

Tests of bias corrections using the stack

Thibault Guillemin
With help from Dominique Boutigny

June 29, 2022

Context

- Strategy for bias correction in deep discussion since a few months
 Presentations by Thibault, Jim, Aaron, Pierre
- Need (at minimum) to understand what is implemented in DM and how the corrections are precisely applied
 - → Useful to be able to test alternatives directly in DM
- My first step goals:
 - Understand ISR
 - Be able to run modified ISR on BOT data (using gen3 butler)
 - → master bias and overscan correction methods

Concrete goals:

- 1) 2D overscan correction
- 2) Build and apply a master dark

Instrument Signature Removal steps in DM Stack

- ISR steps in DM as of July 2020
 - integer-to-float conversion
 - saturation and suspect pixel masking
 - overscan subtraction
 - · Optional: Apply crosstalk correction here before CCD assembly, and before trimming
 - · CCD assembly of individual amplifiers
 - bias subtraction
 - Note: Calibration products construction (master bias, master dark, master flat).
 - · variance image construction
 - linearization of nonlinear response
 - crosstalk correction
 - mask defects, edges, nan's, etc.
 - brighter-fatter correction
 - dark subtraction
 - fringe correction
 - stray light subtraction
 - flat correction
 - apply gains
 - Optional: Fringe Correction after flat
 - vignette calculation
 - attach transmission curve
 - illumination correction

Overscan substraction

Master bias substraction (mean over n bias images)

Butler gen3

- Very useful documentation from Dominique
- Using SQlite3 for now
- PostgreSQL: account created but not yet used
- Ingestion OK
 Preparing full ingestion of Run 5 data (Slurm)
- 2) Calibrations added OK
- 3) Check (by hand) of corrected .FITS files OK

```
LSSTCam/calib
LSSTCam/calib/unbounded
LSSTCam/raw/all
u/tguillem/DM-30000/biasGen.21062022a
u/tguillem/DM-30000/biasGen.21062022a/20220621T085649Z
u/tguillem/DM-30000/biasGen.21062022a/20220624T093758Z
u/tguillem/master dark 0
u/tguillem/master dark 0/20220621T090619Z
u/tguillem/master dark 0/20220621T090653Z
u/tguillem/master dark 0/20220621T090913Z
u/tguillem/master dark no bias 0
u/tguillem/master dark no bias 0/20220624T090458Z
u/tguillem/master dark no bias 0/20220624T092733Z
u/tguillem/master dark no bias 2
u/tguillem/master dark no bias 2/20220624T122005Z
u/tguillem/master dark no bias 3
u/tguillem/master_dark_no_bias_3/20220624T123125Z
DatasetType('bias', {instrument, detector}, ExposureF, isCalibration=True)
DatasetType('camera', {instrument}, Camera, isCalibration=True)
```

Setup

Isst_distrib/w_2022_19
 with local packages:
 ip_isr
 cp_pipe
 cp_verify

Working area: /sps/lsst/users/tguillem/Rubin/stack/w_2022_19/tests_isr

Fork of ip_isr:

https://github.com/tguillemLSST/ip_isr

Run 5 BOT data ingested with butler gen3: /sps/lsst/groups/FocalPlane/SLAC/run5/butler/gen3/

Overscan corrections currently in DM

Only use of the serial overscan region

```
class OverscanCorrectionTaskConfig(pexConfig.Config):
    """Overscan correction options.
   fitType = pexConfig.ChoiceField(
       dtype=str,
       doc="The method for fitting the overscan bias level.",
       default='MEDIAN',
       allowed={
           "POLY": "Fit ordinary polynomial to the longest axis of the overscan region",
            "CHEB": "Fit Chebyshev polynomial to the longest axis of the overscan region",
           "LEG": "Fit Legendre polynomial to the longest axis of the overscan region",
           "NATURAL SPLINE": "Fit natural spline to the longest axis of the overscan region",
            "CUBIC SPLINE": "Fit cubic spline to the longest axis of the overscan region",
           "AKIMA SPLINE": "Fit Akima spline to the longest axis of the overscan region",
            "MEAN": "Correct using the mean of the overscan region",
            "MEANCLIP": "Correct using a clipped mean of the overscan region",
            "MEDIAN": "Correct using the median of the overscan region",
            "MEDIAN PER ROW": "Correct using the median per row of the overscan region",
            "ROW COL": "2D row and col correction from the serial and parallel overscan regions",
```

