

The present status of our knowledge about the highest-energy particles in Nature

Antonio Condorelli

LLR Colloquium, 17/10/2022

Laboratoire de Physique des 2 Infinis

Outline

*****Introduction: UHECRs

- *The Pierre Auger Observatory & Telescope Array
- *UHECRs spectrum, mass composition and arrival direction
- *Astrophysical interpretation of UHECR data
- *Including source model
- *Conclusions and future perspectives

- *It spans over several order of magnitude in energy and flux;
- *Several detection techniques are needed;
- *Power law: it reflects acceleration mechanism;
- *Features can be addressed to propagation and/ or acceleration processes.

Propagation of UHECRs

Energy losses in extragalactic space

- Adiabatic expansion of the Universe
- Electron-positron production, photo-pion production due to interactions with CMB and EBL.

• Universe in UHECRs is not visible above a few hundreds of Mpc

=

8

D. Mazin, AIP Conference Proceedings 1112, 111 (2009)

Indirect detection: Extensive Air Shower (EAS)

The collision of cosmic rays with the atmospheric molecules produces a cascade of particles, called Extensive Air Shower (EAS).

The particles of an EAS initiated by a proton or a nucleus can be roughly divided into three components:

- Hadronic (mostly pions)
- Electromagnetic (e^+ , e^- , γ)
- Penetrant (muons and neutrinos)

A key information to infer about properties of the primary particle is the depth of the shower maximum

$$X_{max} \propto lg(E/A)$$

electromagnetic component hadronic component muonic component neutrinos

Indirect detection: Extensive Air Shower (EAS)

https://www.youtube.com/watch?v=vTGSb8P90mc 10

Auger & TA

The Pierre Auger Observatory

Hybrid detector

Fluorescence detector (FD)

duty cycle 15% 24+3 fluorescence telescopes

Surface detector (SD)

duty cycle 100% 1660 water-Cherenkov detectors

Radio detector (RD)

The Pierre Auger Observatory

Hybrid detector

Fluorescence detector (FD)

duty cycle 15% 24+3 fluorescence telescopes

Surface detector (SD)

duty cycle 100% 1660 water-Cherenkov detectors

Radio detector (RD)

The hybrid detection

The hybrid detection

The hybrid detection

Laboratoire de Physique des 2 Infinis

Telescope Array

• The largest cosmic ray observatory in the northern hemisphere

Fluorescence Detector: PMT camera

Main results

UHECR spectrum

ratio of Auger to TA energy spectrum

UHECR spectrum

good agreement up to $\approx 10^{19}$ eV after

UHECR spectrum

note: TA full trigger efficiency E>10^{18.8} eV

Possible systematics?

Possible explanation: different grid

Mass composition

A. Yushkov for the Pierre Auger collaboration, **ICRC2019**

Mass composition

Muons have even better mass composition sensitivity than Xmax

R. Engel, UHECRs 2022

Mass composition

Large scale anisotropy

Intermediate scale anisotropy

Best fit results at the global maximum

- All galaxies, Eth = 40 EeV, Θ = 16°, f = 16%, TS = 18.0, post-trial p-value = 7.9e-4 (3.2 σ)
- <u>Starburst, Eth = 38 EeV, Θ = 15°, f = 9%, TS = 25.0, post-trial p-value = 3.2e-5 (4.0σ)</u>
- All AGNs, Eth = 39 EeV, Θ = 16°, f = 7%, TS = 19.4, post-trial p-value = 4.2e-4 (3.3 σ)
- Jetted AGN, *E*th = 39 EeV, Θ = 14°, f = 6%, TS = 17.9, post-trial *p*-value = 8.3e-4 (3.4 σ)

Joint analysis Auger+TA

Contribution 10% with a isotropic flux! Neglected magnetic fields!

