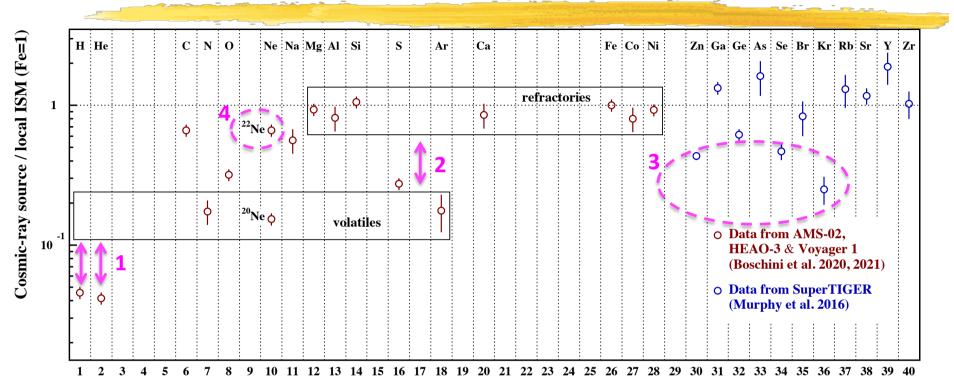
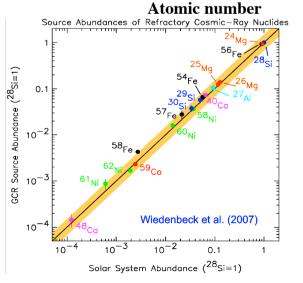
Cosmic Ray Composition


and the origin of GCRs in superbubbles

Vincent Tatischeff (IJCLab, Orsay, France)

Dec. 5-7, 2022


Cosmic Rays in the Multi-Messenger Era APC, Paris

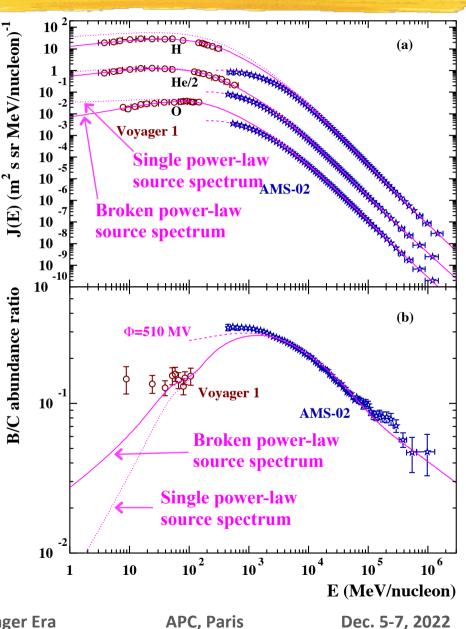
GCR abundance data

- 1. Under-abundance of protons and α -particles
- 2. Overabundance of refractory elements over volatiles
- **3. Overabundance of heavier volatile elements** (Zn, Se, Kr...) compared to lighter ones (N, Ne, S, Ar...)
- 4. Overabundance of ²²Ne

See Meyer, Drury & Ellison (1997)

Protons, α -particles and O source spectra

escape



- Fit to Voyager 1 and AMS-02 data using a 1D advection-diffusion model with homogeneous diffusion for the GCR propagation (Evoli et al. 2019)
- Broken power law source spectra from a fit of propagated spectra to the data