Tried to add but overscanImage has only serial region

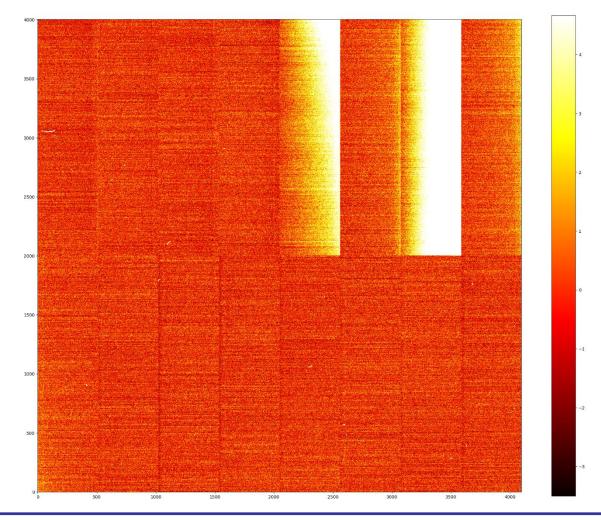
Will try to test this

Calibration products

Great page:

https://pipelines.lsst.io/v/daily/modules/lsst.cp.pipe/constructing-calibrations.html

- Construct master biases OK
- Certify calibrations OK
- Apply only overscan corrections to images (changing method) OK
- Construct master darks OK
- Construct darks OK


Task example:

```
71, exposure: 3021121200163, ...}) (isrTask.py:1042) - Constructing linearizer from cameraGeom information.
exposure: 3021121200163, ...}) (isrTask.py:1454) - Converting exposure to floating point values.
exposure: 3021121200163, ...}) (isrTask.py:1521) - Assembling CCD from amplifiers.
71, exposure: 3021121200163, ...}) (isrTask.py:1525) - No WCS found in input exposure.
exposure: 3021121200163, ...}) (isrTask.py:1533) - Applying bias correction.
exposure: 3021121200163, ...}) (isrTask.py:1565) - Applying linearizer.
exposure: 3021121200163, ...}) (isrTask.py:1588) - Masking non-finite (NAN, inf) value pixels.
exposure: 3021121200163, ...}) (isrTask.py:1592) - Widening saturation trails.
exposure: 3021121200163, ...}) (isrTask.py:1736) - Set 4 BAD pixels to 0.173926.
exposure: 3021121200163, ...}) (isrTask.py:1739) - Interpolating masked pixels.
71, exposure: 3021121200163, ...}) (isrTask.py:2648) - No rough magnitude zero point defined for filter unknown.
exposure: 3021121200163, ...}) (isrTask.py:2656) - Setting rough magnitude zero point for filter unknown: 32.445378
```

Results

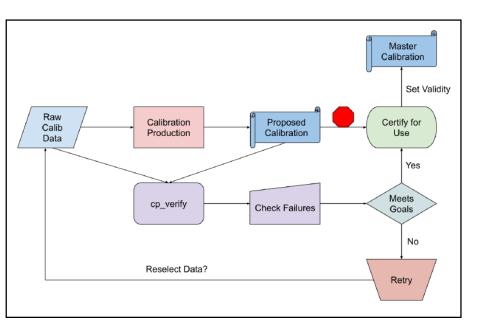

Dark image (120 s) corrected via ISR with the 1-D line overscan correction

Image per amplifier: (70% percentile) cpDarkIsr_LSSTCam_unknown_MC_C_20211212_000169_R14_S22_u_tguillem_master_dark_no_bias_3_20220624T123125Z.fits

Calibration strategy

Document: https://dmtn-222.lsst.io/v/u-czw-20220321/index.html

Calibration Type	Cadence	$N_{\sf exposure}$
Bias	Daily	15
Dark	Daily_	15
Flat	Daily ¹	15
Defects	Weekly	Uses the bias, dark, flat exposures.
Gain	Daily	Uses the flat exposures.
PTC	As needed	N/A
Linearity	As PTC	N/A
Brighter-Fatter Kernel	As PTC	N/A
Fringes	N/A	N/A

Table 1: Recommended cadence and exposure count for daily calibration verification.

Conclusion

- Started to do bias studies using ISR
- Involvement in ISR activities (DM-team)?
 The key place for all calibration aspects in the coming years...
 Camera-team and DM-team: interaction/collaboration not crystal clear to me.