$E_{\min}^{(TA)}$	$oldsymbol{\psi}\left[deg ight]$	f [%]	TS	significance
1 EeV	29^{+11}_{-12}	41^{+29}_{-18}	14.3	2.70 _{global}
9 EeV	$15.1^{+4.6}_{-3.0}$	$12.1^{+4.5}_{-3.1}$	31.1	$4.6\sigma_{global}$

A. Condorelli et al., arXiv:2209.08593

Interpretation of results

Motivation: ankle interpretation

V. Novothny for the Pierre Auger collaboration, **ICRC2021**

- It is possible to link features in the UHECRs to
- astrophysical processes?
- Several possible explanations:
- Transition model;
- Pure proton scenario;
- Mixed composition scenario;
 - How could the mass composition
 - measurements help to understand these

* Assuming point-like sources identical and uniformly distributed;

- Assuming point-like sources identical and uniformly distributed; ₩
- Acceleration of five representative masses: Hydrogen, Helium, Nitrogen, Silicon and Iron. *

- * Assuming point-like sources identical and uniformly distributed;
- * Acceleration of five representative masses: Hydrogen, Helium, Nitrogen, Silicon and Iron.
- * The injected flux for each mass is a power law with a broken-exponential cutoff.

$$J_k(E_i) = f_k J_0 \left(\frac{E_i}{E_0}\right)^{-\gamma} \cdot f_{\text{cut}}(E_i, Z \cdot R_{\text{cut}})$$

$$f_{\rm cut}(E_i, Z \cdot R_{\rm cut}) = \begin{cases} 1 & E_i < Z \ R_{\rm cut} \\ \exp\left(1 - \frac{E_i}{Z \cdot R_{\rm cut}}\right) & E_i > Z \ R_{\rm cut} \end{cases}$$

- * Assuming point-like sources identical and uniformly distributed;
- * Acceleration of five representative masses: Hydrogen, Helium, Nitrogen, Silicon and Iron.
- * The injected flux for each mass is a power law with a broken-exponential cutoff.

$$J_k(E_i) = f_k J_0 \left(\frac{E_i}{E_0}\right)^{-\gamma} \cdot f_{\text{cut}}(E_i, Z \cdot R_{\text{cut}})$$

 $f_{\rm cut}(E_i, Z \cdot R_{\rm cut}) =$

* The injected flux are propagated through the extra-galactic space and fitted to the Auger energy spectrum and composition.

$$= \begin{cases} 1 & E_i < Z \ R_{\rm cut} \\ \exp\left(1 - \frac{E_i}{Z \cdot R_{\rm cut}}\right) & E_i > Z \ R_{\rm cut} \end{cases}$$

- * Assuming point-like sources identical and uniformly distributed;
- * Acceleration of five representative masses: Hydrogen, Helium, Nitrogen, Silicon and Iron.
- * The injected flux for each mass is a power law with a broken-exponential cutoff.

$$J_k(E_i) = f_k J_0 \left(\frac{E_i}{E_0}\right)^{-\gamma} \cdot f_{\text{cut}}(E_i, Z \cdot R_{\text{cut}})$$

 $f_{\rm cut}(E_i, Z \cdot R_{\rm cut}) =$

- * The injected flux are propagated through the extra-galactic space and fitted to the Auger energy spectrum and composition.
- * Free parameters of the fit are: J_0, γ, R_{cut} and $(N-1) f_k$.

A.Aab et al. (The Pierre Auger Collaboration), JCAP04(2017)038

$$= \begin{cases} 1 & E_i < Z \ R_{\rm cut} \\ \exp\left(1 - \frac{E_i}{Z \cdot R_{\rm cut}}\right) & E_i > Z \ R_{\rm cut} \end{cases}$$

- * Assuming point-like sources identical and uniformly distributed;
- * Acceleration of five representative masses: Hydrogen, Helium, Nitrogen, Silicon and Iron.
- * The injected flux for each mass is a power law with a broken-exponential cutoff.

$$J_k(E_i) = f_k J_0 \left(\frac{E_i}{E_0}\right)^{-\gamma} \cdot f_{\text{cut}}(E_i, Z \cdot R_{\text{cut}})$$

 $f_{\rm cut}(E_i, Z \cdot R_{\rm cut}) =$

- * The injected flux are propagated through the extra-galactic space and fitted to the Auger energy spectrum and composition.
- * Free parameters of the fit are: J_0, γ, R_{cut} and $(N-1) f_k$.
- * The total deviance is considered as the sum of the deviance of the spectrum and the deviance of the composition.

$$= \begin{cases} 1 & E_i < Z \ R_{\rm cut} \\ \exp\left(1 - \frac{E_i}{Z \cdot R_{\rm cut}}\right) & E_i > Z \ R_{\rm cut} \end{cases}$$

Astrophysical interpretation of Auger data

Fitting both the spectrum and composition, one can infer information about the source scenarios which are compatible to data.

