021), doi:10.22323/1.395.0231.
- PhysRevD.75.042004.

- scipost_202209_00007v2/
- Phys. G: Nucl. Part. Phys. 39 (2012) 025201.
- the TeV range, PoS (ICRC2021) 374.

13.B. Bartoli et al., ARGO-YBJ and LHAASO Collaborations, Knee of the cosmic hydrogen and helium spectrum below 1 PeV measured by ARGO-YBJ

14.W.D. Apel et al., KASCADE Collaboration, Energy spectra of elemental groups of cosmic rays: Update on the KASCADE unfolding analysis, Astropart.

15.M. Aglietta et al., The cosmic ray proton, helium and CNO fluxes in the 100 TeV energy region from TeV muons and EAS atmospheric Cherenkov light

16.T. Antoni et al., The Primary Proton Spectrum of Cosmic Rays Measured with Single Hadrons at Ground Level, Astrophys. J. 612, 914 (2004),

18.F. Aharonian et al., First ground-based measurement of atmospheric Cherenkov light from cosmic rays, Phys. Rev. D 75, 042004 (2007), doi:10.1103/

19.A. Archer et al., Measurement of the iron spectrum in cosmic rays by VERITAS, Phys. Rev. D 98, 022009 (2018), doi:10.1103/PhysRevD.98.022009. 20.GRAPES collab., Cosmic ray energy spectrum and composition measurements from the GRAPES-3 experiment: Latest results, PoS(ICRC2021) 388. 21.Grapes-3 Collab., Highlights of the results from the GRAPES-3 experiment, ISVHECRI 2022, Proceedings. https://www.scipost.org/preprints/

22.H. Tanaka et al., Studies of the energy spectrum and composition of the primary cosmic rays at 100–1000 TeV from the GRAPES-3 experiment, J.

23.J.C. Arteaga-Velázquez for the HAWC Collaboration, HAWC measurements of the energy spectra of cosmic ray protons, helium and heavy nuclei in

24.HAWC collab., HAWC measurements of the energy spectra of cosmic ray protons, helium and heavy nuclei in the TeV range, PoS(ICRC2021) 374.

Backup

EAS Age and Energy Estimation

- Obtained event-by-event
- Fit of Qeff(r) with a NKG-like function:

$$f_{ch}(r) = A \cdot (r/r_0)^{s-3} \cdot (1 + r/r_0)^{s-4.5}$$

with $r_0 = 124.21$ m.

A, **s** are free parameters

[HAWC Collab., APJ 881 (2017); J.A. Morales Soto et al., PoS(ICRC2019 359 (2019)]

EAS primary energy:

- Produce LDF tables of MC protons: Binning in r, Qeff, θ and E
- Maximum likelihood to find table that best fits the Qeff(r) distribution of the event, from which E is obtained.

[HAWC Collab., PRD 96 (2017); Z. Hampel-Arias' PhD thesis, 2017]

Analysis

Select a sample enriched with light nuclei

- Age parameter is sensitive to composition
- Select a subsample using a cut on the age
 - Subsample must have a large relative abundance of H and He.

- Content of H + He in subsample
 - More than 82% of H and He in subsample

Analysis

Build raw energy spectrum of subsample: N_{raw}(E_{rec})

Monte Carlo Simulation

- CORSIKA v 7.40 for EAS simulation.
- Fluka/QGSJET-II-04 as low(E_{lab} < 80 GeV)/high-energy interaction models for the main analysis.
- Fluka/EPOS-LHC simulations to study effect of hadronic interaction model.
- Full simulation of detector response with GEANT 4.
- $\theta < 70^{\circ}$; A_{thrown}~3 x 10⁶ m²
- Primary nuclei:
 - ► H, He, C, O, Ne, Mg, Si, Fe
 - \blacktriangleright E = 5 GeV 3 PeV
 - ► E⁻² spectra weighted to follow broken powerderived from fits to **AMS02** (2015), laws **CREAM-II** (2009 & 2011) and **PAMELA** (2011) data. [HAWC Collab., PRD 96 (2017)]

HAWC: J. C. Arteaga

40

Monte Carlo Simulation

Composition models

• But also use different composition models for studies of systematics

HAWC: J. C. Arteaga

Data Selection

Selection cuts

- Important to reduce systematic effects on results:
 - θ < 16.7°
 - Successful core and arrival direction reconstruction
 - Activate at least 40 PMTs within 40 m from core
 - Fraction hit (# of hit PMT's/# available channels) ≥ 0.2
 - $log_{10}(E/GeV) = [3.5, 5.5]$
- Resolution:

Analysis

Obtain effective area from MC simulations

 Correction factor due to contamination of heavy events

 $f_{corr} = (N_{light}/N_{light}^{H+He})$

 $A_{eff}^{H+He}(E_i) = A_{thrown} \varepsilon^{H+He}(E_i) \underline{COS}\theta_{max} + COS\theta_{min}$ 2

Get energy spectrum from N^{Unf} and effective area

Energy spectrum was calculated as:

 $\Phi = \mathbb{N}^{Unf}(E)/[\Delta E^{T} \cdot \Delta t_{eff} \cdot \Delta \Omega \cdot f_{corr}(E) \cdot A_{eff}^{H+He}(E)]$

Statistical and systematic uncertainties

$log_{10}(E/GeV) = 4.5$ (32 TeV)

