
HEP Software Foundation and the OSSR

Graeme A Stewart, for HSF Coordination and Conveners

ESCAPE OSSR Workshop, 2022-12-02



HEP Software Foundation 
in a Nutshell

● Why a software foundation 
focussing on high-energy 
physics?
○ Upgrade to high-luminosity LHC (HL-LHC) brings opportunities and challenges
○ 5-7.5x higher luminosity than the original LHC plan
○ In total, more than 10x more data than we have taken with the LHC so far (target 3000fb-1)

■ ~7.3EB for ATLAS alone by 2036
● We realised that as well as the detector upgrades we also needed a software 

upgrade, tackling the problems of data rate and data volume
○ Evolution and revolution of a massive code base (~50M+ lines of C++)

■ With many 1000s of developers, of uneven skill level
○ Happening alongside major architecture evolution, parallelism and heterogeneous computing
○ Large process of community consultation that resulted in the HSF Community White Paper in 

2017-2018
2

https://doi.org/10.1007/s41781-018-0018-8


HSF Activities Today
● After 5 years the HSF has firmly established itself as part of the landscape in HEP

○ We are building strong bridges with the nuclear physics community as well (EIC)

● We have working groups focusing on different areas that are important for the field
○ Event generation, Simulation, Reconstruction, Analysis, PyHEP (fairly domain specific)

● We also have a dedicated working groups looking at Tools and Packaging and 
Software Frameworks
○ These are very developer and developer tools focused

● Plus a working group on Training, which is a critical piece of the puzzle
○ Educate the next generation

■ Basic training in Python, git, etc.
■ C++ training, covering basic and advanced topics

○ Software quality does not fall from the sky - people need to be taught these skills
○ Many people are involved from different experiment communities, a common problem for all 

experiments

● As well as this we organise workshops and other events and advocate for the 
community at high levels

3



HEP (Software) Knowledge Base

● One of our first HSF projects was an ambitious 
knowledge base
○ Much more than a software catalogue
○ Aimed to incorporate knowledge of experiments, 

organisations, events, etc. as well
○ Then all cross-referenceable, e.g.,

■ Can ask what software is the ATLAS experiment 
is using?

■ Can ask which experiments use ROOT?
○ Allow knowledge to be accessed for new people

● It was a great idea, but…
○ In the end, the community didn’t buy into it
○ It wasn’t maintainable on the few cycles of effort 

volunteers could put in
○ Once it starts to decay, it goes downhill quickly

■ Eventually we just decommissioned it

4

https://indico.cern.ch/event/496146/contributions/1174806/attachments/1266590/1875165/HSF-KB-Wenaus-20160502.pdf


Another Approach - Curated Lists

● A more focused approach has worked better
○ Small and beautiful? Well, at least far easier to maintain and curate, which is sustainable
○ Also maintenance and contributions were easy - GitHub PRs in both these examples

5

https://github.com/hsf-training/PyHEP-resources
https://hepsoftwarefoundation.org/training/curriculum.html


What we learned so far…

● Large scale catalogues manually maintained by a few people don’t work
○ Even if developers like the idea, there’s an out of sight, out of mind problem

■ Developers focus on code, so better maintain everything in the same repository
○ The might work if they are automated

● Smaller scale curated lists do seem to work
○ Smaller groups have more of a sense of community responsibility, and an immediate concrete 

benefit
■ On the large scale this dilutes fast through diffusion of responsibility 

○ Bottom-up approach (much more the HSF style)
○ However, there is then the issue of how does knowledge of the resource propagate outside the 

group…?

● Give it a low barrier to entry…
○ Then try and make it lower!