*Nuclei are accelerated at the sources.

- * A hard injection spectrum at the sources is required.
- * Suppression due to photo-interactions and by limiting acceleration at the sources, while the ankle feature is not easy to accomodate.

Including arrival direction

*Assumption: UHECR production rate follows matter (ex: Star Formation Rate)

*Fit of energy spectrum and composition using a catalogue which reconstructs the 3D distribution of the most extreme sources in the Universe.

38

A. Aab et al JCAP04(2017)038

Including arrival direction

J. Biteau + Auger-TA W.G., EPJ Web Conf. Volume 210, 2019 39

Why don't we see nearby clusters or superclusters?

J. Biteau et al., *PoS* ICRC2021 (2021) 1012

Including arrival direction

B [μG]

A. Bonafede et al., A&A 513, A30 (2010)

40

$$5\left(\frac{10^{20} \text{ eV}}{E}\right)^2 \left(\frac{L}{1 \text{ Mpc}}\right) \left(\frac{L_{coh}}{10 \text{ kpc}}\right) \left(\frac{B}{1 \mu \text{G}}\right)^2 \left(\frac{Z}{26}\right)^2$$

Possible trapping due to clusters'

D. Hooper, et al., Phys. Rev. D 77, 103007

The universal galaxy cluster pressure profile

 Self-similarity: approximation all their properties depend only on mass and redshift;
 (M, z) -> pressure profile for any cluster.

$$10^{-1} \begin{bmatrix} 10^{-1} \\ 10^{-2} \\ 0 \end{bmatrix} \begin{bmatrix} 10^{-2} \\ 10^{-3} \\ 10^{-4} \end{bmatrix} \begin{bmatrix} 10^{-3} \\ 10^{-4} \\ 10^{-4} \end{bmatrix} \begin{bmatrix} 10^{-3} \\ 10^{-4} \\ 10^{-4} \end{bmatrix} \begin{bmatrix} 10^{-3} \\ 10^{-4} \\ 10^{-4} \\ 10^{-4} \end{bmatrix} \begin{bmatrix} 10^{-3} \\ 10^{-4} \\$$

$$P(r) = \frac{P_0 \cdot P_{500} \cdot f(M, z)}{\frac{\beta - \gamma}{(x/r_p)^{\gamma} \cdot (1 + (x/r_p)^{\alpha})} \alpha}$$

with
$$P_0$$
 normalisation factor

 α, β, γ and r_p are fitted parameters.

Arnaud et al, A&A 517, A92 (2010).

Virgo Cluster

42

R. Adam et al, A&A 644, A70 (2020)

Source-propagation in Galaxy Clusters

- *Propagation in source computed using SimProp;
- *Computation of interaction and diffusion times;
- *Inclusion of magnetic field effect on propagation;
- *Including radial dependence.

Filtering

= 1 *Mpc*

We should not see Virgo Cluster!

Condorelli et al., in prep.

Summary and future perspectives

- Energy spectrum Auger vs TA: Is there really a disagreement? Is there a difference in the spectrum in the Northern and Southern sky?
- Mass Composition: Agreement between the two experiments. Need to increase statistics at the highest energies.
- ☑ Arrival direction: Dipolar anisotropy above 8 EeV confirmedEGCR at E>8 EeV, amplitude increasing with energy as expected in the case of transition GCR-EGCR between 0.1-1.0 EeV. How to include magnetic field effects?
- Combined fit: which are the sources of UHECRs? (AGNs, TDE, SBG, GRB, etc..)
 Need for a clear-cut understanding of the dynamics inside EG sources: in-source backgrounds and UHECR interactions.

Summary and future perspectives

- Energy spectrum Auger vs TA: Is there really a disagreement? Is there a difference in the spectrum in the Northern and Southern sky?
- Mass Composition: Agreement between the two experiments. Need to increase statistics at the highest energies.
- Arrival direction: Dipolar anisotropy above 8 EeV confirmedEGCR at E>8 EeV, amplitude increasing with energy as expected in the case of transition GCR-EGCR between 0.1-1.0 EeV. How to include magnetic field effects?
- Combined fit: which are the sources of UHECRs? (AGNs, TDE, SBC, GRB, etc..)
 Need for a clear-cut understanding of the dynamics inside EG sources: in-source backgrounds and UHECR interactions.

Back-up slides!