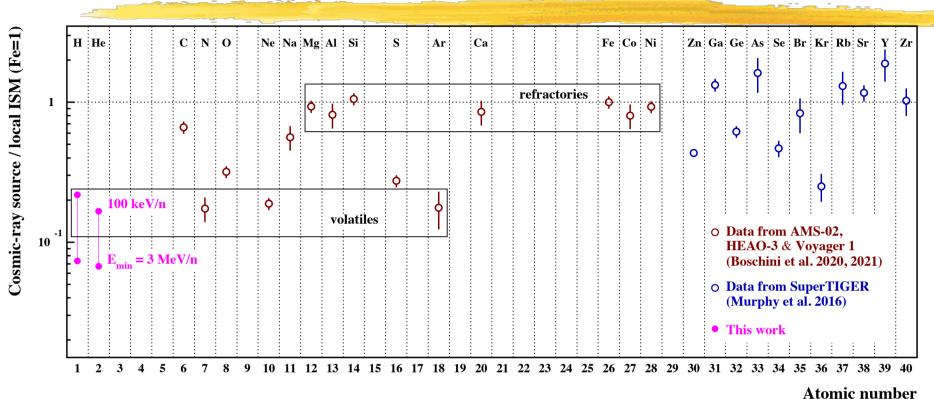
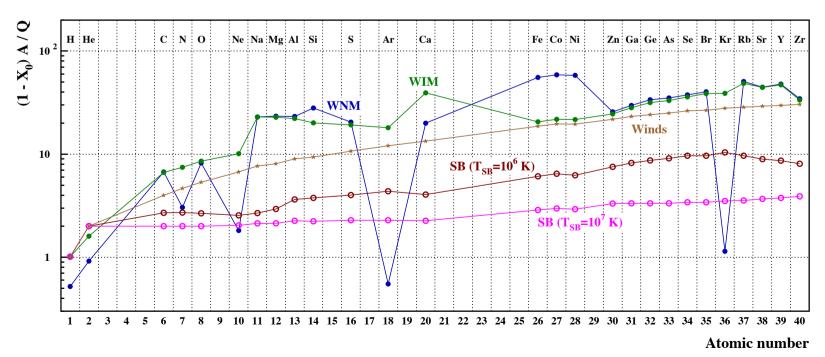

Parameter	Н	Не	0
Ebreak	$10 \pm 2 \text{ GeV/n}$	200 ⁺¹⁶⁰ ₋₁₂₀ MeV/n 3.98 ^{+0.08} _{-0.20}	160 ⁺⁴⁰ ₋₃₀ MeV/n 3.32 ^{+0.18} _{-0.24}
$\gamma_{ ext{l.e.}}$ $\gamma_{ ext{h.e.}}$ ^a	4.10 ± 0.03 4.31	3.98 _{-0.20} 4.21	3.32 _{-0.24} 4.26
$\chi^2_{\min}{}^b$	16.0 for 13 d.o.f. ^c	7.3 for 14 d.o.f.	5.9 for 12 d.o.f.

 Table 2. CR source spectrum parameters (Eq. 2).

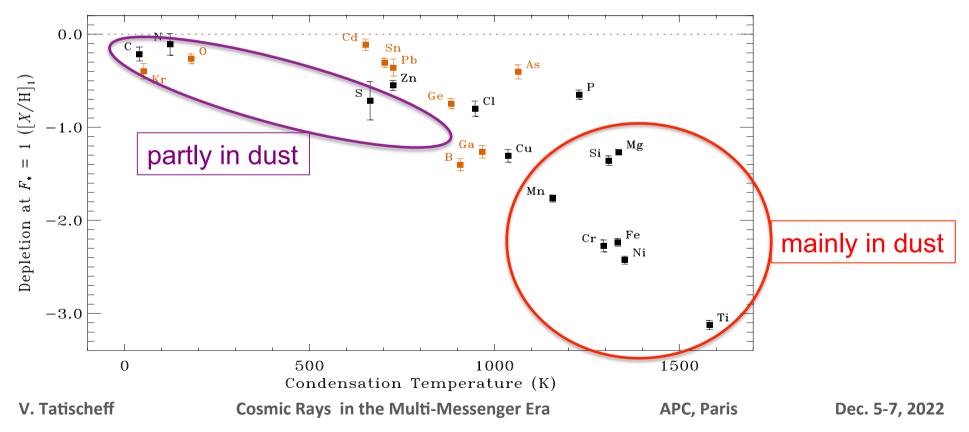
- ^a Parameter fixed from Evoli et al. (2019).
- ^b Minimum χ^2 from a fit of the propagated spectrum to Voyager 1 data.
- ^c d.o.f.: degrees of freedom.