	Relative error Φ (%)
Statistical	+/- 1.92
Exp. Data	+/- 0.01
Response matrix	+/- 1.92
Systematic	+11.77/-18.71
Composition	+0.86/-17.25
Aeff	+1.85/-2.04
Cut at He or C	+2.87/-0.75
Gold unfolding	+1.23
Seed unfolding	-1.42
Smoothing unfold.	+3.73/-1.32
PMT efficiency	+5.00
PMT threshold	+2.33/-1.53
PMT charge	+1.83
PMT late light	+8.77/-0.14
Hadronic model	-6.47

11.93/-18.81

H+He Energy Spectrum

Statistical and systematic uncertainties

From N(E^R) we get the How? Iterative proce

1) $P(E_j^R \mid E_i)$

2)
$$P(E_i | E_j^R) = \frac{P(E_j^R | E_i) P_0(E_i)}{\sum_{l=1}^{n_c} P(E_j^R | E_l) P_0(E_l)}$$
.
3) $N(E_i) = \sum_{j=1}^{n_E} P(E_i | E_j^R) N(E_j^R) = \sum_{j=1}^{n_E} M_{ij} N(E_j^R)$.
4) $P(E_i) \equiv \frac{N(E_i)}{\sum_{i=1}^{n_c} N(E_i)} = \frac{N(E_i)}{N_{true}}$.
5) $WMSE = \frac{1}{n} \sum_{i=1}^{n} \frac{\overline{\sigma}_{stat,i}^2 + \overline{\delta}_{bias,i}^2}{N(E_i)}$

the unfolded energy distribution N(E) cedure, Bayesian Unfolding [11-13]	
Response Ma (calculated from MC dat	trix ta)
Bayes form	ula
True event distribution	on
Final probabil	lity

Weighted mean squared error (The minimum is employed as a stopping criteria for the iteration depth)

Gold's Unfolding

Use matrix formalism:

 $N_{\rm data} = P N_{\rm unfold}$

Introduce statistical errors using new response matrix

$$P' = (CP)^T (CP),$$

and new unfolded vector

$$N'_{\text{data}} = (CP)^T C N_{\text{data}}$$

where

$$C_{ij} = \delta_{ij} / \sigma_i; (\sigma_i = 1 / \sqrt{n_i})$$

 $N_{\rm unfold}$ is found iteratively using the set of equations:

$$N_{\text{unfold},i}^{k+1} = \frac{N_{\text{unfold},i}^k N_{\text{data},i}'}{\sum_j P_{ij}' N_{\text{unfold},j}^k}$$

Priors given by nominal composition model.

Smoothing intermediate spectra with ROOT-CERN libraries (353HQ-twice algorithm).

Stopping criterium: Minimum of Weighted Mean Square

Error:

WMSE =
$$\frac{1}{m} \sum_{j}^{m} \frac{\sigma_{\text{stat},j}^2 + \delta_{\text{bias},j}^2}{N_{\text{unfold},j}}$$

[R.Gold, Report ANL-6984, 1964] [KASCADE Collab., App 24 (2005) 1]

H+He Energy Spectrum

Fit of spectrum

1. Use following functions:

—> Single power law:

 $d\Phi(E)/dE = \Phi_0 E^{\gamma_1}$

—> Broken power law:

 $d\Phi(E)/dE = \Phi_0 E^{\gamma_1} [1 +$

2. Minimize χ^2 with MINUIT and take into account correlation between points:

$$\chi^{2} = \sum_{i,j} \left[\Phi_{i}^{\text{data}} - \Phi^{\text{fit}}(\mathsf{E}_{i}) \right] \left[V_{\text{stat}}^{\text{Tot}} \right]^{-1}_{ij} \left[\Phi_{j}^{\text{data}} - \Phi^{\text{fit}}(\mathsf{E}_{j}) \right]$$

[C. Patrignani et al. (PDG), Chin. Phys. C, 40 (2016) and (2017) update]

+
$$(E/E_0)^{\varepsilon}$$
] $(\gamma_2 - \gamma_1)/\varepsilon$

HAWC p, He, Z >= 3

- Statistical errors < 0.05%.
- **Systematic errors** < 78%
 - Statistics of the MC data set + Effective area (< 7%). ullet
 - Uncertainties in parameters of the PMTs (< 55%). ullet
 - Hadronic interaction model: EPOS-LHC (< 30%). \bullet
 - Unfolding procedure: bias, seed, reduced cross entropy ullettechnique (< 14%).
 - Bias in shower age (< 20%). ullet
 - Cosmic ray composition model: GSF, poligonato, JACEE, ulletATIC-02 (< 19%).

HAWC Composition

- Results show that the spectra of these mass groups have fine structures, in particular, individual softenings, whose energy positions increase with the primary mass.
- Observation of softening in the spectra of H and He at \sim 14 TeV and ~25TeV respectively.
- Confirms recent detections by DAMPE of similar features in p and He spectra.
- Agreement between both techniques confirms potential of high-altitude EAS for studying TeV cosmic rays.
- Additional feature in spectrum of the heavy CR component in TeV region and indications in HAWC data of possible hardening in the intensities of H and He near 100TeV in agreement with GRAPES-3.

GeV^{1.6}]

E^{2.6} dΦ/dE [m⁻²

50