Highlight results

Source-propagation model

- Accelerated particles confined in the environment surrounding the source; *
- Presence of photon and gas density; ₩
- High energy particles-> escape with no interaction; ₩
- Low energy particles —> Pile-up of nucleons at lower energies.

Application to Starburst Galaxies

*Motivation: Acceleration & Correlation.

*Leaky box model: computation of interaction and escape times.

G. E. Romero, A. L. Müller and M. Roth, Astron. Astrophys. 616 (2018), A57 L. A. Anchordoqui, Phys. Rev. D 97 (2018) no.6, 063010

U. Giaccari for the Pierre Auger Collaboration, this conference.

Photo-interaction time

Frédéric Galliano et al., 2008 ApJ 672 214 E. Peretti et al. Mon. Not. Roy. Astron. Soc. 487 (2019) no.1, 168-180 51

Time scale vs Energy

Spallation time

Escape time

 $\tau_D = D$ Depends on the slope
in energy and on the
coherence lenght l_c

Diffusion

Total timescale

Comparison to the experimental data

- A single nuclear specie is propagated inside the source. Sources are considered identical.
- The escaping fluxes are propagated through the Universe.
- The fluxes arriving in atmosphere are compared to the experimental data.
- **D** Within the parameter space, a set of parameters at the source that can describe energy spectrum and composition at Earth was found.

* assuming an injection shape $\frac{dN}{dE} \propto E^{-\gamma} \cdot f(E, Z \cdot R_{\text{cut}})$

Effect of the luminosity on the best scenario

Higher the ISM and photon density

Higher the rate of interactions inside the source

Higher efficiency of disintegration

Including hadronic interactions

Associated neutrino fluxes

the source. the UHECR data.

- Cosmogenic neutrinos are comparable to photo-interaction neutrinos produced in
- Decreasing the luminosity, the neutrino fluxes from source decrease;
- Once taken into account also the
 - hadronic interactions, the expected
 - neutrino flux is larger and can be used to
 - constrain plausible scenarios that describe

Cap 1: Distance of UHECRs

Interactions

pair production energy threshold: 1 MeV and monotonically decrease (scale as Z^2/A)

Photodisintegration 8 MeV

Photopion 145 MeV —-> E/A matters

$$\beta_{ad}(A,Z) = -\frac{1}{E} \frac{dE}{dz} \left(\frac{dt}{dz}\right)$$

As a consequence of the expansion of the Universe, relativistic particles are observed today with an energy E(z = 0) redshifted with respect to the initial one E(z) according to $E(0) = E(z)(1+z)^{-1}$ Dominant at low energy (10^{18})

Detail of the detectors

Systematic uncertainty in the energy scale

	TOTAL	14%
	Stability of energy scale	5%
\overline{O}	Invisible energy	3%-1.
RC 2013	FD profile recon.	6.5% - 5
	FD calibration	9.9%
	Atmosphere	3.4% - 6
	Fluorescence yield	3.6%
		1

0

5.2%

0

5.6%

.5%

SD events

62

What is the instep?

63

63

$$J(E;\mathbf{s}) = J_0 \left(\frac{E}{E_0}\right)^{-\gamma_1} \left[1 + \left(\frac{E}{E_{12}}\right)^{\frac{1}{\omega_{12}}}\right]^{(\gamma_1 - \gamma_2)\omega_{12}}$$
$$\times \frac{1}{1 + (E/E_s)^{\Delta\gamma}}.$$

Old—> 6 fitted parameters!

$$J(E;\mathbf{s}) = J_0 \left(\frac{E}{E_0}\right)^{-\gamma_1} \prod_{i=1}^3 \left[1 + \left(\frac{E}{E_{ij}}\right)^{\frac{1}{\omega_{ij}}}\right]^{(\gamma_i - \gamma_j)\omega_{ij}}$$

New-> 8 fitted parameters! (4 spectral indexes, 3 transition energies and a normalization)

What is the instep?