p and α -particles in the GCR composition⁴

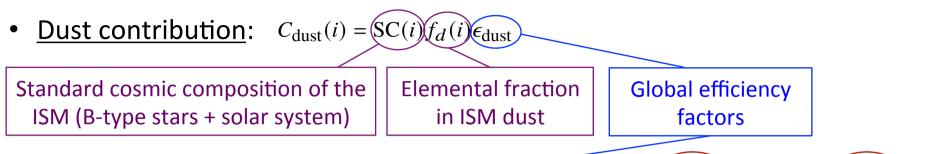


- Integration of source spectra => p & α abundances similar to those of the other volatiles N, Ne and Ar, provided that the minimum CR source energy is of the order of a few hundred keV/n
- Escape of low-energy CR from their sources (see Schroer et al. 2022)? Source spectrum differences between p, α -particles and heavy nuclei?

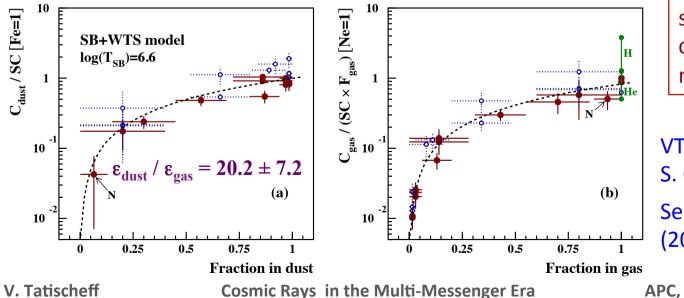
V. Tatischeff


Ionisation states in shock precursors

- Dependence of acceleration efficiency on ion rigidity expected from nonlinear DSA (Ellison+ 1981) and PIC simulations (Caprioli+ 2017) => volatile element abundances depend on ionisation states in shock precursors (i.e. ISM phases)
 - <u>Warm ISM</u>: photoionization precursors mainly produced by He I and He II photons from the post-shock region (Ghavamian et al. 2000; Medina et al. 2014)
 - Superbubbles: collisional ionisation in a hot plasma (negligible photoionization)
 - <u>Stellar winds</u>: photoionization by EUV radiation of hot stars + EUV and X-rays from shocks in the winds => heavy elements mostly triply ionised (e.g. Hillier 2020)


Interstellar gas and dust composition

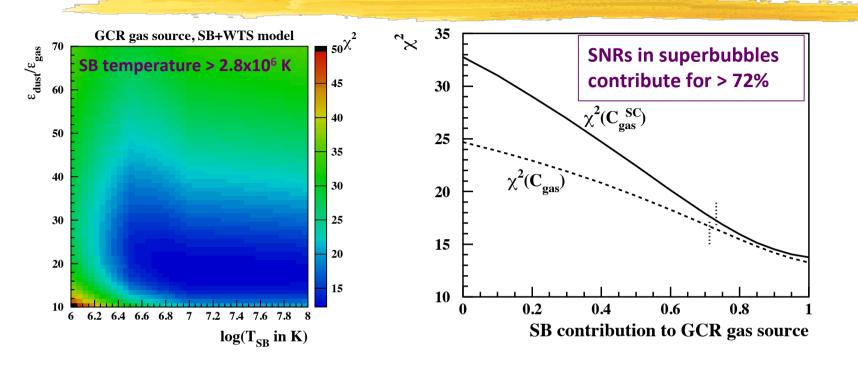
- Average fraction in dust for each element, $f_d(i)$, from
 - Gas-phase element depletions (Jenkins 2009, 2019; Ritchey et al. 2018)
- The interstellar dust modeling framework **THEMIS** (Jones et al. 2017)
- General properties of **primitive interplanetary dust**