● Automate if possible
○ The less human cycles required the better

6

https://en.wikipedia.org/wiki/Diffusion_of_responsibility


HSF/IRIS-HEP Workshop: Software Citation and Recognition

● Closely related topic to cataloging, we recently had a workshop organised on 
Software Citation and Recognition
○ Review status of citation in HEP
○ Give credit to software developers and maintainers
○ Provide better and more sustainable software
○ Support for reproducibility

● Key principles developed by Force11 group
○ Importance, Credit and attribution, Unique identification, Persistence, Accessibility, Specicifity
○ Group then had task forces which helped to develop

■ Citation Format File standard (CITATION.cff)
■ CodeMeta

● Metadata standard for software, a richer description of software

● Workshop report is being prepared now
7

https://indico.cern.ch/event/1211229


What do the Experiments do?

● Experiments do have citation guidance for their papers
○ So there is an attempt at standardisation
○ Although not all advice is the same across the experiments

● Citations are quite well settled for event generators
○ 1000s of citations for main MCEGs

● Less consistent for analysis software, statistical methods, machine learning
○ Especially if there is no clear citation advice from the authors

● Sometimes one is citing the software as software, sometimes one is citing the 
physics results that are then expressed as software…

● Definite interest in having some community standard for these citations (e.g., 
curated by the HSF)

8



What to cite?

● An academic paper written about the software
○ This is the traditional approach, currently giving the most academic credit

■ Some feedback from RSEs - at least a subset don’t like writing papers
○ There is a serious issue with ancestor papers picking up all citations

■ E.g., the 2003 Geant4 paper gets most citations - even though the code today is almost 
completely different and all the modern authors are missing

● The software itself
○ E.g., the Zenodo DOI
○ Not well rewarded academically
○ Does it describe why the software exists? The design choices?

● A combination of the two
○ E.g. the Journal of Open Source Software (JOSS)
○ Combining the code, plus a short paper describing the software
○ Code and repository is reviewed as well - has to meet best-practice standards like build 

instructions, basic tests, and user documentation
9

https://joss.theoj.org/


INSPIRE

● INSPIRE is the main HEP information platform
○ Tracks papers, citations and other information in the field
○ 1.5M literature entries

■ Including software papers
■ But currently data and software are not supported

○ Plans for 2023
■ Will add entries for software and data

● Must be automatically harvestable (e.g., from Zenodo INSPIRE HEP, CERN open 
data)

● Must adhere to FAIR principles
● Will start to track citations, giving credit for authors

10



Best Practice for Developers

● If you want your software properly cited, put the citation everywhere…
○ In the README, in the documentation, on the distribution page (PyPI)
○ And make this a single source of truth!

● Adopt a citation format file
○ CITATION.cff - first version can be easily generated via a webpage

● Make sure you keep things up to date
○ E.g. use tbump
○ Prefer the Zenodo concept/project DOI to a version specific one

● Activate automatic retrieval from Zenodo
● Make the citation available directly, e.g.,

○ mytool --citation
○ import mytool; mytool.utils.citation()

11

Will be added to our Best 
Practices Technical Note

https://citation-file-format.github.io/cff-initializer-javascript/
https://github.com/your-tools/tbump
https://github.com/your-tools/tbump
https://doi.org/10.5281/zenodo.3965581
https://doi.org/10.5281/zenodo.3965581


A Straw Poll

● Where are we now?
○ Developers are interested in making sure their software is discoverable, useable and that they 

get credit for it
○ The means for doing so (best practice) aren’t so well known, it seems…
○ This is just a bunch of 9 important repositories I picked ~at random from HEP software and 

computing

12

CITATION.cff codemeta.json .zenodo.json

Repos… 5/9 1/9 2/9



Summary

● HSF is the community software organisation in high-energy physics
○ Volunteer and community driven

● We have a huge interest helping making excellent software
○ We don’t write it directly (though most HSF members are also developers)
○ We help with training, tooling and best practices (our Project Best Practices TN)
○ FAIR also applies to software

● We believe that cataloging, metadata and citations can help a lot with this
○ Have to have a low barrier of entry for developers
○ And a clear incentive for them to invest

● And we are always open to working with other sciences and organisations 
such as ESCAPE to improve things for developers and users

13

https://doi.org/10.5281/zenodo.3965581