Cosmic ray flux (isotropic, spectral flux)

He CNO Si Fe

 10^{20}

Spectral particle number density (differential in energy)

10¹⁹

E [eV]

10³⁸

10³⁷

10³⁶

 $J(E) \times E^3 [eV^2 \text{ km}^{-2} \text{ yr}^{-1} \text{ sr}^{-1}]$

64

 $n(E, \vec{x}) = \frac{\mathrm{d}N}{\mathrm{d}E\,\mathrm{d}^3x} = \frac{4\pi}{\beta c}\,\phi(E)$

Large scale anisotropies

Rayleigh analysis in right ascension

$$a_{\alpha} = rac{2}{\mathcal{N}}\sum_{i=1}^{N} w_i \cos lpha_i, \qquad b_{lpha} = rac{2}{\mathcal{N}}\sum_{i=1}^{N} w_i \sin lpha_i.$$

The amplitude r_{α} and phase φ_{α} of the first harmonic of the modulation are obtained from

$$r_{\alpha} = \sqrt{a_{\alpha}^2 + b_{\alpha}^2}, \qquad \tan \varphi_{\alpha} = \frac{b_{\alpha}}{a_{\alpha}}$$

Energy [EeV]	Number of events	Fourier coefficient <i>a</i> _α	Fourier coefficient b_{α}	Amplitude r_{α}	Phase φ_{α} [°]	Probability $P(\geq r_{\alpha})$
4 to 8	81,701	0.001 ± 0.005	0.005 ± 0.005	$0.005\substack{+0.006\\-0.002}$	80 ± 60	0.60
≥ 8	32,187	-0.008 ± 0.008	0.046 ± 0.008	$0.047\substack{+0.008\\-0.007}$	100 ± 10	2.6×10^{-8}

Fourier transform: classical
approach to study the
large-scale anisotropies in
the arrival directions of
cosmic rays

Intermediate scale anisotropies

Observed > 41 EeV

The number of events, Nobserved, above an energy threshold E_{th} within a disc of radius Ψ centered on equatorial coordinates

(R.A.,Dec.) is compared with that expected, *N*expected, from an isotropic distribution of arrival directions accounting for the geometric exposure of the Observatory.

The search is performed over a grid, by threshold steps of 1 EeV between 32 and 80 EeV, by radial steps of 1° between 1° and 30°, and on a directional grid of 1° spacing, a value which corresponds to the angular resolution of the Observatory at the energies of interest

A Aab et al. [Pierre Auger], Astrophys. J. Lett. 853 (2018) no.2,

Intermediate scale anisotropies

Test Null		Threshold	TS	Local p-value	Post-trial	1-sided	AGN/other	SBG	Search
hypothesis	hypothesis	energy ^a		$\mathcal{P}_{\chi^2}(\mathrm{TS},2)$	p-value	significance	fraction	fraction	radius
SBG + ISO	ISO	39EeV	24.9	$3.8 imes 10^{-6}$	3.6×10^{-5}	4.0σ	N/A	9.7%	12.9°
$\gamma \text{AGN} + \text{SBG} + \text{ISO}$	γ AGN + ISO	39 EeV	14.7	N/A	1.3×10^{-4}	3.7σ	0.7%	8.7%	12.5°
γ AGN + ISO	ISO	60EeV	15.2	$5.1 imes 10^{-4}$	3.1×10^{-3}	2.7σ	6.7%	N/A	6.9°
$\gamma \text{AGN} + \text{SBG} + \text{ISO}$	SBG + ISO	60EeV	3.0	N/A	0.08	1.4σ	6.8%	$0.0\%^{b}$	7.0°
Swift-BAT + ISO	ISO	39EeV	18.2	$1.1 imes 10^{-4}$	$8.0 imes 10^{-4}$	3.2σ	6.9%	N/A	12.3°
<i>Swift</i> -BAT + SBG + ISO	Swift-BAT + ISO	39EeV	7.8	N/A	5.1×10^{-3}	2.6σ	2.8%	7.1%	12.6°
2MRS + ISO	ISO	38EeV	15.1	$5.2 imes 10^{-4}$	$3.3 imes 10^{-3}$	2.7σ	15.8%	N/A	13.2°
2MRS + SBG + ISO	2MRS + ISO	39 EeV	10.4	N/A	1.3×10^{-3}	3.0σ	1.1%	8.9%	12.6°