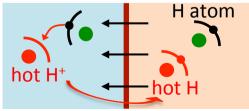
GCR composition model

• <u>Measured GCR source abundances</u>: $C_{\text{mes}}(i) = C_{\text{gas}}(i) + C_{\text{dust}}(i)$

- <u>Gas contribution</u>: $C_{gas}(i) = SC(i)(1 f_d(i))\epsilon_{gas}(x_w)f_w(i)(f_{A/Q}^w(i)) + (1 x_w)$
- <u>Model inputs</u>: weights of ISM phases in GCR volatile production, composition of ²²Ne-rich reservoir (fw(i))

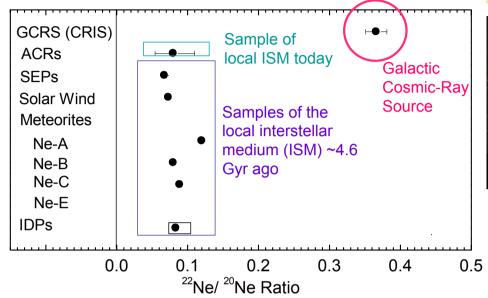


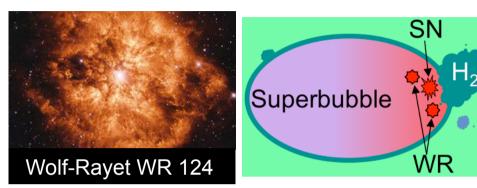
Ratio of atomic mass A to mean ionic charge in shock precursors Q, corrected to fraction of neutral atoms


VT, J. C. Raymond, J. Duprat, S. Gabici, S. Recchia (2021) See also Eichmann & Rachen (2021)

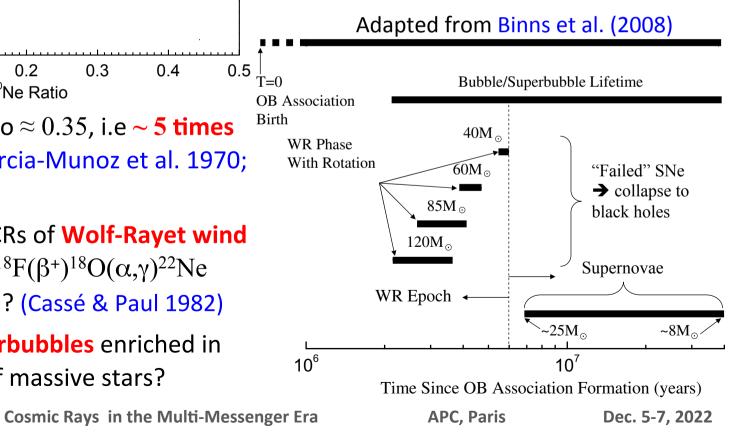
Dec. 5-7, 2022

Origin of GCR volatiles in superbubbles

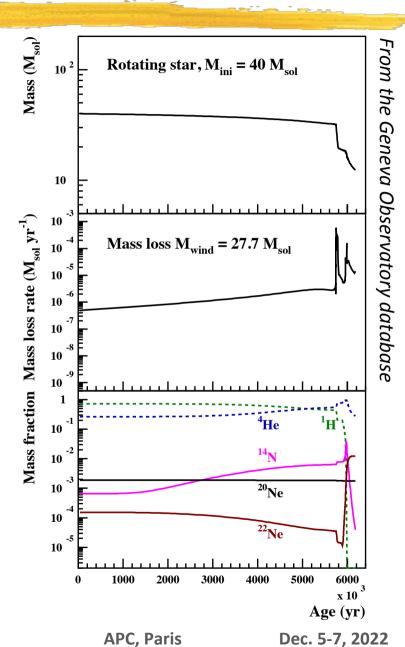

- SNRs in warm ISM contribute to the GCR volatile composition for < 28%, whereas
 ~ 40% of SNe occur in this phase and not in SBs (e.g. Lingenfelter & Higdon 2007)
- Effects of neutral atoms on the acceleration process: ion-neutral damping, neutral return flux (Morlino et al. 2013)?
 - ⇒ Heating of the upstream plasma
 - ⇒ Reduction of the shock Mach number
 - ⇒ Reduction of the particle acceleration efficiency