SBG excess

Model Flux Map - Starburst galaxies - E > 39 EeV

A Aab et al. [Pierre Auger], Astrophys. J. Lett. 853 (2018) no.2,

SBG list

SBGs	1[°]	b [°]	Distance ^a [Mpc]	Flux weight [%]	Attenuated weight: A / B / C [%]	% contribution ^b : A / B / C [%]
NGC 253	97.4	-88	2.7	13.6	20.7 / 18.0 / 16.6	35.9 / 32.2 / 30.2
M82	141.4	40.6	3.6	18.6	24.0 / 22.3 / 21.4	0.2 / 0.1 / 0.1
NGC 4945	305.3	13.3	4	16	19.2 / 18.3 / 17.9	39.0 / 38.4 / 38.3
M83	314.6	32	4	6.3	7.6 / 7.2 / 7.1	13.1 / 12.9 / 12.9
IC 342	138.2	10.6	4	5.5	6.6 / 6.3 / 6.1	0.1 / 0.0 / 0.0
NGC 6946	95.7	11.7	5.9	3.4	3.2 / 3.3 / 3.5	0.1 / 0.1 / 0.1
NGC 2903	208.7	44.5	6.6	1.1	0.9 / 1.0 / 1.1	0.6 / 0.7 / 0.7
NGC 5055	106	74.3	7.8	0.9	0.7 / 0.8 / 0.9	0.2/0.2/0.2
NGC 3628	240.9	64.8	8.1	1.3	1.0 / 1.1 / 1.2	0.8 / 0.9 / 1.1
NGC 3627	242	64.4	8.1	1.1	0.8 / 0.9 / 1.1	0.7 / 0.8 / 0.9
NGC 4631	142.8	84.2	8.7	2.9	2.1 / 2.4 / 2.7	0.8 / 0.9 / 1.1
M51	104.9	68.6	10.3	3.6	2.3 / 2.8 / 3.3	0.3 / 0.4 / 0.5
NGC 891	140.4	-17.4	11	1.7	1.1 / 1.3 / 1.5	0.2 / 0.3 / 0.3
NGC 3556	148.3	56.3	11.4	0.7	0.4 / 0.6 / 0.6	0.0 / 0.0 / 0.0
NGC 660	141.6	-47.4	15	0.9	0.5 / 0.6 / 0.8	0.4 / 0.5 / 0.6
NGC 2146	135.7	24.9	16.3	2.6	1.3 / 1.7 / 2.0	0.0 / 0.0 / 0.0
NGC 3079	157.8	48.4	17.4	2.1	1.0 / 1.4 / 1.5	0.1 / 0.1 / 0.1
NGC 1068	172.1	-51.9	17.9	12.1	5.6 / 7.9 / 9.0	6.4 / 9.4 / 10.9
NGC 1365	238	-54.6	22.3	1.3	0.5 / 0.8 / 0.8	0.9 / 1.5 / 1.6
Arp 299	141.9	55.4	46	1.6	0.4 / 0.7 / 0.6	0.0 / 0.0 / 0.0
Arp 220	36.6	53	80	0.8	0.1 / 0.3 / 0.2	0.0/0.2/0.1
NGC 6240	20.7	27.3	105	1	0.1 / 0.3 / 0.1	0.1 / 0.3 / 0.1

Could we have information about Galactic component <u>at low energies</u>

COSMIC-RAY ANISOTROPIES IN RIGHT ASCENSION MEASURED BY THE PIERRE AUGER OBSERVATORY

celestial pole

Modification factor

The formalism of the *modification factor* η_p in is commonly used to put in evidence the signatures of the energy losses suffered.by protons. It is defined as the ratio of the spectrum J_p(E), where all the energy losses are included, to the so-called unmodified spectrum Junm, where only adiabatic p energy losses are taken into account:

Only adiabatic energy loss Then adiabatic + ee (η_{ee}) then also photopion production (η_{total})

$$\eta_{\rm p}(E) = \frac{J_{\rm p}(E)}{J_{\rm p}^{\rm unm}(E)}.$$

Modification factor

72

Photo-interaction with nuclei

Second minimum

74

Why do you fit distributions and not M and SD?

Fraction fit

76

Fraction fit

The fit of the distributions is based on the same log-likelihood minimization method used to fit the X_{max} distributions in the 'combined fit' paper[2]. Having a total number of events N_m per log-energy bin m, the probability of observing an X_{max} distribution $\vec{k}_m = (k_{m1}, k_{m2}...)$ follows a multinomial distribution. The goodness-of-fit is assessed with a generalized χ^2 , (the *deviance*, D_m), defined as the negative log-likelihood ratio of a given model and the *saturated* model that perfectly describes the data:

$$D_m = -2\ln\frac{L_{X_{\max}}}{L_{X_{\max}}^{\text{sat}}} = -2\sum_x k_{mx} \left(\ln G_{mx} - \ln\frac{k_{mx}}{N_m}\right)$$
(3)

where G_{mx} is the probability $G_m^{\text{model}}(X_{\text{max}}|f_A)$ calculated at bin x of X_{max} , k_{mx} is the event content of the experimental X_{max} distribution at X_{max} bin x and log energy bin m; $N_m = \sum_x k_{mx}$ is the total number events in the log energy bin m.