APC, Paris

8

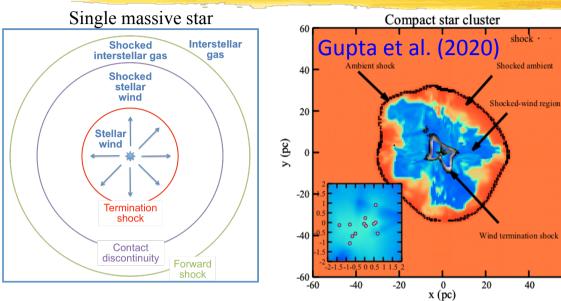

²²Ne abundance in GCRs

- GCR ²²Ne/²⁰Ne ratio ≈ 0.35 , i.e ~ 5 times the solar ratio (Garcia-Munoz et al. 1970; Binns et al. 2005)
- Contribution to GCRs of Wolf-Rayet wind material $({}^{14}N(\alpha,\gamma){}^{18}F(\beta^+){}^{18}O(\alpha,\gamma){}^{22}Ne$ during He burning)? (Cassé & Paul 1982)
- GCR origin in superbubbles enriched in ²²Ne from winds of massive stars?



9

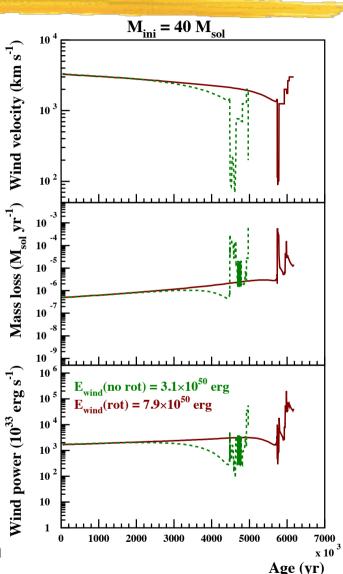
GCR ²²Ne NOT from enriched superbubble gas¹⁰


- Composition of massive star (MS) winds and supernova (SN) ejecta from stellar yields of Limongi & Chieffi (2018)
- ⇒ (²²Ne/²⁰Ne)_{wind+SN}=0.12, close to solar, as MS winds and SN ejecta are the main sources of ²⁰Ne and ²²Ne in the Universe (Prantzos 2012)
- Enrichment of superbubble gas only by winds from MS ≥ 40 M_{sol} (Binns et al. 2008)
- ⇒ $(^{22}Ne/^{20}Ne)_{wind}$ =0.61, would require $x_w \approx 50\%$ mixing of MS winds with material of solar composition, but a high metallicity of SB gas is not supported by X-ray observations (e.g. Kavanagh 2020)
- ⇒ (N/Ne)_{wind}=2.6, 5.5x the ratio in the GCR source composition, as MS loose large amounts of ¹⁴N during the main sequence, and Wolf-Rayet WN phases

V. Tatischeff

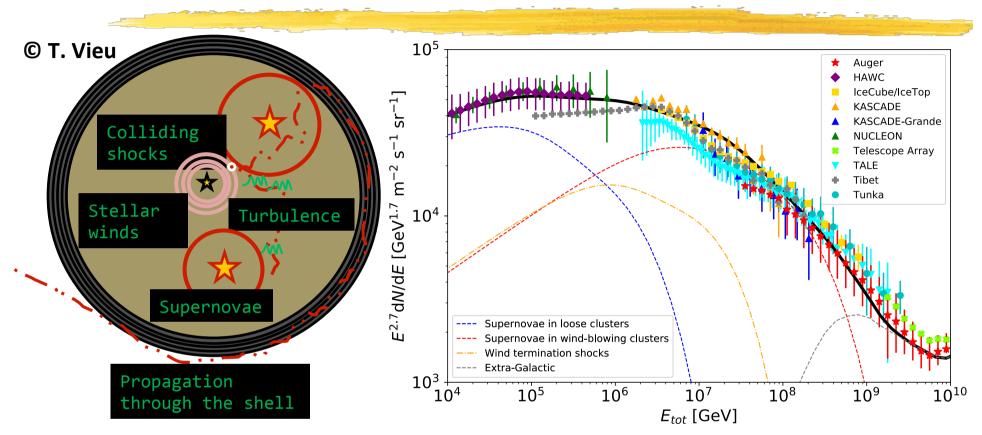
GCR ²²Ne from wind termination shocks

40



Shock acceleration in WTS, see Morlino et al. (2021)

- Yields, mass loss rates & stellar types from **Geneva Observatory's database** (e.g. Ekström et al. 2012)
- Acceleration efficiency in WTS assumed to be proportional to the wind mechanical power (see also Kalyashova et al. 2019)

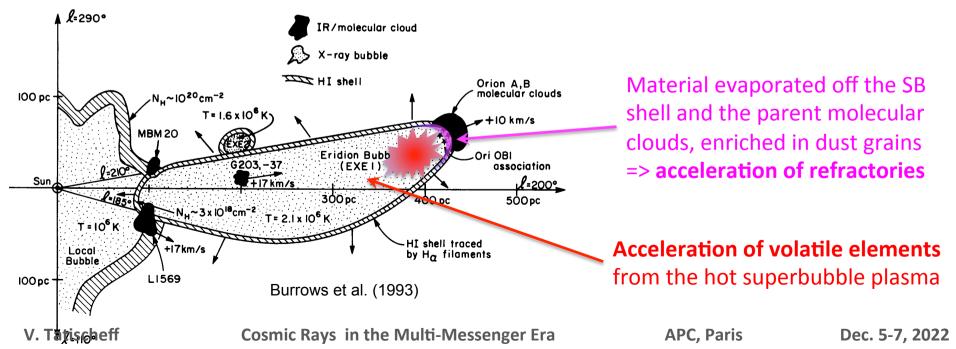


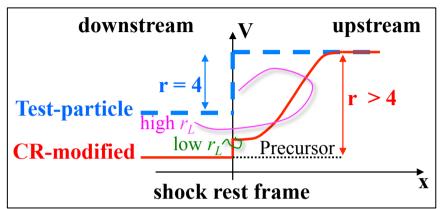
 \Rightarrow Small contribution to the GCR source composition: $x_{\mu} \approx 6\%$

Cosmic Rays in the Multi-Messenger Era

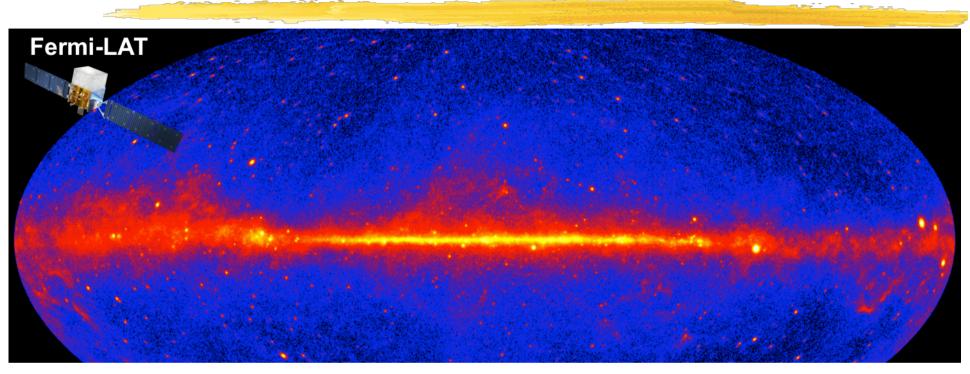
Cosmic-rays from massive star clusters and superbubbles¹²