Over-density correction

The peaks at D \approx 4 Mpc, D \approx 20 Mpc and D \approx 70 Mpc correspond to the Council of Giants, the Virgo Cluster, and the Hydra-Centaurus Supercluster, respectively.

J.J. Condon et al, The Astrophysical Journal, Volume 872, Issue 2, article id. 148, 20 pp. (2019).

78

Hylke B. J. Koers et al., Monthly Notices of the Royal Astronomical Society, Volume 399, Issue 2, October 2009, Pages 1005–1011

Over-density correction

HIM and photo-disintegration cross section model

Wolf-Rayet

While most of the supernova explosions take place in the interstellar medium, some of them can also occur in the winds of objects like Wolf-Rayet stars, whose contribution could actually explain an intermediate-mass Galactic contribution

Considering that the estimated number of Wolf-Rayet stars in our Galaxy is ~ 1200 and that 1 Wolf-Rayet star is estimated to explode in the Galaxy in every 7 supernova explosions, it was found in Thoudam et al., that such a Galactic contribution of cosmic rays is expected to be dominant between ~ 10^{17} eV and ~ 10^{18} eV.

More specifically, depending on the compositions of the Wolf-Rayet winds, such explosions may accelerate N nuclei up to an energy cutoff of ~ 10^{18} eV, which would make plausible to observe the tail of this Galactic component in the energy range included in our fit.

Galactic magnetic field

Photons

SFR evolution

$$z \propto \begin{cases} (1+z)^{3.4} & z \leq 1\\ 2^{3.7} \cdot (1+z)^{-0.3} & 1 < z \leq 4\\ 2^{3.7} \cdot 5^{3.2} \cdot (1+z)^{-3.5} & z > 4 \end{cases}$$

$$z) \propto \begin{cases} (1+z)^5 & z \le 1.7\\ 2.7^5 & 1.7 < z \le 2.7\\ 2.7^5 \cdot 10^{2.7-z} & z > 2.7 \end{cases}$$

Neutrinos

The total exposure \mathcal{E}_{tot} folded with a single-flavor flux of UHE neutrinos per unit energy, area A, solid angle Ω and time, $\phi(E_{\nu}) = d^6 N_{\nu}/(dE_{\nu} d\Omega dA dt)$ and integrated in energy gives the expected number of events for that flux:

$$N_{\rm evt} = \int_{E_{\nu}} \mathcal{E}_{\rm tot}(E_{\nu}) \phi(E_{\nu}) \, \mathrm{d}E_{\nu}.$$

Assuming a differential neutrino flux $\phi = k \cdot E_{\nu}^{-2}$, an upper limit to the value of k at 90% C.L. is obtained as 0 00

$$k_{90} = \frac{2.39}{\int_{E_{\nu}} E_{\nu}^{-2} \mathcal{E}_{\text{tot}}(E_{\nu}) \, \mathrm{d}E_{\nu}},$$

where 2.39 is the Feldman-Cousins factor [52] for non-observation of events in the absence of expected background accounting for systematic uncertainties [28, 53]. The integrated limit represents the value of the normalization of a E_{ν}^{-2} differential neutrino flux needed to predict ~ 2.39 expected events.

(4.1)

(4.2)

GRB

Gamma-Ray Bursts

Long-standing candidate as UHECR and neutrino source [Waxmann '95, Vietri '95]

- Γ^2 mechanism works only first cicle, large escape probability
- emissivity $Q \sim 10^{43} \mathrm{erg}/\mathrm{Mpc^3yr}$ at least a factor 10 too low
- heavy composition?
- no correlation with IceCuve events

Two classes: High- and low-luminosity GRBs

- HL GRBs, constraints from IceCube require either
 - ▶ low E_{\max} or
 - small baryon load
 - ⇒ excluded as main UHECR source