Vieu et al. (2020, 2022a, 2022b, 2022c): detailed theory of cosmic-ray production in superbubbles from stellar winds, supernova remnants and turbulence, taking into account the nonlinear feedback of the accelerated particles
 CR are mainly accelerated in SNRs, only 5 - 10% of CRs are produced in WTS


• Vieu & Reville (2022): explain the Galactic CR population up to hundreds of PeV

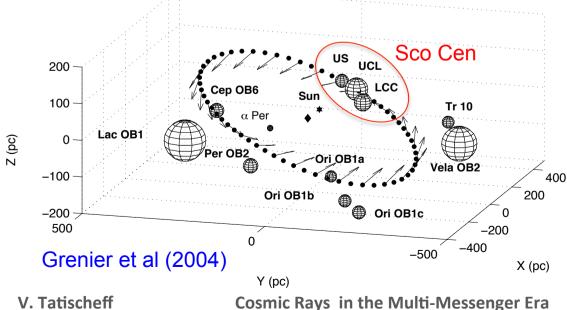

V. Tatischeff

Acceleration of dust grains


- Higher efficiency of acceleration of dust grains in SN shocks, because interstellar grains can have very large $A/Q \sim 10^4 - 10^8$ and particles with a high rigidity ($R \propto A/Q$) feel a larger ΔV of the background plasma (Ellison et al. 1997, 1998)
 - i. Grain acceleration
 - ii. Grain sputtering with ambient atoms

iii. Injection of sputtered ions with the supra-thermal velocity of the parent grain

GCR acceleration efficiency



- Efficiency of GCR production from the γ -ray luminosity of the Milky Way and the proton source spectrum: $N_{GCR}(p) \approx (0.2 1.5) \times 10^{45}$ protons s⁻¹
- Estimating the **mass of gas swept up by interstellar shocks**, we get:
 - Acceleration efficiency of superbubble gas by SN shocks: $\eta_{\rm SB} \approx (0.4 2.3) \times 10^{-5}$
 - Acceleration efficiency of wind material by WTSs: $\eta_{\text{wind}} \approx 0.8 \eta_{\text{SB}}$
 - Acceleration efficiency of GCR refractories from dust grains: $\eta_{dust} \gtrsim 10^{-4}$

Origin of ⁶⁰Fe in GCRs

- Detection of 15 nuclei of ⁶⁰Fe (lifetime τ_{60} =3.8 Myr) and 2.95×10^{5 56}Fe with 16.8 yr of data of ACE/CRIS (Binns et al. 2016)
- ⁶⁰Fe produced in core-collapse SNe and released in superbubbles (Diehl et al. 2021)
 => can be accelerated by subsequent SNe before decay (De Séréville et al., in prep.)
- Approximate maximum distance of the source(s): $L \sim (6 D \gamma \tau_{60})^{1/2} \sim 2 \text{ kpc}$ where $D \sim 4 \times 10^{28} \text{ cm}^2 \text{ s}^{-1}$ is the CR diffusion coefficient at ~500 MeV/nucleon (e.g. Evoli et al. 2019) and $\gamma = 1.6$ the Lorentz factor

- Nearest OB association: Scorpius-Centaurus (~ 140 pc), at the origin of the Local Hot Bubble from ~ 15 SNe in the last ~ 14 Myr (Zucker et al. 2022)
- Maximum CR energy density from a recent SN in Sco-Cen: $\epsilon_{CR} = 10^{50} \text{ erg} / V_{SC} = 0.2 \text{ eV cm}^{-3}$

APC, Paris

• Composition of Galactic cosmic rays is key to understanding their origin

• Measured source abundances of **primary and mostly primary CRs from H to Zr** point to an origin in **superbubble environment**, mainly from **acceleration in SN shocks**, with a small contribution of acceleration in **wind termination shocks** ($x_w \approx 6\%$) to explain the ²²Ne overabundance